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This  study  was  conducted  in the  Big  Sunflower  River  Watershed  (BSRW),  north-west,  Mississippi.  The
watershed  has  been  identified  as  “impaired  waters”  under  Section  303(d)  of  the  Federal  Clean  Water
Act  due  to high  levels  of  sediment  and  total  phosphorus.  This  excess  is  then  transported  to the  Gulf
of  Mexico  via  the  Yazoo  River,  further  damaging  the  nation’s  water  resources.  The  specific  objectives
of  this  study  were  to assess  the  impact  of  corn  (Zea  mays  L.),  soybean  (Glycine  max  (L.)  Merr.,  and  rice
(Oryza  sativa,  L.)  crop-rotations  (corn  after  soybean,  soybean  after  rice,  continuous  soybean)  and  tillage
practices  (conventional,  conservation,  no-till)  on crop yields  and  sediment  yield  using  the Soil  and  Water
Assessment  Tool  (SWAT)  model.

The SWAT  model  was calibrated  from  January  2001  to December  2005  and  validated  from  January  2006
to September  2010  for monthly  stream  flow  with  good  to  very  good  performance  [coefficient  of  deter-
mination  (R2)  values  from  0.68  to 0.83  and  Nash  Sutcliffe  Efficiency  index  (NSE)  values  from  0.51  to  0.63]
using stream  flow  data  from  three  spatially  distributed  USGS  gage  stations  within  the  BSRW.  The  SWAT
model  was  further  calibrated  for  corn  and  soybean  yields  from  research  fields  at Stoneville  and  validated
using  research  fields  at the  Clarksdale  experiment  stations  with  fair to  excellent  statistics  (R2 values  from
0.43 to 0.59  and  NSE  values  from  0.34  to 0.96).  The  SWAT  model  simulation  results  suggested  that  corn
yields  were  greater  in  the  corn  after  soybean  rotation  under  conventional  tillage  (mean  =  9.88  Mg ha−1)
than  no-tillage  (mean  = 8.81  Mg  ha−1) practices.  However,  tillage  practices  had  no  effects  on soybean  yield
for the  corn  after  soybean  rotation.  Soybean  yields  under  conventional  tillage  practice  indicated  greater
yields (mean  =  3.01  Mg  ha−1) for  the  soybean  after  rice  rotation  than  for soybean  after  corn.  Continuous
soybean  under  conventional  tillage  had  the  lowest  simulated  crop  yield  (mean  =  2.07  Mg  ha−1) and  the

−1
greatest  sediment  yield  (5.2  Mg  ha ) in  this  study.  The  cumulative  (1981–2009)  sediment  yield  at the
end  of the  simulation  period  (2009)  indicated  a maximum  difference  of  about  8 Mg ha−1 between  no-till
and  conventional  tillage  practices,  with  no-till  contributing  the  lowest  sediment  yield.  The cumulative
difference  of the  sediment  yield  between  no-till  and  conservation  till  was about  2 Mg  ha−1.  The  results
of  this  study  will  help  to  better  understand  the  impact  of management  practices  on  watershed  crop
management  and  water  quality  improvement  within  the  BSRW.  This  information  can  be applied  to  other

agricultural  watersheds.

. Introduction
According to the Food and Agriculture Organization (FAO) statis-
ics approximately 850 million people in the world are struggling
ith food shortages and hunger. Greater levels of crop produc-

ion are needed to meet the growing global demand for food.
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Simultaneously, farmers are being increasingly required to reduce
the negative environmental impacts of their production prac-
tices. Crop yield is influenced by internal (e.g. soil properties) and
external factors including crop management practices, fertilizer,
irrigation, climate and others. These choices of crop management
that improve yield can also have serious negative consequences to
the environment, such as impacting water quality through erosion

and chemical runoff. Knowledge of how farming practices impact
the environment can help to improve water quality, crop yield,
and water use efficiency. Pimentel and Patzek (2005) indicated
that traditional U.S. crop production systems, especially corn, have
been rapidly degrading environmental sustainability, for example
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hrough increased soil erosion. Unless major changes are made in
he cultivation of this crop, continued environmental impairment
ill hinder future productive capacity. Corn is a raw material for

thanol production, but cannot be considered to provide a renew-
ble energy source. One of the major challenges currently facing
gricultural practitioners and scientists is how to increase crop
roductivity without further degrading the environment.

