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Municipal fire departments responded to approximately 53,000 intentionally-set fires annually from
2003 to 2007, according to National Fire Protection Association figures. A disproportionate amount of
these fires occur in spatio-temporal clusters, making them predictable and, perhaps, preventable. The
objective of this research is to evaluate how the aggregation of data across space and target types
(residential, non-residential, vehicle, outdoor and other) affects daily arson forecast accuracy for several
target types of arson, and the ability to leverage information quantifying the autoregressive nature of
intentional firesetting. To do this, we estimate, for the city of Detroit, Michigan, competing statistical
models that differ in their ability to recognize potential temporal autoregressivity in the daily count of
arson fires. Spatial units vary from Census tracts, police precincts, to citywide. We find that (1) the out-of-
sample performance of prospective hotspot models for arson cannot usefully exploit the autoregressive
properties of arson at fine spatial scales, even though autoregression is significant in-sample, hinting at a
possible bias-variance tradeoff; (2) aggregation of arson across reported targets can yield a model that
differs from by-target models; (3) spatial aggregation of data tends to increase forecast accuracy of arson
due partly to the ability to account for temporally dynamic firesetting; and (4) arson forecast models that
recognize temporal autoregression can be used to forecast daily arson fire activity at the Citywide scale in
Detroit. These results suggest a tradeoff between the collection of high resolution spatial data and the use
of more sophisticated modeling techniques that explicitly account for temporal correlation.

Published by Elsevier Ltd.
3 TheFederalBureauof Investigation’sUniformCrimeReportsclassifycrimes into two
categoriesdmore serious, ‘Part I’, and less serious, ‘Part II’, crimes. Part I crimes are
Introduction

Law enforcement organizations are increasingly using auto-
mated crime mapping tools that endeavor to produce short- and
medium-term predictions of altered criminal activity (e.g., Bowers,
Johnson, & Pease, 2004). These tools have been developed for
alternative spatial and temporal scales but have typically not been
subject to assessment of forecast accuracy, with few exceptions
(e.g., Chainey, Tompson, & Uhlig, 2008; Gorr, 2009). A central
challenge with such mapping is that hotspot identification requires
abundant data, but at fine spatial or temporal scales such abun-
dance is lacking, so coarse scale data are instead used; yet, it is not
clear how this aggregation of data affects forecast results, or the
ability to leverage information describing the dynamic process of
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crime (e.g., Bowers et al., 2004; Johnson, 2013; Lottier, 1938;
Prestemon & Butry, 2005). Some modelers report advances in
hotspot mapping (e.g., Cohen, Gorr, & Olligschlaeger, 2007); how-
ever, these efforts are focused on categories of relatively frequent
more serious ‘Part I’ crimes (United States Department of Justice,
2004) such as robbery, aggravated assault, burglary, larceny, or
motor vehicle theft, but rarely on less frequent Part I crimes such as
murder (see Groff & McEwen, 2007), rape, and arson, or the many
categories of less reliably reported less serious (‘Part II’) crimes (but
see Kakamu, Polasek, & Wago, 2008).3 Furthermore, while much
criminal homicide, forcible rape, robbery, aggravated assault, burglary, larceny-theft,
motor vehicle theft, and arson. Part II crimes are other assault, forgery and counter-
feiting, fraud, embezzlement, stolen property, vandalism, weapons, prostitution and
commercial vice, sex offenses, drug abuse violations, gambling, offenses against the
family and children, driving under the influences, liquor laws, drunkenness, disorderly
conduct, vagrancy, all other state and local laws not included in Part I or II (traffic laws
excluded), suspicion, curfew and loitering laws, and runaways.
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Fig. 1. Percent of total national arson by type by day of week, National Fire Incident
Reporting System 2002e2006.

J.P. Prestemon et al. / Applied Geography 44 (2013) 143e153144
effort has been devoted to developing static (backward-looking)
crime mapping tools, few have been developed that are designed
for forecastingdprospective hotspotting. The hotspot maps
generated by the static tools are updated on a relatively frequent
basis (e.g., weekly or monthly), but little is known about the value
of more frequently updated or short time-step reliability. This is in
spite of the recognition that such tools have potential high value in
terms of tactical police response (e.g., Bowers et al., 2004) and in
the planning of a built environment resilient to crime (e.g., Nelson,
Bromley, & Thomas, 2001).

In addition to the lack of progress in developing prospective
mapping tools for less common crimes at fine temporal scales,
there is an under-appreciation of the negative effects of aggregation
bias. Broad-scale analysis of crime may obscure patterns found at
the micro-scale (Nelson et al., 2001), and the appropriateness of
aggregating crimes by type may depend on spatial scale used
(Andresen & Linning, 2012). For example, crime maps showing
aggregates of Part I crimes do not always recognize subcategories
within these crime categoriesdsuch as burglaries of commercial
targets versus burglaries of residences. Lack of recognition of the
within-category heterogeneity may lead to statistical biases and
inconsistencies in the estimates of the model parameters
embedded in the mapping toolsdthis is the Modifiable Unit Areal
Problem (e.g., see Ratcliffe & McCullagh, 1999). It may also lead to
the use of inappropriate (ineffective) mitigation strategies (e.g.,
Haworth, Bruce, & Iveson, 2013). For example, arson focused on
residential structures may have a different amount of temporal,
spatial, or spatio-temporal clustering or respond differently to law
enforcement efforts compared to vehicular or outdoors arson (e.g.,
see Groff & McEwen, 2007).

The objective of this research is to evaluate how the aggregation
of data across space and target types (residential, non-residential,
vehicle, outdoor and other) affects daily arson forecast accuracy for
several target types of arson, and the ability to leverage information
quantifying the autoregressive nature of intentional firesetting. To do
this, we estimate, for the city of Detroit, Michigan, competing sta-
tistical models that either recognize or do not recognize potential
temporal autoregressivity in the arson counts. The spatial units that
we study vary fromCensus tracts, police precincts, to citywide.We do
not vary the temporal unit from daily, although the results of the
modeling potentially can be used to design strategies that account for
the regular variations in arson frequencies over time (e.g., those
linked to days of theweek or seasons of the year). Four specific target
types for arson are modeled: residential structures, commercial
structures, vehicles, and vegetation and outdoor targets (e.g., trash
fires). Two aggregations are modeled separately and compared with
the individual types: aggregation of structures (residential plus
commercial) and aggregation of all arson (all structures plus vehicles
plus outdoors and other).

