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Abstract: Historically, the goal of forest inventories has been to determine the extent of the timber resource.
Predictions of how the resource was changing were made by comparing differences between successive
inventories. The general view of the associated sample design was with selection probabilities based on land area
observed at a discrete point in time. Time was not considered to be part of the sample design because it was not
considered to be an element of the sampled population. Over the last few decades, the general goal of many
national-scale forest inventories has been changing to monitoring the dynamic forest ecosystem. Here, we
explore the inferential advantages of replacing the two-dimensional areal probability paradigm with a three-
dimensional spatiotemporal probability paradigm. Our general discussion is augmented with a simulated
example for estimating annual growth by diameter classes. Two assumptions of temporal indifference and
remeasurement interval length indifference, which arose because of the two-dimensional view, are investigated
through a simulation. The simulation compares and contrasts five estimators that differ in their reliance on those
assumptions to make annual estimates. The results of the simulations often show those assumptions to be bias

inducing. FoRr. Scr. H(l):000-000.
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ATIONAL-SCALE FOREST MONITORING EFFORTS are

concerned with evaluating the dynamic state of a

nation’s forest populations. The sampling schemes
for most inventories of this scale have been described,
historically, as areal-based. There are many descriptions of
areal sampling schemes, some of which can be found in
Avery and Burkhart (2002), Shiver and Borders (1996),
Husch et al. (2003), Kangas and Maltamo (2006), Kohl et
al. (2006), Mandallaz (2007), and Gregoire and Valentine
(2008). The view is often of an area sample selected at fixed
points in time. Many countries adopted sampling systems
using permanent plots, and change is determined by esti-
mating differences between successive areal samples. The
general target temporal interval between successive areal
samples is often funding-dependent. In addition, the length
of time that it takes to conduct a single areal sample can be
funding-dependent, and the length of time between obser-
vations on individual plots can be logistics-dependent or
random. Two facilitating, usually tacit and unacknowl-
edged, assumptions arose from the two-dimensional view of
National Forest Inventory (NFI) designs. The first is that
variation in the time of observation for an individual areal
sample is ignorable. This assumption had been implicit in
almost every forest inventory ever conducted and was
named the temporal indifference assumption in Bechtold
and Patterson (2005). The second related assumption is that
variation in the remeasurement period lengths between in-
dividual plots in successive areal samples is ignorable. For
example, an average annual value would be calculated for
each remeasured plot, and the values for all plots would be

combined, regardless of the distribution of individual tem-
poral interval lengths. We call this the remeasurement pe-
riod (REMPER) assumption. Although these assumptions
underlie almost all NFIs, their impact increases as the length
of time for a single areal sample increases, the time between
areal samples decreases, and the diversity of measurement
interval lengths increases. In this article, we explore the
effects of these assumptions and discuss how inference can
be improved by negating their necessity through adoption of
the three-dimensional sampling paradigm of Roesch (2008).

Roesch (2008) noted that in the more recent overlapping,
panelized sample designs, the determination of the set of
observation times can be treated as random, resulting in a
three-dimensional sampled population and sampling frame,
the two dimensions of land area and the third dimension of
time. The sample unit is a three-dimensional puzzle piece or
volume. The volume of a sample unit, in (area X time)
units, is divided by the volume of the population to deter-
mine the probability of selection for the unit. The population
is divided into mutually exclusive, exhaustive sample units
(the three-dimensional puzzle pieces), which in toto com-
prise the sample frame. Under this model, each unit has a
definite probability of selection, and the total of these prob-
abilities is equal to 1.

The importance of the distinction between the two-di-
mensional and three-dimensional paradigms is becoming
increasingly clear as the goals of NFIs have broadened in
scope over the last few decades. Increased environmental
awareness has precipitated this broadening of goals,
morphing many national-scale forest inventories into
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Table 1. Diameter classes corresponding to standard mer-
chantability limits in the United States.

Lower limit
(diameter =)

Upper limit

Diameter class (diameter <)

............ (cm) ............
D1 0 12.7
D2 12.7 17.8
D3 17.8 22.9
D4 22.9 27.9
D5 27.9 o

full-fledged efforts to monitor many aspects of dynamic
forest ecosystems.