Agriculture is the major contributor of non-point source pollu-
ion to water quality (Parajuli et al., 2008; Lam et al., 2009), and
he major user of soil and water natural resources. Agriculture-
elated pollution may  include sediment, nutrients, and pesticides
hat cause water quality degradation (Zalidis et al., 2002; Thorburn
t al., 2003). Application of nutrients such as fertilizer is essential
or sustaining food production, but it can become a nonpoint pol-
utant to surface water resources due to poor agricultural practices.
hanges in crop rotation and tillage management offer alternative
roduction practices that can preserve soil resources and minimize
ontamination (Ma et al., 2007; Jaynes et al., 1999; Cambardella
t al., 1999). An increase in agricultural water productivity is nec-
ssary to improve water management and reduce environmental
roblems (Ali and Talukder, 2008). Improvements in water produc-
ivity and quality are related to the improved management of water
nd nitrogen application (Nangia et al., 2008).

There is no doubt that crop management and water quality
re inter-related. It is essential to know where and when pollu-
ion is generated and how crop management choices impact crop
ields in the southern U.S. states like Mississippi in order to develop
ealistic pollution abatement approaches. Water quality responses
elated to the crop management practices such as crop-rotations
nd tillage managements are spatially varied over the watershed,
hich need to be identified to implement improved management
ractices (Singer et al., 2011; Ullrich and Volk, 2009). About 70%
f the state’s soybean crop and 43% of the state’s corn crop are
rown in the resource abundant Mississippi River Valley alluvial
ood plain in the northwest section of the state, colloquially known
s the Delta (MAFES, 2009).

Assessing the impact of farming practices on soil and water
uality is essential to provide the information for developing more
conomically and environmentally sustainable agricultural man-
gement systems (Bakhsh et al., 2000). Agricultural management
ractices such as crop rotation, tillage practices, and conservation
ractices can have significant impacts on water entry and reten-
ion of water and nutrient processes in the soil profile (Weed and
anwar, 1996; Boddy and Baker, 1990).

Tillage intensity in the region ranges from the currently con-
entional tillage (CT) practice of chisel-plowing, with maximal
oil disruption, to the reduced till (RT) or conservation till (CST)
ractice, and no-tillage (NT). Tillage operations affect nutrient
ycling in several ways by altering soil structure and the decom-
osition of crop residues and soil organic matter (Katupitiya et al.,
997). As a result, the structure of soils in NT fields is often very dif-
erent from that in CT fields. Macropores, including cracks, worm
urrows, and root channels, are generally larger in size and form

 better connected network in NT than CT soil (Singh and Kanwar,
991). Also, as the intensity of tillage is decreased, the quantity of
ulch remaining on the soil surface from a previous crop increases.

he increased mulch helps to reduce evaporation and runoff while
ncreasing infiltration (Green et al., 1995). In addition, combined

ith mulch and well-developed network of macropores, help to
educe evaporation and runoff by enhancing infiltration and greater
oil water contents (Smith and Cassel, 1991).
Previous research on crop yield has found that within-field spa-
ial variations play an important role in crop yield within a given
ear (Cox et al., 2006). This spatial variability arises from soil prop-
rties and landscape features that affect patterns in plant available
ater-holding capacity or soil drainage and aeration (Jaynes and
 Management 119 (2013) 32– 42 33