A contribution of this research is that we find that temporal
autoregressivity found for smaller spatial units is not beneficially
exploited to improve forecast accuracy, whereas this temporal
autoregressivity found at large spatial units is beneficially exploited
to improve forecast accuracy, compared to alternative forecasting
approaches. We conjecture that the lack of additional forecast ac-
curacy provided by the autoregressive models for our smaller spatial
units derives from the inappropriateness of the model specification
for a count process occurring at low temporal frequency.

The remainder of this paper is organized as follows. First, we
describe the arson crime data generating processes for alternative
targets, tying these to crime theory. Second, we outline empirical
predictive models that may be useful for forecasting arson by
target. Third, we apply the estimated predictive models and
describe and compare their performance across spatial scales and
targets. The paper concludes with recommendations for further
research and development of forward-looking crime hotspotting
tools that could be useful for law enforcement and fire agencies.

Methods

The Poisson type (count) model specifications we outline in this
modeling effort are based on Rational Choice theory (Cornish &
Clarke, 1986) as well as elements of wildfire theory. Rational
Choice theory derives from an economic framework, such as that
outlined by Becker (1968), and behavioral economics, such as that
generally described by Wilson and Kelling (1982)dthe Broken
Windows hypothesis, which has received some support in the
empirical literature (e.g., Frazier, Bagchi-Sen, & Knight, 2013;
Keizer, Lindenberg, & Steg, 2008; Sampson & Raudenbush, 2004). In
the Becker (1968) approach, the prospective criminal compares the
benefits of crime commission with the personal costs of crime
commission. Among the costs are those associated with being
caught, arrested, and receiving a penalty (e.g., fines or jail time) that
results in an income loss or other (e.g., psychological) loss for the
firesetter. Costs can be direct, associated with each act of crime
commission, including the opportunity costs of committing the
crime compared to another activity (e.g., leisure, wage earning) and
with the material costs for carrying out the crime (e.g., fire starting
materials). Costs may also be indirect, connected to the information
gathering costs associated with achieving crime success. When
considered from an empirical perspective, an economics of crime
model could be estimated using actual data on crime commission
and predictor variables that include measures of wealth, labor
market conditions (e.g., Gould, Weinberg, & Mustard, 2002), in-
come, poverty, law enforcement efforts, and arrest rates (Di Tella &
Schargrodsky, 2004).

Following from Rational Choice theory, arson is expected to be
clustered in time and space due to increased and/or decreased time
dependent costs/benefits (Becker, 1968; Cornish & Clarke, 1986).
For example, typical work hours increase the cost of committing
arson during aweekday for most individuals; therefore, it would be
expected that fewer arson incidents would occur during these time
periods, as is illustrated in Fig. 1. Arson is observed to occur in three
types of cluster patterns: temporal, spatial, and autoregressive.
These clusters occur because costs/benefits change in time and
space for large portions of the population, and providing a para-
digm to identify variables that can be successfully used to predict
arson occurrence. Temporal clusters, for instance, include daily,
weekly, and seasonal trends in arson as well as events such as
holidays and sporting events. Understanding temporal identifiers
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can be useful for predicting the timing of arson occurrence. Spatial
clusters include target- and place-driven arson, such as abandoned
structures and vehicles, or buildings that have designated purposes,
such as schools or churches. Autoregressive clusters include
temporally connected incidents such as serial arson and copycat
arson.

There are a number of theories that support the use of variables
related to the three cluster types as predictors of crime and arson.
From the Broken Windows hypothesis, for example, it is suggested
that petty crimes may be predictors of more serious crimes, such as
arson. That is, petty crimesda measure of disorderdmay identify
areas where spatial arson clusters occur. Another perspective is
that a prospective criminal weighs the probability of arrest for
committing a crime based on recent rates of the same or other
kinds of crimes. The Broken Windows hypothesis relating to arson
has been supported by recent research findings exploring arson fire
patterns in Michigan (Thomas, Butry, & Prestemon, 2011). The
Becker (1968) and Wilson and Kelling (1982) ideas can be supple-
mented from several theories in criminology that have been used to
specify or statistically model criminal activity at micro (offender) to
macro (population) scales. These include Strain theory (e.g.,
Cernkovich, Giordano, & Rudolph, 2000), Social Learning theory
(e.g., Burgess & Akers, 1966), Social Control theory (Hirschi, 1969;
Wiatrowski, Griswold, & Roberts, 1981), and Opportunity theory.

Some of the theories mentioned above support the use of
temporal clusters as predictors of arson. Available evidence in-
dicates that these clusters occur at very large as well as relatively
small spatial scales. For example, the days surrounding New Year’s
Day, Halloween, and Independence Day have significant increases
in the total national count of arson incidents. Another example,
Devil’s Night, known as an evening of pranks during the night
before Halloween. In Detroit, this night is marked by rampant
intentional fire setting throughout the city (Centers for Disease
Control, 1997).

The third type of cluster, autoregressive, fits within Rational
Choice theory and can be captured in a model using lagged crime
occurrences. Such laggeddrepeat or near-repeat crimesdhave
been analyzed empirically by, among others, Short, Brantingham,
Bertozzi, and Tita (2010), who base the idea on observed behavior
of offenders, tending to commit crimes close to where they reside.
Johnson (2013) recently found empirical support for near-repeat
behavior using individual offender data for burglaries in Bourne-
mouth and Poole, U.K. Crime has been long known to be clustered
in space and time (e.g., Lottier, 1938). Bowers et al. (2004), in
recognition of such clustering, suggest explicitly parameterizing
autoregressive crime processes in the design of forecasting tools.
Butry and Prestemon (2005) and Prestemon and Butry (2005)
validated this suggestion in their modeling of daily arson wildfire
events in Florida. Although Butry and Prestemon (2005) examined
the fine-scale spatio-temporal patterns or autoregressivity of arson
wildfires, an untested hypothesis is whether the firesetting
processes for each of the main categories of arson found in urban
areas also demonstrates spatio-temporal as well as temporal
autoregressivity.

Prospective hotspot modeling of crime is relatively new, so there
is a limited amount of literature evaluating alternative forecasting
approaches (Chainey et al. 2008; Gorr & Harries, 2003). The forecast
model building process for crime involves first deciding whether to
adopt theories in criminology (e.g., Routine Activities (Cohen &
Felson, 1979), Rational Choice (Cornish & Clarke, 1986)), with the
potential for constructing elaborate statistical models that recog-
nize the hypothesized drivers of criminal activity at the individual,
community, or societal scale. One alternative to adopting these
theories is to specify ad hoc but also possibly parsimonious models
that have fewer data input requirements and run a lower risk of
over-fitting in model estimation. Another alternative is to employ a
somewhat “naïve” approach using either temporal lags for each
spatial unit to forecast future criminal activity in that unit (see Gorr,
Olligschlaeger, & Thompson, 2003) or Geographic Information
Systems methods, where recent criminal activity is used as to
predict future activity in a spatial domain. Regardless, Gorr et al.
(2003, p. 579) conclude that, “.practically any model-based fore-
cast approach is vastlymore accurate than current police practices.”