Traditionally, many measures associated with forest trees
have been reported within tree size classes, such as tree
diameter classes. For instance, basal area or volume growth
within 5-cm diameter classes for each year within a specific
period may be of interest. In temperate regions, the contri-
bution of measurement error to total variance is usually
large enough to preclude the measurement of the same trees
more frequently than approximately every 5 years. Al-
though some minimum period of time is necessary between
observations to reduce the effect of measurement error on
change estimates, often this period of time, or remeasure-
ment interval, will be long enough for a large number of
trees in the population to grow through multiple life stages
or size classes, which creates a potential problem from the
viewpoint of successively applied two-dimensional sam-
ples. We show below that estimation of intermediate unob-
served transitions through classes under the three-dimen-
sional paradigm is both obvious and manageable.

To exploit the three-dimensional view, we must look at
the data differently from the traditional view. With respect
to annual growth, we note that each sample plot is not only

Distribution of Remeasurement Interval Lengths - 1999 to 2011
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Figure 1. The distribution of remeasurement interval lengths
for all plots remeasured from 1999 to 2011.
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located in a particular place but is also observed at particular
times, and that the times of observation are possibly more
important than the place of observation. For simplicity, our
notation will be limited to two observations for each plot.
We will use the general three-dimensional selection model
given in Roesch (2008) with the exception that time will be
rescaled relative to the proportion of the growing season
elapsed within each year. Assign to each observation of
variable x labels for plot i and a growing season-adjusted
beginning date ¢ and ending date #¢, separated by the
(adjusted) time span of s; years. Represent each of these
observations as x? and #/, respectively. The dates and times
are adjusted to approximate the time of observation relative
to the proportion of growing season elapsed within 1 year.
Although beyond the scope of this investigation, this could
be done using data contributing to the US Department of
Agriculture (USDA) plant hardiness zone maps (US De-
partment of Agriculture 2012). For simplicity, we make two
assumptions, both of which can be refined by an appropriate
model to suit a particular investigator or alternative appli-
cation, as needed. The first is that we assume that the
growing season spans from March 1 to November 30 ev-
erywhere within the area of interest. The second is that
growth for each plot is uniform throughout the growing
season. We can then represent each observation date as the
year of observation plus the proportion of the growing
season that has elapsed (i.e., in the format year * p), and s;
is simply the difference between the two. Because we have
no observations between x” and #, we make the further
assumption that basal area growth for each living tree is
uniform between the two observations (e.g., across s;). This
assumption could also be refined by the application of the
appropriate model, such as conditioning on x? or on annual
precipitation. We then allocate the proportion of basal area
growth observed over s; to the proportion of each year
spanned by s; (thereby accounting for the marginal proba-
bility of the time dimension). This assumption of linear
(basal area) growth is an approximation that should only be
used for relatively short-time intervals. Well-developed
growth models would provide better estimates for individ-
ual trees but can be unavailable for many of the species and
condition classes encountered in a wide-area forest moni-
toring effort. The assumption that basal area growth is
uniform between observations allows us to estimate when
the threshold for each diameter class limit was crossed and
to allocate growth within diameter classes to the years the
growth occurred in those diameter classes. This develop-
ment leads immediately to two simple time-adjusted esti-
mators for annual basal area growth (within diameter class);
the first is a mean of ratios (MOR) estimator (or a proba-
bility proportional to size estimator in the three-dimensional
paradigm),

paPCMOR _ 1, bagi, I
y - n P ) ( )

Yi=1 © by
where n,, is the number of plots observing growth in year y,
p; y is the product of portion of year y growing season
observed by plot i and the portion of plot i area within the
area of interest, and bag; , is the basal area growth observed



on plot i and assignable to year y. The second estimator is
a ratio of means (ROM) estimator:

z bag; ,
DCROM =1
BAGy =

E Pi,y
i=1

The general statistical properties of ratio estimators can be
found in Raj (1968), Cassel et al. (1977), or Cochran (1977).

To investigate the effects of the temporal indifference
assumption and the REMPER assumption, we compare
these two estimators that do not rely on the temporal indif-
ference assumption with three estimators that do rely on the
temporal indifference assumption, after we compare all five
estimators with themselves under varying levels of diversity
in remeasurement interval length. The first of the three
estimators is currently used by the USDA Forest Service’s
Forest Inventory and Analysis (FIA) Program. To facilitate
an understanding of the estimator, a brief description of the
sample design is as follows.