Colvin, 1997; Mulla and Schepers, 1997). Bakhsh et al. (2000) found
that crop yield variability may  not only be controlled by inherent
soil properties but also by other external factors such as climate,
agricultural management practices, and topographic characteris-
tics of the fields. Yang et al. (1998) conducted crop yield research
using the Geographic Information Systems (GIS). They reported that
topographic attributes have an influence on crop yield variability in
the Palouse region in the northwest U.S. Several researchers have
used map overlay analysis, a GIS techniques to determine the com-
bined effect of various factors within agricultural fields (Diaz et al.,
1998; Hashmi et al., 1995; Wesseling and Feddes, 2006). The GIS
tools and techniques have the ability to create and overlay various
data layers in order to examine their interaction with each other
over the space and time (Tim and Jolly, 1994).

A watershed hydrologic and water quality model use a set
of mathematical descriptions to simulate hydrologic cycles, and
they are accepted tools to evaluate hydrological processes (Singh
and Woolhiser, 2002). Hydrological models can be used to simu-
late stream flow, water and nutrient yields from spatially variable
watershed source areas. Hydrological models such as the Soil and
Water Assessment Tool (SWAT; Arnold et al., 1998) offer a useful
means of evaluating the effects of agricultural management prac-
tices, human impact, and conservation scenarios, and help make
watershed management decisions (Fohrer et al., 2005; Lin et al.,
2007).

Baffaut and Benson (2003) used the SWAT model in the Shoal
Creek watershed, Missouri, to consider the physical properties of
the watershed and the farming practices for the simulation period
(1990–2001). One of the parameters used in the model calibration
was crop yield (hay) data for the Barry and Newton Counties. They
demonstrated that the correct representation of the crop yields
can ensure the correct amounts of moisture and nutrient uptake
by the vegetation and removal from the hydrologic system. The
average crop yield simulated by SWAT for the 12 year periods
under-predicted crop yield by 5% (4.25 Mg  ha−1 vs. 4.48 Mg ha−1)
from the average reported yield for Barry and Newton Counties.
However, the model was not validated at the small field scale using
crop yield data.

The ability to predict crop yields prior to harvest and its water
quality impacts covering large-scale watershed areas are impor-
tant concerns for many countries. Crop yield is an outcome of
several complex soils and climate related factors, and their effect
on crop yield can be better predicted using GIS-based watershed
models. Crop yield prediction requires the application of crop
growth models (Soria-Ruiz and Ordonez, 2006). The plant growth
models such as the Erosion-Productivity Impact Calculator (EPIC;
Williams, 1995) in conjunction with hydrologic simulation tools
such as the SWAT (Arnold et al., 1998) model can be used to inves-
tigate potential crop yields, water quality and hydrologic impacts
due to land use change. Several previous studies applied, cali-
brated and validated the SWAT model to assess surface runoff,
sediment and nutrient yields, and bacteria loadings from several
geographically referenced locations (Wang et al., 2006; Gassman
et al., 2007; Parajuli, 2007; Parajuli et al., 2008; 2009; Lin et al.,
2009; Parajuli, 2010). However, most of these applications and eval-
uations have considered only the hydrology and water resource
implications.

The specific objectives of the study were to: (a) calibrate and
validate the SWAT simulated results using field measured corn
and soybean crop yield data and (b) assess various crop manage-
ment practices and their impact on crop yields and sediment yields

using a modeling approach. This study examines current crop man-
agement practices, stream flow, and crop yields in the BSRW in
Northwest, Mississippi. Management practices, crop rotations and
tillage management and their impact on crop yields and sediment
yields were assessed.
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Fig. 1. Location of the Big Sunflower River watershed sho

. Materials and methods

.1. Watershed

The BSRW (Fig. 1; 10,488 km2) is an area of intensive row crop
roduction, mainly soybean, corn, cotton (Gossypium hirsutum L.)
nd rice. The BSRW covers most of the Delta region including eleven
ississippi counties (Coahoma, Bolivar, Tallahatchie, Sunflower,

eflore, Washington, Humphreys, Sharkey, Issaquena, Yazoo and
arren). Land use in the watershed is predominantly agricultural