Whether statistical, “naïve,” or forms of nonparametric models
are estimated (e.g., decision trees [e.g., Breiman, Friedman, Olshen,
& Stone, 1984]), the modeling framework must recognize the form
of the data generation process. Rare crimes at a chosen spatial and
temporal scale can be modeled with binary choice models (e.g.,
logit, probit, decision tree models), while somewhat more frequent
criminal activities, whose data generation process faces occasional
zero truncation, can be modeled with count models (e.g., the
Poisson and its variants). Occurrences of common or aggregate
crime categories, or the occurrences of specific crime categories at
large spatial and temporal scales, may reveal a data generation
process that is essentially continuous and never facing zero-
truncation, allowing for least squares model specifications. In the
case of arson modeling, this relatively infrequent crime at most
spatial and temporal scales calls for a count modeling process.

Empirical models

Crime forecasting models in this analysis are of two primary
categories: multivariate parametric and naïve. The latter category is
used to benchmark the multivariate models. The multivariate
models are divided into two primary subcategories: static and
autoregressive. These are both specified as Poisson type count
models. The autoregressivemodel derives fromwork by Brandt and
Williams (2001)dthe Poisson autoregressive model of order p, or
PAR(p). The naïve models are the random walk and a constant.

The PAR(p) model is (Brandt & Williams, 2001):
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where yj,t is a random variable representing the count of arson fires
in location j in time t, n is the observed count, mj,t is the expected
count (conditional mean) of arson fires in location j in time t (a
function, to be described later), and e is the exponential operator.
Next, let mj,t ¼ E[yj,tjYj,t�1] be defined as the conditional mean of a
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where xj,t is a vector of independent variables (including a constant)
for location j, bj is a vector of associated parameters for location j,
and the rj,i’s are the autoregressive parameters for location j. (The
static model maintains the same form, as described above, except
the autoregressive parameters, rj,i’s, are restricted to zero.) There is
evidence that arson fires in outdoors settings, at least, follow an
autoregressive patterns (Butry & Prestemon, 2005; Prestemon &
Butry, 2005). The autoregressive terms shown in Eq. (2) would
capture either the serial or copycat or unexplained time-varying
factors affecting the numbers of fires set, and it recognizes not
just the long-standing knowledge of space-time crime clusters but
also more recent work focusing on arson. As some analysts have
shown (e.g., Mohler, Short, Brantingham, Schoenberg, & Tita, 2011),
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such patterns for some property crimes have been productively
harnessed to improve forecast accuracy.

Variables contained in x in Eq. (2) were selected based on Becker
(1968) and existing research (Tables 1 and 2). It is apparent that
Becker’s (1968) expected utility model strictly applies to the deci-
sion of a single individual in a single point in time. In a single
location over a long time span, where counts of arson fires aggre-
gated, a large segmentdmany individualsdin the population is
faced multiple times with the choice. Across a population, then,
variables contained in a statistical model such as indicated in Eq. (1)
and Eq. (2), need to account for how variables affecting the de-
cisions of multiple individuals change over the time span consid-
ered by the statistical analysis. A second consideration in the
variables to include in x is in the interest of developing a forward-
looking predictive model. Generally, this means that variables used
to predict arson fires in day t need to be known with certainty
before day t. In practice, we select variables available on day t�1 or
earlier or include variables that vary in a predictable manner (such
as those measuring seasonal variation in direct costs and oppor-
tunity costs).

To capture the time-varying direct costs of firesetting, regressors
in x include a one-day lag of the day’s total precipitation, minimum
relative humidity, and maximum temperature, all of which are
expected tomeasure the difficulty of igniting firesdweather affects
how easily and quickly an outdoor fire can be started. Single-day
lags of weather may not precisely measure either the specific
conditions of all points within a spatial unit nor be perfectly pre-
dictive of the next day’s firesetting conditions. Another way to
capture this direct cost is throughmonthly dummy variables, which
measure average fire setting conditions.

Opportunity costs of firesetting are partially measured by
dummy variables indexing days of leisure, when such costs are
expected to be lower: Saturday, Sunday, and non-weekend holidays
(the effect of weekend holidays are captured by the Saturday and
Sunday dummy variables). Additional variables include the
employment rate (a more vigorous labor market is linked to higher
opportunity costs), median household income (positively related to
opportunity costs), the median value of owner-occupied dwellings
Table 1
Regressors in the citywide Poisson and Poisson autoregressive count models.

Variable Data source

Saturday dummy
Sunday dummy
Holiday dummy (non-weekend)
Devil’s Night (15-day period)
Monthly dummies (JaneNov)
Time trend
Maximum temperature (t�1) National Weather Service
Maximum relative humidity (t�1) National Weather Service
Precipitation (t�1) National Weather Service
Assault count (t�1) National Incident Based Reporting Syst
Robbery count (t�1) National Incident Based Reporting Syst
Larceny count (t�1) National Incident Based Reporting Syst
Motor vehicle theft count (t�1) National Incident Based Reporting Syst
Structure fire count (t�1) National Fire Incident System Database
Vehicle fire count (t�1) National Fire Incident System Database
Residential structure fire count (t�1) National Fire Incident System Database
Nonresidential structure fire count (t�1) National Fire Incident System Database
Outdoors and other fire count (t�1) National Fire Incident System Database
Structure fire count (t�2) National Fire Incident System Database
Vehicle fire count (t�2) National Fire Incident System Database
Residential structure fire count (t�2) National Fire Incident System Database
Nonresidential structure fire count (t�2) National Fire Incident System Database
Outdoors and other fire count (t�2) National Fire Incident System Database
Neighbor aggregate arson count (t�1) National Fire Incident System Database
Neighbor aggregate arson count (t�2) National Fire Incident System Database
(also positively related to opportunity costs), and the population of
foreign-born residents (whomay perceive higher opportunity costs
due to more serious impacts from an arrest and conviction, such as
deportation).