; (2)

FIA conducts a continuous forest inventory using a ro-
tating panel sample design, which has now been described
in many publications, such as Bechtold and Patterson
(2005) and Roesch (2007a). The design consists of g mu-
tually exclusive, spatially disjoint temporal panels. One
panel per year is measured, in turn, for g consecutive years,
after which the panel measurement sequence reinitiates.
Each complete set of measurements, on all panels, is re-
ferred to as a cycle, which constitutes a single, complete
areal sample. Assume that the continuous inventory consists
of n, cycles and, therefore, P = n_g years. That is, if panel
1 is measured in year y, it is also scheduled to be measured
in years y + g, y + 2g, and so on, through to year y + (n,
— 1)g. Panel 2 would then be measured in yearsy + 1,y +
1 +g,y+ 1+ 2g, etc. Estimates of change in the earlier
years of our data range come from observations in which
plots from earlier designs were colocated with plots from
this new panel design, using a variant of method 3a de-
scribed in Roesch and Reams (1999).

Because FIA adheres to a two-dimensional view of this
design, the program groups these data into evaluation
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Figure 2. The distribution of remeasurement interval lengths for all plots remeasured from 1999 to

2011, by remeasurement year.
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Figure 3. The mean difference (MD), over the 1,000 iterations of 1,000 samples each, between each estimator and the
corresponding large sample result from the target population for the same estimator, by diameter class and estimation year.

groups of g years and then ignores any temporal differences
in observations within the evaluation group. The interested
reader is referred to the temporally indifferent method in
Bechtold and Patterson (2005), which leads to the end-of-
period (EOP) estimator:

NEG

E abagi,h'
DCEOP =1
BAG i —— (3)
y NgG
where Y is the scheduled final year of measurement for the
final panel in the evaluation group, ngg is the number of
plots in an evaluation group, and abag; , is the average
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annual basal area growth for plot i over the plot remeasure-
ment period, ;. Without loss of generality, here, we assume
that an evaluation group consists of five successive annual
panels. Note that in Equation 3, all of the growth for each
tree is applied to a single diameter class, regardless of how
many diameter classes the tree was in during the measure-
ment interval. Keeping with the philosophy of an end-of-
period (EOP) estimator, we use each tree’s final diameter
measurement to determine diameter class. Arguably, each
tree’s initial diameter could be used instead to determine
diameter class; however, neither solution leads to an
unbiased estimate of growth within diameter classes. This
observation led to a suggestion by Sheffield and Turner



(2010) to partition each tree’s growth into the diameter
classes within which that growth occurred. For basal area,
this is a simple assignment:

NEG

E abagdci,ri
DCSHE =1
BAG =— 4)
y NEG
where dc indicates diameter class. Note that in Equation 4,
all growth is assigned to the diameter class within which it
occurred, but the estimator is like Equation 3 in that it is an
EOP estimator. In the presence of trend, both EOP estima-
tors, Equations 3 and 4, will be affected by lag bias. In a

five-panel system, the five panels are measured for growth
over a 10-year period; that is, panel 1 is measured in years
1 and 6, panel 2 is measured in years 2 and 7, and so on.
Roesch (2007b) argued that the average annual growth
within each panel is best applied to the center of the mea-
surement interval. The successive centers for these five
panels are at years 3.5, 4.5, 5.5, 6.5, and 7.5, with a mean of
5.5, which suggests that the estimator in Equation 4 should
be “time corrected” by —4.5 years in a five-annual panel
evaluation group, leading to the adjusted Sheffield estimator
(ASHE):

DCASHE _ 5< DCSHE

BAG BAG}H_4

DCSHE
Y + BAG ) (35)

y+5
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Figure 4. The mean squared difference (MSD), over the 1,000 iterations of 1,000 samples each, between each estimator and
the corresponding large sample result from the target population for the same estimator, by diameter class and estimation

year.
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The derivations of the analogous estimators for different
numbers of panels are left as an exercise for the reader. The
estimator in Equation 5 would fit within FIA’s current
accounting system; however, it does not account for the fact
that when individual trees grow through multiple diameter
classes, they grow through the lower diameter classes first,
as the estimators in Equations 1 and 2 do. Another signifi-
cant difference between the estimators in Equations 1 and 2
and the estimators in Equations 3, 4, and 5 is that the former
are based on actual measurement year, whereas the latter are
based on “inventory year” or scheduled year of measure-
ment, which, in later years is usually, but not necessarily
always, the same as the actual year of measurement.