>80%; USDA/NASS, 2009). The BSRW drains into the Mississippi
iver near Vicksburg, MS.  The BSRW (HUC-08030207) is one of the

orty-one watersheds in the twelve Mississippi River Basin Initia-
ive (MRBI) states. The NRCS State Conservationists identified the
SRW as one of the high priority or focused watersheds to improve
ater conservation and water quality (USDA/NRCS, 2010).
.2. SWAT model

The SWAT model (Arnold et al., 1998; Neitsch et al., 2005) is a
hysically based, continuous, daily time step model, which predicts
urface runoff, sediment and nutrient yields, pesticide, bacteria, and
toneville and Clarksdale agriculture experiment stations.

crop yields. The SWAT model sub-divides a watershed into sub-
basins as delineated using a digital elevation model (DEM) and
small spatial units called the hydrologic response units (HRUs).
The HRUs are generated based on the intersection of unique land
use and soil conditions within the model; spatially variable input
parameters can be provided for the simulation. These input param-
eters can directly impact the hydrology, water quality and crop
yields. The SWAT model estimates daily time-period parameters
(e.g. runoff and evapo-transpiration), which are largely driven by
daily rainfall inputs, other climate parameters and irrigation in the
model. The variability in the crop growth functions is simulated in
the SWAT model utilizing the EPIC model. In the SWAT model all the
available heat units above the base temperature helps crop-growth
and crop-development. The SWAT model keeps the records of the
daily sum of the heat units and daily average temperature must be
greater than the base temperature for the crop to grow (Neitsch
et al., 2005).
The SWAT model requires several geospatial data inputs that
cover the watershed boundary (e.g. DEM, land use, and soil).
The model uses these geospatial input parameters to develop
specific model inputs for each HRU, and sub-basins in the water-
shed. The 30 m × 30 m grid DEM data from the U.S. Geological
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Table  1
Hydrologic parameters used to auto-calibrate the SWAT model.

Parameters Fitted value (Sufi-2) Range Final (hybrid)

1 Cn2a Not used 45–92 45–92
2 Alpha bf 0.70 0.20–0.90 0.70
3 Gw delay 12.70 2.0–45.0 12.70
4  Ch n2 0.23 0.014–0.30 0.23
5 Sol awc  0.24 0.02–0.90 0.24
6  Surlag 3.5 2.0–8.0 3.5
7  Rchrg Dp 0.67 0.0–0.9 0.67
8  Epco 0.7 0.1–0.9 0.9
9 Esco 0.3 0.1–0.9 0.7
10  Gw Revap 0.06 0.02–0.20 0.02
11 Gwqmn 251 2.0–1000.0 251
12  Revapmn 300 1.0–400.0 300

Note: Cn2 = curve number, Alpha bf = base flow recession constant, Gw delay = delay
of  time for aquifer recharge, Ch n2 = Manning’s “n” value for the main chan-
nel, Sol awc  = available water capacity, Surlag = surface runoff lag coefficient,
Rchrg Dp = aquifer percolation coefficient, Epco = plant uptake compensation fac-
t
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or,  Esco = soil evaporation compensation coefficient, Gw Revap = ground water
evap coefficient, Gwqmin = threshold water level in shallow aquifer for base flow,
evapmn = threshold water level in shallow aquifer for revap.
a Not included in the calibration.

urvey (USGS, 1999) was used to create the UPRW watershed
oundaries; soil input data was developed using the Soil Survey
eographic Database (SSURGO, USDA, 2005). The cropland data

ayer (USDA/NASS, 2009) was used to create land use data for the
ntire watershed for model input. The model also used daily mea-
ured rainfall and temperature data as a climate data input from the
round based climate stations maintained by the National Climatic
ata Center (NCDC, 2012). Daily climate data were utilized from

even weather stations within or near the watershed including the
toneville experiment station, which collects precipitation, both
aximum and minimum temperatures, wind speed, and relative

umidity. The BSRW was divided into 37 sub-watersheds. Three
SGS gage stations (7288280 at Merigold, 7288500 at Sunflower,
nd 7288650 at Leland) provided monthly stream flow data.