Needed are variables indexing factors linked to the probability
of being caught and arrested for a crime, and connected to the
ideas advanced by Wilson and Kelling (1982) related to urban
decay and neighborhood crime vulnerability. For these, we
include a seven-day total (day t�1 to t�7) lag of counts of Part I
crimes recorded anywhere in the city; a single dummy variable
that accounts for Halloween (“Devil’s Night”), equal to 1 for
October 25-November 7 and 0 all other days of the year (the date
range is broader than what is typically known as “Devil’s Night; ”
however, the lead-up and tail-off of Halloween arson occurs over a
longer time period); the median rent of vacant units, which is
expected to index absentee landlord efforts to reduce arson
occurrence in their properties; and the percent of population in
poverty.

Finally in terms of temporally static socioeconomic variables, we
include variables intended to explain variation in the aggregate
numbers of prospective arsonists in a location: the number of
youths ages 5e17, who may be expected to be particularly active in
event-related fire setting, such as around Halloween; and the older
youth population (ages 16e19) not in school, which also captures
the lower opportunity costs perceived by members of this popu-
lation segment.

To evaluate the effects of spatial aggregation on forecast accu-
racy and statistical inference, models are estimated at three
approximate spatial scales: Census tract, police precinct (Highland
Park and Hamtramck aggregated together into a “Precinct 14”), and
citywide. Spatio-temporal relationships were explored in both the
tract and the precinct models. For tracts, spatio-temporal lags were
for up to three days (i.e., the count of arson in day t�1, t�2, and t�3)
and for three sets of neighbors (i.e., the count of arson in the
adjacent neighboring tracts, the count of arson in the tracts
neighboring the adjacent tracts, and the count of arson in the tracts
neighboring the second ring of tracts). At the precinct spatial unit, a
single spatial lag was built only for contiguous precinctsdonly the
Notes

October 25e31

Degrees F
Percent
inches � 10

em
em
em
em

Only lagged for other fire target models
Only lagged for other fire target models
Only lagged for other fire target models
Only lagged for other fire target models
Only lagged for other fire target models
Only lagged for other fire target models
Only lagged for other fire target models
Only lagged for other fire target models
Only lagged for other fire target models
Only lagged for other fire target models
Neighboring Census tracts or police precinct, depending on spatial scale
Neighboring Census tracts or police precinct, depending on spatial scale



Table 2
Average values of variables used in the PAR(p) and Poisson models for three model
years. (Note: City values are yearly totals except weather, which are daily averages;
Precinct values are yearly precinct averages (i.e., averaged over precincts); Tract
values are yearly tract averages (i.e., averaged over tracts)).

Spatial unit and variable 1995 1996 1998

City
Arson
All types 5545 5411 5095
Structure 3420 3035 2772
Residential 1315 1248 1280
Non-residential 2105 1787 1492

Vehicle 1791 2100 1999
Outdoor & other 334 276 321
Crime
Assault 4654 8551 11945
Robbery 224 612 957
Larceny 7868 13127 18700
Vehicle theft 1798 3645 4875
Weather
Maximum temperature 59 56.9 62.1
Maximum relative humidity 87 89.5 89.7
Precipitation 8.3 7.7 9.4
Precinct
Arson
All types 396 387 364
Structure 244 217 198
Residential 94 89 91
Non-residential 150 128 107

Vehicle 128 150 143
Outdoor & other 24 20 23
Socio-economic
Population ages 5e17 16289 16289 16289
Median rent of vacant units 256 256 256
Population in poverty 69441 69441 69441
Employment rate 0.4757 0.4757 0.4757
Median household income in 1999 27685 27685 27685
Median value of owner-occupied

dwellings
59929 59929 59929

Population not schooled (ages 16e19) 1118 1118 1118
Population foreign born 3945 3945 3945
Tract
Arson
All types 15 14 12
Socio-economic
Population ages 5e17 693 693 693
Median rent of vacant units 251 251 251
Population in poverty 2955 2955 2955
Employment rate 0.4916 0.4916 0.4916
Median household income in 1999 29008 29008 29008
Median value of owner-occupied

dwellings
58752 58752 58752

Population not schooled (ages 16e19) 48 48 48
Population foreign born 168 168 168

Fig. 2. Police precinct (by color) and Census tract boundaries (black lines) for
Detroit, MI.
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count of arson from neighboring adjacent precincts was included.
Boundary truncation did occur in the spatio-temporal lag con-
struction, but we expect that the effects of these boundary trun-
cations were greatest for the precinct models (e.g., neighboring
precincts fell outside the city of Detroit, and no data existed). For
citywide models, no spatio-temporal lags of arson ignitions were
included.

Data sources for the modeling are shown in Table 1, and
average values for the data covering the years of statistical esti-
mation are shown in Table 2. The source for the arson fires re-
ported in the city of Detroit and embedded jurisdictions of
Hamtramck and Highland Park (Fig. 2) is the National Fire Incident
Reporting System (NFIRS), a data collection system directed by the
United States Fire Administration (USFA). Detroit was selected
because of the frequency of daily arson occurrence. Each arson
incident was geocoded, using the reported address, to a Census
tract. Further, the time period this analysis was for daily arson fire
incidents occurring in 1995, 1996, and 1998. (Data for 1997 were
not reported.)

National Incident-Based Reporting System (NIBRS) data on Part I
crimes were available only from 1995 and later (Inter-University
Consortium for Political and Social Research, 2009). The remain-
ing socio-economic variables were collected from the Inter-
University Consortium for Political and Social Research (2006).

Model estimation details

Because of our interest in evaluating the forecast accuracy of
alternative models, models are estimated in-sample for the years
1995 and 1996; estimated model parameters are then used to
predict arson occurrences each day in 1998. In other words, the
training datasets are twice as large as themodel validation datasets.
The limit to three years of data is because of the lack of data after
1998 for some predictor variables.

It was not possible to estimate exactly the same model at each
spatial scale because some variables had temporal but no spatial
variation while others had spatial but no temporal variation. Vari-
ables with temporal variation but no spatial variation were
included in models specified for all three spatial scales: seasonality
measures, day and holiday dummies, weather variables, and city-
wide crime incidents (NIBRS has a limited spatial scale). Variables
with spatial but no temporal variation could not be included in a
citywide model for arson because they would have been perfectly
collinear with the intercept term, although they could be included
in models for precincts and tracts, which were pooled across pre-
cincts and tracts.

In modeling at the level of the Census tract and the police pre-
cinct, we faced additional constraints of model identification
related to a lack of temporal variation. Due to collinearity, models
could be estimated with dummy variables indexing mean levels of
arson fires for each tract or precinct, or they could be estimated
socioeconomic variables that varied across tracts or precincts (but
not over time). Therefore, two classes of tract-level and precinct-
level estimates were made.