Methods

To motivate our discussion, in this application, we use
data from FIA to estimate annual basal area growth of all
living trees within the size classes given in Table 1 over a
defined area (A) and temporal period. Although any classi-
fication system could be used, without loss of generality, for
this example, the size classification shown in Table 1 is
used. The diameters in Table 1 correspond to the metric

equivalents of standard merchantability limits in the United
States.

We conducted two tests of the assumptions on which
these estimators are based. Specifically, we strove to test the
estimators’ abilities to provide estimates of the average
annual basal area growth within diameter classes over a
S-year period. A difficulty arises in actual inventory data
because most plots are not actually measured at an exact
temporal interval. The problem that this causes when one is
attempting to estimate average annual growth was discussed
in Roesch (2007b) (see the discussion in that article of
Figures 2 and 3) and is often ignored in NFIs under the
assumption that the “average annual growth” for all plots
can be combined regardless of the diversity in remeasure-
ment period lengths. We will dub this the REMPER as-
sumption (after the name of the FIA remeasurement period
variable, REMPER).

Test 1

To test the REMPER assumption, we started with a
“super sample” of available data from a total of 120,143
remeasured FIA plots (both forested and nonforested) in 11
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Figure 5. The population mean basal area growth for simulated popula-
tions 1, 2, and 3, by diameter class and estimation year. The two-dimen-
sional and three-dimensional population sizes for each population by year
are shown in the lower right-hand graph.
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Figure 6. The MD, over the 1,000 iterations of 1,000 samples each, between each
estimator and the corresponding population 1 mean, by diameter class and estima-

tion year.

states in the southern United States. Each tree observation
on each plot has both a time 1 diameter (PREDBH) and a
time 2 diameter (DBH) measurement. These states were
Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana,
North Carolina, South Carolina, Tennessee, Texas, and Vir-
ginia, with remeasurement (time 2) dates from 1999 to
2011. The remeasurement interval lengths of plots in this
super sample vary widely. The overall distribution of these
remeasurement interval lengths is given in Figure 1. Earlier
years in this study had a greater diversity in remeasurement
interval lengths than later years because the transition from
earlier designs to the panelized design, described above,
occurred in the earlier years. We give the distribution of
remeasurement interval lengths by remeasurement year in
Figure 2.

We created a large sample of 23,679 plots from the target
population by selecting all plots with a remeasurement

period between 4.5 and 5.5 years from the super sample. We
set this (apparently) small, nonzero tolerance on the target
length of 5 years because the sample from the target
population would have been extremely small if we had set
a tolerance of 0. We then calculated all of the estimators
from this large sample for the target population for the years
1999-2010. We treated these results as the population val-
ues to be estimated. If the REMPER assumption is valid and
the actual remeasurement period is independent of any
variable of interest, then the estimates from a small random
sample of the super sample should have the same expected
value as the estimates from the large sample of the target
population.

In the simulation, we sampled 1,000 plots from the super
sample (without replacement) for each of 1,000 iterations.
For each year, we calculated the mean difference (MD)
and the mean squared difference (MSD), over the 1,000
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Population 1 - Mean Squared Difference
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iterations, between each estimate and the corresponding
estimate from the large sample of the target population for
the same estimator. That is,

1000

_ NS AT

where £ is the sample estimate of estimator x, for the iterate
i sample from the super sample, and £’ is the large sample
estimate for estimator x for the target population. Likewise,

1000
_ oS _ 4T2
MSD = 1555 :E] (£ )2,
This tests the robustness of each estimator to the
REMPER assumption. If we get empirical results that are
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large in MD or MSD, they will suggest that the underlying
population of the super sample is different from that of the
target population, rendering the REMPER assumption ten-
uous. The results from this test do not give an indication of
the quality of the estimates derived from each estimator but
do suggest how consistent and robust the estimators are
when applied to temporally diverse intervals.