As stated, we are also interested in the effects of aggregation
across types of arson. For the tract models, then, the primary ob-
jectives were to test for fine-scale spatio-temporal relationships
and temporal autocorrelation and to evaluate model forecast ac-
curacy. For precinct and citywide models, we are able to evaluate
the differences in model forecast accuracy by target.



Table 3
Root mean squared error statistics, averaged over tracts, for out-of-sample forecasts,
by model specification.

Model PAR(p) Poisson Constant Random walk

Tract Dummy & Spatio-Temporal
Arson Version

0.2617 0.2266 0.2297 0.3185

Tract Dummy, Spatio-Temporal
Arson, & Citywide Crime Lags

0.2607 0.2266 0.2295 0.3186

Socioeconomic Variables 0.2638 0.2266 0.2297 0.3186
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Results

Results for tracts

Detroit, Highland Park, and Hamtramck contain 329 Census
tracts. Model solutions using GAUSS required compromising model
solution time with inference capabilities. Daily observations on
arson counts for 1995 and 1996 totaled 731. Up to 7 days of lagged
counts were allowed in the models, meaning that conditioning on
the first seven days of the first year (1995) left available observa-
tions per tract at 724. In the interest of minimizing solution time,
we estimated several models with each model including ten tracts
(i.e., 7240 observations), but because model initial conditions
required a nonzero first observation this often meant that the
number of observations was slightly less than 7240. Although 33
groups of ten tracts could be created (the 33rd group with only
nine, however), we found that a minimal number of nonzero arson
counts, about 100 in the 1995e1996 time period for the pooled ten
tracts, were needed to ensure model convergence. This conver-
gence limit in the count modeling also precluded the estimation of
tract spatial unit separate arson models by target; instead, all tract
spatial unit models were estimated for aggregate arson (all targets).

In summary, we estimated three general sets of model specifi-
cations: (i) those with tract dummy variable shifters, month
dummies, day dummies (Saturday, Sunday, Holiday, and Devil’s
Night), and spatio-temporal lags (up to three days); (ii) those
identical to (i) but also including lagged crimes of other kinds; and
(iii) those that drop the tract dummies, replacing them with so-
cioeconomic variables, and dropping the spatio-temporal lags but
including themonth and day dummies. In this last specification, the
spatio-temporal lags were excluded to facilitate model solution and
limit the number of parameters estimated.

Table 3 reports out-of-sample forecast error, as measured by the
root mean squared error (RMSE), averaged over tracts, comparing
the forecast goodness of fit for all of calendar year 1998 using the
parameters estimated using data for 1995 and 1996. Lower values
of the RMSE indicate better forecast accuracy. We also evaluated
out-of-sample error as measured by the mean absolute error and
median absolute error, but there was not an appreciable change in
the rankings of the alternative statistical forecast models. These
Table 4
Precinct PAR(p) model statistics, pooled models.

Precinct dummy
model (i)

Socioeconomic
variables model (ii)

Log-Likelihood �13191.47 �13288.24
Observations 10107 10107
RMSE In-Sample 1.2184 1.2646
RMSE Out-of Sample 1.1483 1.1677
RMSE Poisson In-Sample 1.1158 1.1482
RMSE Poisson Out-of-Sample 1.0927 1.0986
RMSE Constant In-Sample 1.3202 1.3423
RMSE Constant Out-of-Sample 1.2447 1.2447
RMSE Random Walk In-Sample 1.5359 1.5662
RMSE Random Walk Out-of-Sample 1.5032 1.5032
added results are therefore not included in Table 3. The table re-
ports the RMSE for the PAR(p) models; a competing Poisson of the
same specification except excluding temporal autoregressive terms
(but including the spatio-temporal terms), which is used to eval-
uate the predictive value of including recent arson history con-
tained in the PAR(p) forecasts; and two parsimonious models: a
constant rate model (taking the average count within each tract
each day for 1995 and 1996 as the forecast count for tract on each
day of 1998), and a randomwalk (the arson count in day t�1 in the
tract is the forecast of the count for day t). The forecasts were made
one day ahead (t), and iterated using data known on day t�1.

The Poisson out-performed the PAR(p), constant rate, and
randomwalk forecast models in every case, according to the RMSE
of the forecast out-of-sample. (Also, the constant rate model out-
performed the PAR(p) in every case.) These results indicate that a
Poisson model is the preferred tool for forecasting among the four
forecast tools examined. Across model types, the one including
tract dummies appears to forecast very slightly better than other
model types. Further, it appears temporal clustering lasts for days,
and notmuch longer. Of course, daily forecasts increase operational
challenges, as they require data from the previous day. Results of
model parameter significances and signs for aggregate arson (not
shown) indicate that the most consistent statistically significant
relationships between arson and potential explanatory variables
are the temporal and spatio-temporal lagged components, vali-
dating statistically the presence of space-time clusters of arson in
Detroit.

Results for police precincts

Precinct hotspot models were estimated for aggregate arson as
pooled models, in the same general way as in the tracts approach,
and they were also estimated by target but with a limited set of
predictors. For aggregate arson, we estimated five general models:
(i) a simplemodel that included only daily andmonthly dummies, a
time trend, weather variables, and police precinct dummies; (ii) a
model of the same form as (i) but replacing the precinct dummies
with socioeconomic variables; (iii) a model of the same form as (i)
but replacing the precinct dummies with spatio-temporal lags of
counts of arson in neighboring precincts; (iv) a model of the same
form as (i) but dropping precinct dummies; and (v) a model the
same form as (ii) but also including lagged counts of some crime
variables. All five model types included AR terms when estimating
a PAR(p) model. As in the tract models, these were estimated using
data for 1995 and 1996 and then used to forecast arson in 1998.
Across the 14 precincts, total observations available were 10107.

Table 4 presents summary results of the five types of precinct
models, both in-sample (1995e1996) and out-of-sample (1998)
forecast errors (RMSE), for the PAR(4) whose parameter estimates
are reported in the upper part of the table and for an identically
Spatio-temporal
lag model (iii)

Seasonal/autoregressive
model (iv)

Socioeconomic/Crime
variable model (v)

�13491.12 �13497.56 �13284.43
10107 10107 10107
1.2490 1.2513 1.2528
1.1793 1.1776 1.1552
1.3226 1.3239 1.1571
1.2319 1.2319 1.0965
1.3423 1.3423 1.3423
1.2447 1.2447 1.2447
1.5662 1.5662 1.5662
1.5032 1.5032 1.5032



Table 5
Precinct PAR(p) model statistics of arson by target, time series-cross sectional models with cross-sectional intercept shifters.

All structures Vehicles Outdoors and other Residential Non-residential

Log-Likelihood �10482.90 �7981.09 �2300.45 �6580.07 �7797.43
Observations 10107 10005 9989 10107 9869
RMSE In-Sample 1.0064 0.7172 0.2853 0.5930 0.7528
RMSE Out-of Sample 0.9018 0.7486 0.2823 0.6024 0.6662
RMSE Poisson In-Sample 0.8592 0.6414 0.2526 0.5155 0.6748
RMSE Poisson Out-of-Sample 0.8006 0.6885 0.2507 0.5269 0.6019
RMSE Constant In-Sample 0.9648 0.6935 0.2578 0.5324 0.7458
RMSE Constant Out-of-Sample 0.8703 0.7258 0.2540 0.5410 0.6427
RMSE Random Walk In-Sample 1.1859 0.8965 0.3560 0.7256 0.9265
RMSE Random Walk Out-of-Sample 1.0947 0.9510 0.3139 0.7393 0.8146
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specified non-autoregressive count model (the Poisson), a constant
rate model, and a random walk model. The results show that the
PAR(4) models have somewhat different in-sample goodness-of-fit,
ranging from 1.218 (model i) to 1.265 (model ii). Out-of-sample
fitness was slightly better, with an RMSE range between 1.148
and 1.179. Comparing the out-of-sample RMSE, the Poisson and
PAR(4) models outperformed the constant and random walk
models for all five models. The Poisson version of specification (i)
performed the best with an RMSE of 1.093. The Poisson out-
performed the PAR(p) model for specifications (i), (ii), and (v) while
PAR(p) performed better in specifications (iii) and (iv). This better
out-of-sample performance by the Poisson in these three casesmay
be linked to its lower bias. By design, the Poissonmodel has zero in-
sample bias, minimizing the variance while constraining prediction
errors to sum zero. The PAR(p) model, on the other hand, is not
designed to be unbiased, rather to simply minimize variance. So
while a competing PAR(p) model might have a lower variance in-
sample due to inclusion of autoregressive terms, its higher poten-
tial bias leads to a worse forecast compared to the Poisson,
particularly if the autoregressive parameter estimates are biased
upward, a classic bias-variance tradeoff brought about by over-
fitting.

In the interest of evaluating whether aggregation across arson
targets leads to lower overall model out-of-sample forecast accu-
racy, we estimated a version of model (i) for each of the arson
targets. In-sample and out-of-sample forecast performance (for
1998) in these by-target arson PAR(p) models cannot be compared
across targets, but they can be compared within targets across
model types. Generally, we see that the Poisson out-performs all
competing models (see Table 5). In fact, the PAR(p) models are all
out-performed by the constant rate models. In summary, it appears
that the PAR(p) models, which account for the autoregressive
patterns in arson fires, cannot be exploited to improve forecast
accuracy for arson at the precinct spatial unit, either in aggregate or
by specific target.

A last look at forecast performance can focus on how a by-
target total arson forecast generated by summing the forecasts
across target models compares to a total arson forecast generated
by an aggregate arson model. The RMSE out-of-sample calculated
by summing across the forecasts produced by the four dis-
aggregated target precinct models reported in Table 5 is 1.30. The
RMSE out-of-sample for an aggregate arson model (model (i)) at
the precinct spatial unit for the PAR(p) model is 1.15.4 In summary,
forecasts of aggregate arson by precinct using a PAR(p) specifica-
tion are best done with an aggregate arson model rather than by
target type.
4 The 1998 data generally reveal lower overall counts of arson, which tends to
reduce model forecast variance across all model types.
The final spatial unit of our models, citywide, offers the only
remaining opportunity for the PAR(p) to outperform static Poisson,
constant rate, or random walk models in the forecasting effort.

Results of citywide models

Citywide models are estimated in a manner similar to the pre-
cinct spatial unit models. Model structures are the same as those
tested for the precincts and tractsdalternately including and
excluding lagged citywide crime, including month dummies and
day dummies to capture regular cyclical patterns, but dropping the
essentially static socioeconomic variables and possessing no loca-
tion dummies (i.e., precincts, tracts). The autoregressive structure
was also varied.

Model in-sample prediction and out-of-sample forecast per-
formance, as measured by the RMSE, shows that the PAR(p) models
out-performed not only the constant rate and randomwalk models
but also the static Poisson model. This occurred across all model
structures (see Table 6).

A final set of models was developed with estimates up to a
PAR(7) model without a Saturday dummy, maximum temperature
in day t�1, and crime variables, as these variables were not found to
be significant. One set ofmodels was estimatedwith by-type lagged
counts of arson for each arson type and one set of models was
estimated without these lags. As seen in the out-of-sample RMSE
estimates in Tables 7 and 8, the best performingmodel for structure
fires is the PAR(p) model that includes target lags. For vehicle and
non-residential structure fires, the PAR(p) that does not include
target lags performs best. For outdoor and other fires, the Poisson
that does not include target lags is the best performing, while for
residential structure fires it is the Poisson that includes target lags.
Although PAR(p) models outperformed competing Poisson models,
this was only true for PAR(p) models of all structures, vehicles, and
nonresidential structures. The additional by-type lags worked to
improve out-of-sample forecast performance for total structure
fires and residential structure fires for both the Poisson and the
PAR(p) models. In summary, we can conclude that autoregressive
components included in the citywide model do enhance forecast
performance out-of-sample relative to static models but that
including type lags worsens out-of-sample performance for some
arson types while improving it for others. Apparent statistical
correlations found with in-sample model estimates were data-
dependent, not helping to explain future arson occurrences. This
last result is evidence of an effect of over-fitting leading to a bias-
variance tradeoff; in this case, employing statistically significant
type lags worsened forecasts for some arson types.

Forecasts for by-target citywide arson forecast models can be
compared in their performance with a model estimated for city-
wide aggregate arson. We calculated the RMSE out-of-sample for a
PAR(p) and a Poisson model specification using aggregate arson
and one using the sum of the forecasts for vehicles, residential



Table 6
Citywide PAR(p) model statistics, aggregate arson.