Test 2

Test 2 addresses the temporal indifference assumption,
as well as the relative performance of the estimators with
respect to the assumption. To do this, we built three simu-
lated populations, by first selecting all plots from the super
sample with a remeasurement period of exactly 5 years,
resulting in 3,119 plots (set 1). Construction of each of the
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three populations started with 10 copies of set 1 (set 2). That
is, set 2 has 31,190 plots. Variance was introduced into set
2, as follows, to ensure population variation.

For population 1, we multiplied each time 2 tree diameter
in set 2 by a random variate from a uniform (0.9, 1.1)
distribution. For population 2, a nonlinear trend was intro-
duced by multiplying each time 2 diameter in population 1
by a function

T1,=[1 + .05 In(y, — 1998)],

where y, is the year of remeasurement for tree i. For popu-
lation 3, a stronger nonlinear trend was introduced by mul-
tiplying each time 2 diameter in population 1 by a function

T1,=[1 + .10 In(y, — 1998)],

The mean basal area growth by diameter class and remea-

surement year for each of the three populations is given in
5, as well as the two-dimensional and three-dimensional
annual population sizes.

For 1,000 iterations, we sampled 1,000 plots from each
population and calculated all of the estimators for the years
1999-2010. For each iterate, for each year, we calculated
the MD and MSD, over the 1,000 iterations, between each
estimator and the true population values.

Results

Figures 3 and 4 give the results by diameter class for test
1. Figure 3 gives the MD, an indicator of relative bias, over
the 1,000 iterations of 1,000 samples each from the super
population, between each estimator and the same estima-
tor’s result from the large sample of the target population.
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Figure 4 gives the MSD, an indicator of relative mean
squared error, over the 1,000 iterations, between each esti-
mator and the corresponding result from the target popula-
tion for the same estimator. In Figure 3, almost all of the
values are negative, and they are all negative where the data
are the most complete with respect to coverage of the
growth interval being estimated (from 1999 to 2007). Be-
cause of the timing of the conversion by FIA to the five-
panel system, the period between 2003 and 2007 has a
distribution of temporal diversity (Figure 2) that is most like
what can be expected to continue for full data sets (for all
five panels) into the future, under current practices. Figure
3 shows that during this period, over all diameter classes,
the estimators that appear to be the least affected in terms of
empirical bias are the MOR, ROM, and ASHE estimators.

However, it is clear that the REMPER assumption is bias
inducing.

Figure 5 gives the population mean basal area growth for
simulated populations 1, 2, and 3, by diameter class and
estimation year. The two-dimensional and three-dimen-
sional population sizes for each population by year are
shown in the lower right-hand graph of the figure.

Figures 6-11 give the results by diameter class for test 2.
Figures 6, 8, and 10 give the MDs, over the 1,000 iterations,
between each estimator and the corresponding true popula-
tion values for populations 1, 2, and 3, respectively. Figures
7, 9, and 11 give the MSDs, over the 1,000 iterations,
between each estimator and the corresponding true popula-
tion values for populations 1, 2, and 3, respectively.

The EOP estimator usually shows the most bias in
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Figure 9. The MSD, over the 1,000 iterations of 1,000 samples each, between each
estimator and the corresponding population 2 mean, by diameter class and estimation

year.
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Population 3 - Mean Difference
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Figure 10. The MD, over the 1,000 iterations of 1,000 samples each, between each
estimator and the corresponding population 3 mean, by diameter class and estimation

year.

Figures 6, 8, and 10, for each of the three populations over
all diameter classes. The Sheffield estimator (SHE) usually
shows the second highest empirical bias. In addition, the
bias for these estimators tends to increase for correspond-
ing graphs from populations 1-3, as the simulated non-
linear trend increases. The ASHE estimator usually shows
less empirical bias than the SHE estimator does. This find-
ing suggests that much of the bias in both the EOP estimator
and the SHE estimator, in the absence of remeasure-
ment period variance, is due to lag bias, which can be
eliminated by adjusting for the lag, as we did for the ASHE
estimator.

Nevertheless, the ASHE estimator usually shows some
empirical bias, because of its reliance on the temporal
indifference assumption. The ROM and MOR estimators
almost always show no empirical bias, with the MOR esti-

mator sometimes showing a small amount of bias during the
years with very small annual population sizes (as shown in
Figure 5). Comparing Figures 7, 9, and 11 with Figures 6, 8,
and 10, respectively, we note that bias squared is often the
greatest contributor to mean squared error. An exception to
this is seen when both are very small, such as when Figures
7,9, and 11 show almost identical values for the ROM,
MOR, and ASHE estimators, while the corresponding val-
ues in Figures 6, 8, and 10 show bias in the ASHE estimator,
but not in the ROM and MOR estimators, indicating higher
variance but lower bias in the latter two estimators. When
this is the case and mean squared errors are about equal, we
would usually prefer the least biased estimators.