PAR(6), no lagged crime PAR(6), with lagged crime PAR(1), no lagged crime PAR(1), parsimonious

Log-Likelihood �2143.85 �2139.57 �2176.78 �2142.18
Observations 725 725 725 725
RMSE In-Sample 4.7862 4.7718 4.7876 4.7879
RMSE Out-of Sample 4.3757 4.4239 4.3813 4.3728
RMSE Poisson In-Sample 4.8096 4.7949 4.8178 4.8180
RMSE Poisson Out-of-Sample 4.5997 4.6204 4.5143 4.5141
RMSE Constant In-Sample 5.7583 5.7583 5.7583 5.7583
RMSE Constant Out-of-Sample 4.8505 4.8505 4.8505 4.8505
RMSE Random Walk In-Sample 6.4381 6.4381 6.4381 6.4381
RMSE Random Walk Out-of-Sample 5.7795 5.7795 5.7795 5.7795
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structures, nonresidential structures, and outdoors and other, as
seen in the last column of Table 9. The PAR(p) model outperformed
the Poisson for both of the citywidemodels, and the summed target
model outperformed the aggregate arson model; thus, at the city-
wide spatial unit, a summed target model slightly outperforms an
aggregate model.

A further examination on the impact of spatial aggregation can
be done by comparing summed precinct models to citywide
models, which is also presented in Table 9. The table presents a
PAR(p) version and Poisson version by target type, including one
summed across all targets and one for aggregate arson. The city-
wide PAR(p) model outperformed the Poisson models and the
PAR(p) summed precinct model for all but the outdoors and other
fire model and the residential fire model. The Poisson summed
precinct model performed better than the others for outdoors and
other fires while the Poisson citywide model performed better for
residential fires. Thus, in all but one case, the citywide model per-
formed better than the summed precinct model. In terms of total
arson forecasts, the summed target model outperformed the
aggregate arson model for both the PAR(p) and Poisson citywide
models. The best performing total arson forecast overall was the
citywide PAR(p) summed across targets.

Discussion

Development of prospective hotspotting models requires
assessment of out-of-sample performance, the conditions in which
any hotspotting tool used by a fire or law enforcement organization
would be expected to operate. Model developers have rarely re-
ported out-of-sample forecast accuracy for any type of crime ex-
pected to be a part of a law enforcement tool. From another
perspective, little attention has apparently been paid to the impli-
cations of aggregating crime subtypes within Part I or Part II crimes
that are the forecast units of import. A comparison of disaggregated
models with the aggregated models can provide a clue as to the
effects of such aggregation. Thirdly, crime hotspot tools are often
Table 7
Citywide PAR(p) parsimonious model statistics, by target and structure aggregate, witho

Structure fires Vehicle fires Outdoors

Log-Likelihood �1888.27 �1681.81 �868.06
Observations 725 725 721
RMSE In-Sample 3.4086 2.6240 1.0299
RMSE Out-of Sample 3.0615 2.6659 1.1679
RMSE Poisson In-Sample 3.4310 2.5569 0.9347
RMSE Poisson Out-of-Sample 3.1205 2.7648 1.1350
RMSE Constant In-Sample 3.9077 2.8313 1.0067
RMSE Constant Out-of-Sample 3.4495 2.8179 1.1424
RMSE Random Walk In-Sample 4.6778 3.5263 1.3193
RMSE Random Walk Out-of-Sample 4.1827 3.7469 1.5394
modeled at fine spatial scales, which law enforcement organiza-
tions could find more useful for tactical responses to crime out-
breaks. However, forecast performance at such fine spatial scales
has not beenwidely reported, as far as we can tell. Finally, very little
effort has been put into developing prospective hotspot tools for
arson, even though arson in outdoor settings has demonstrated
autoregressive properties that would seem to make it possible to
develop forecasts with increased accuracy.

Our model results have several implications relevant to the
possible limitations of previous forecasting efforts. First, we find
that the out-of-sample performance of prospective hotspot models
for arson in Detroit cannot usefully exploit the autoregressive
properties of arson at fine spatial scales, even though autore-
gression is significant in-sample. For example, the tract level Pois-
son model, which excluded temporal autoregressive terms,
outperformed the PAR(p) model (see Table 3). Similar results
occurred at the precinct level where the Poisson model, out-
performed the PAR(p) model for specifications (i), (ii), and (v),
while the PAR(p) performed better in specifications (iii) and (iv)
(see Table 4). This lack of benefit provided by explicit recognition of
temporal autoregressivity at the tract or precinct spatial scales is
evidence of a classic bias-variance tradeoff, at least in the context of
our chosen Poisson autoregressive model, the PAR(p). Here, we find
that models estimated with temporal autoregressive terms may
have lower variance over the in-sample data but higher variance
out-of-sample, compared to a competing static Poisson. Since the
PAR(p) model outperforms all the other aggregate arson models at
the citywide spatial unit (see Table 6), we conclude that the
autoregressive terms do reduce out-of-sample forecast errors with
larger spatial units. This leads us to conclude that prospective arson
hotspot tools for cities may be best employed to develop citywide
“alerts,” leaving the finer spatial targeting decisions to police staff,
who have the greatest familiarity with the phenomenon of fine-
scale arson patterns within their cities. Nevertheless, tactical re-
sponses by local police to these alerts could still be aided by addi-
tional graphical representations. For example, Fig. 3 illustrates
ut target lags.

and other fires Residential structure fires Non-residential structure fires

�1515.73 �1678.18
725 725
2.1696 2.6410
1.9938 2.3235
1.9389 2.6557
1.9134 2.3592
1.9830 3.1225
1.9457 2.6786
2.7653 3.5931
2.6320 3.1319



Table 8
Citywide PAR(p) parsimonious model statistics, by target and structure aggregate, including target lags.

Structure fires Vehicle fires Outdoors and other fires Residential structure fires Non-residential structure fires

Log-Likelihood �1888.31 �1675.02 �865.07 �1517.24 �1678.40
Observations 725 725 721 725 725
RMSE In-Sample 3.4187 2.6017 1.0299 2.1849 2.6374
RMSE Out-of Sample 3.0352 2.7432 1.1750 1.9910 2.3509
RMSE Poisson In-Sample 3.4175 2.5428 0.9355 1.9340 2.6371
RMSE Poisson Out-of-Sample 3.1031 2.8049 1.1404 1.9024 2.3704
RMSE Constant In-Sample 3.9077 2.8313 1.0067 1.9830 3.1225
RMSE Constant Out-of-Sample 3.4495 2.8179 1.1424 1.9457 2.6786
RMSE Random Walk In-Sample 4.6778 3.5263 1.3193 2.7653 3.5931
RMSE Random Walk Out-of-Sample 4.1827 3.7469 1.5394 2.6320 3.1319

Table 9
Out-of-Sample RMSE for Citywide Forecast: by Target, Spatial Scale, and Model Type (weather only models).

All structures Vehicles Outdoors and other Residential Non-residential Summed across targets Aggregate arson

PAR(p) models
From summed precinct models 5.3319 3.5734 1.2995 2.8697 3.4385 8.3795 5.6755
From citywide models 2.9872 2.5932 1.0980 1.9942 2.2659 4.1668 4.2179

Poisson models
From summed precinct models 3.0687 2.7146 1.0621 1.8912 2.3166 4.4318 4.4201
From citywide models 3.0253 2.6642 1.0659 1.8886 2.2837 4.3372 4.3466
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locations of spatio-temporal arson hotspots can be defined based
on historical data. In this illustration, based on Getis-Ord Gi* sta-
tistics of significant spatio-temporal clustering (Getis & Ord, 1992),
using the space as well as the time distance between arson fires,
statistically significant historical hotspots can be used to identify
where to redirect law enforcement efforts at fine spatial scales
when a citywide temporal forecast model indicates that higher
than average rates of arson are predicted for the next day. Such a
clustering representation can be seen as one way to overcome the
difficulties we encountered in our attempts to identify an accurate
count data forecast model that could have produced an analogous
spatio-temporal hotspot map.

Second, it is clear that aggregation of arson across reported
targets can yield a model that differs from by-target models. The
differences lead to different qualities of forecasts, and this can be
traced to the different temporal autoregressive patterns for each
type. As seen in Fig. 4, the impulse response varies significantly for
each target type. An impulse response function provides a forecast
of the deviation in expected arson rates (i.e., a change from 100%)
from an unexpected increase (shock) in daily arson activity. One
fire shock lasts longer and has a larger impact on residential and
Fig. 3. Spatio-Temporal Arson Clusters in Detroit over 1995, 1996, and 1998, with areas
of positive spatio-temporal correlation shown in red and negative correlation in pur-
ple. (Note: Police precincts identified numerically, 1e13, with 99 corresponding to
Highland Park and Hamtramck.)
outdoor and other fires than it does on structure, vehicle, or non-
residential structure fires. The different patterns do not provide
improved aggregate arson forecasts at the precinct levels; however,
they do provide slightly improved citywide forecasts, as docu-
mented in Table 9. In short, law enforcement organizations inter-
ested in developing arson forecasts for specific types could do so to
develop citywide alerts by arson target. These citywide forecasts
could be summed to generate citywide alerts for arson in aggregate,
which would be better than an alert developed from the aggregate
arson figures.

Finally, spatial aggregation tends to increase forecast accuracy
for Detroit arson. For all but one model in Table 9, the citywide
model outperformed the summed precinct model. This was true for
four of the five target types along with the summed target model
and aggregate model, suggesting that there is a clear tradeoff be-
tween fine spatial scale and forecast accuracy. This further supports
the idea that prospective arson hotspot tools for cities may be best
employed to develop citywide “alerts.”
Fig. 4. Impulse response functions for arson by targetdpercent of fires compared to
expected, by day.
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In a number of instances, prospective arson hotspot models
developed using Poisson Autoregressive models outperform less
sophisticated non-autoregressive and even somewhat naive fore-
cast algorithms at fine spatial scales (see Tables 3e5). We have
indicated that part of the reason for this worse performance of the
PAR(p) at some spatial scales is due to a classic bias-variance
tradeoff, brought about by over-fitting involving the autore-
gressive terms in the model estimation stage. Additionally, we offer
the conjecture that, at least for Detroit, the over-fitting results from
modeling a count process with a low expected value at fine spatial
and temporal scales. Operationally, in our data, much of the addi-
tional forecast error produced by PAR(p) models at tract and pre-
cinct spatial units is traced to over-predictions (forecasts) following
single arson events; at fine scales, outbreaks were over-inferred.
Perhaps a better performing autoregressive count model would
more accurately contendwith the high frequency of zeros and ones.
While this could be a “zero-inflated” autoregressive Poisson
(adjusted to accommodate over-occurrence of ones as well),
potentially fruitful future research could develop models of crime
or arson outbreaks, which focus especially on modeling occur-
rences of multiple incidents in short time periods. Alternatively,
perhaps the more sophisticated autoregressive models are better at
forecasting outbreaks rather than regular seasonal and spatial
patterns of arson, similar to the distinction made between fore-
casting “exceptions” and “ordinary conditions” described in Gorr
(2009). Finally, it’s unclear how much of the results are specific to
Detroit, which has experienced rapid abandonment in recent years,
and how much are generalizable to other cities.

Conclusion

This research evaluated how the aggregation of data across space
and target types affects forecast accuracy of arson incidents in the city
of Detroit, Michigan, and whether statistical models using different
data aggregates can take advantage of information on recent arson
activity. Four specific target types for arsonweremodeled: residential
structures, commercial structures, vehicles, and vegetation and out-
door targets. Two aggregations were modeled separately and
compared with the individual types: aggregation of structures (resi-
dential plus commercial) and aggregation of all arson (all structures
plus vehicles plus outdoors and other).

We find that (1) the out-of-sample performance of prospective
hotspot models for arson in Detroit cannot usefully exploit the
autoregressive properties of arson at fine spatial scales, even
though autoregression is significant in-sample, which might be
revealing a classic bias-variance tradeoff due to over-fitting of the
temporal autoregressive components at fine spatial scales; (2) ag-
gregation of arson across reported targets can yield a model that
differs from by-target models; (3) spatial aggregation of data tends
to increase forecast accuracy of arson, at least for the city of Detroit;
and (4) arson forecast models that recognize temporal autore-
gression can be used to forecast daily arson fire activity at the
Citywide scale in Detroit, which means that prospective hotspot
mapping can utilize recent firesetting activity to predict future
activity. We conjecture that the lack of additional forecast accuracy
provided by the autoregressive models for our smaller spatial units
derives from the inappropriateness of the model specification for a
count process occurring at low temporal frequency, leading to
autoregressive model biases.

The results suggest that additional tradeoffs also exist. One such
tradeoff is between collecting high resolution spatial data and the
use of more sophisticated modeling techniques accounting for
temporal correlation, brought about by lower resolution spatial
data. Another modeling trade-off has to do with the utility of
resulting prospective hotspot maps. Models specified at high
spatial aggregation may have lower overall forecast variance
compared to those estimated at finer spatial scales. But the use of
these more aggregated models is more limited, inferring the need
to change aggregate law enforcement readiness, for example.
Likewise, modeling arsonwith disaggregated target data can reveal
divergent causal and correlative driving factors, but their forecast
ability may be weaker compared to models that aggregate across
classes of crime.
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