Contrasting test 1 and test 2, we note that variance in the
remeasurement interval length, present in test 1 but not in
test 2 induces a high cost, in terms of bias.
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Figure 11. The MSD, over the 1,000 iterations of 1,000 samples each, between each
estimator and the corresponding population 3 mean, by diameter class and estimation

year.

Discussion and Conclusions

The field of statistics gives us many estimation tools to
bolster analyses. All five estimators discussed here use
external information to various degrees to make annual
estimates. In estimators 1 and 2, the external information
has a clear relationship to the annual estimates of interest,
because the observations span the years estimated. It is clear
in the formulation of the end-of-period estimators (EOP
and SHE), in Equations 3 and 4, that much of the external
information used in those estimators does not span the time
estimated.

Under a nonstringent condition, the MOR and ROM
estimators in Equations 1 and 2 are unbiased. A linear trend
for the intervals covering the year of interest is sufficient for
unbiasedness. Note also that these two estimators gave
almost the same results, which are quite different from those
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for the EOP and SHE estimators. For the latter two estima-
tors (EOP and SHE) to be unbiased, a flat line trend (i.e.,
linear with a slope of 0) over all years used in the estimators
would have to exist. With a 5-year cycle, a flat line trend
must have been true for the 10 years before any annual EOP
estimate of growth. The conditions under which estimator
5 is unbiased lie between those necessary for estimators in
the set containing Equations 1 and 2 and the set containing
Equations 3 and 4.

In general, test 1 indicates that the two EOP estimators
are the least robust to the REMPER assumption during the
period from 2003 to 2007. In the later years, for which
Figure 2 shows less diversity in remeasurement period
lengths, the EOP estimators use much more of the data from
earlier years than do the other three estimators, bringing
their results in Figures 3 and 4 closer to the results of the



other three estimators. Comparison of Figures 3 and 4
suggests that the REMPER assumption contributes more to
an increase in the bias of the estimates than to an increase in
the variance. If the REMPER assumption was valid and the
actual remeasurement period is independent of any variable
of interest, then Figure 3 should have shown no perceptible
empirical bias in any of the estimators. That is, the empirical
results in Figure 3 show large mean differences, suggesting
that the underlying population of the super sample, contain-
ing a greater diversity of remeasurement interval lengths, is
different from that of the target population. Overall, test 1
appears to invalidate the REMPER assumption. This is a
significant finding because the remeasurement period as-
sumption is implicit in NFI systems worldwide. That is,
plots in NFI systems are never remeasured on exact tempo-
ral intervals, and sometimes there is little effort made to
restrict the distribution of temporal interval lengths. The
results of test 1 do show that the problem is reduced greatly
in these data as the distribution of temporal interval lengths
becomes more restricted in the later years of the investiga-
tion. Further research is needed to determine what restric-
tions should be placed on the distribution of temporal in-
tervals to achieve specific objectives.

Test 2, using populations based on plots measured on
exact 5-year temporal intervals, shows that the MOR and
ROM estimators 1 and 2 always perform well, and the
ASHE estimator 5 usually performs well, whereas the
end-of-period estimators (EOP and SHE) often perform
poorly. The temporally indifferent method is a smoothing
function that has the tendency to obfuscate temporal trends
and delay recognition of those trends. A judicious applica-
tion of the three-dimensional view of this design can negate
the necessity of the temporal indifference assumption and
its associated problems. The results from test 2 with respect
to the ASHE estimator do suggest, however, that prelimi-
nary estimates based on the intuitively unappealing tempo-
ral indifference assumption can be applied in a way to
reduce greatly the bias seen in the EOP and SHE estimators.

The description of continuous forest inventories as a sample
of a three-dimensional population is uniquely informative.
It arose from the recognition of the importance of the time
of observation on the outcome of the sample, and it is useful
for putting temporally ordered observations into perspective
while formulating model-unbiased estimators of growth and
trend.
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