.3. Stream flow calibration and validation

The SWAT model was parameterized to assess the long term
tream flows from three spatially distributed USGS gage stations
n the BSRW. A one year warm-up period was considered prior to
he model simulation starting date. The model was  calibrated from
anuary 2001 to December 2005 and validated from January 2006 to
eptember 2010 using USGS monthly stream flow data. The SWAT
odel literature described model calibration and validation proce-

ures by changing one key parameter at a time manually (Parajuli,
010). This study used the Sequential Uncertainty Fitting (Sufi-2)
WAT Calibration and Uncertainty Procedures (Swat-cup2) auto-
atic calibration technique to determine the final model input

alues of twelve hydrologic parameters (Table 1, Abbaspour et al.,
007). The Swat-cup2 is a SWAT calibration and uncertainty pro-
ram developed to estimate various statistical values and provide
odel evaluation statistics to assess model efficiency and Sufi-2 is

 program procedure where Swat-cup2 can be linked (Abbaspour
t al., 2009).

The Cn2 is the moisture condition II curve number, which was
sed to represent land use conditions of the watershed; Alpha bf

s the base flow recession constant, which considered watershed
and areas with rapid response; Gw delay is the delay of time
or aquifer recharge, which was estimated by simulating aquifer

echarge using different values; Ch n2 is the Manning’s “n” value
or the main Channel, which was considered for the natural channel
ith good conditions grass; Sol awc  is the available water capacity,
hich was estimated by determining the amount of water released

etween in situ field capacity and the permanent wilting point
 Management 119 (2013) 32– 42 35

by the model; Surlag is the surface runoff lag coefficient, which
considered more water held in storage; Rchrg Dp is the aquifer
percolation coefficient, which considered a good fraction of per-
colation from the root zone to recharges the deep aquifer; Epco
is the plant uptake compensation factor, which allowed more of
the water uptake demand to be met  by lower layers in the soil in
this condition; Esco is the soil evaporation compensation coeffi-
cient, which allowed model to consider depth distribution used to
meet the soil evaporative demand; Gw Revap is the ground water
revap coefficient, which allowed minimum water movement of
from the shallow aquifer to the root zone in this model simulation;
Gwqmn is the threshold water level in shallow aquifer for base
flow, which was  adjusted to simulate threshold depth of water in
shallow aquifer required for the base flow to occur and Revapmn is
the threshold water level in shallow aquifer for revap or percola-
tion to deep aquifer, which allowed to decrease water movement
between two  aquifers to occur revap in the SWAT model (Neitsch
et al., 2005). As long as upper and lower values of the model calibra-
tion parameters are within the range of values, they are considered
good. Consequences of lower limit or upper limit values in the
physical condition of the watershed are specific to each parameter.
For example, the “esco” parameter value close to “0” allows more
water extraction from the lower soil layers to meet the evaporative
demands. However the “esco” value close to 1 allows less water
extraction from the lower soil layers. Therefore, every watershed is
unique in its hydrologic characteristics. The detailed descriptions of
parameter used in Table 1 are available in the SWAT documentation
(Neitsch et al., 2005).

The Cn2 value was  not included in the automatic calibration as
the model allowed only one Cn2 number for all sub-watersheds
with a different land use. However, the Cn2 value was manually
calibrated based on land use and the Sufi-2–Swat-cup2 parameters
(Abbaspour et al., 2007). Monthly observed USGS gage data from
three stations (Merigold, Sunflower, and Leland) were compared
with monthly model predicted data.

2.4. Crop yield calibration and validation

The SWAT crop growth module can simulate the crop growth
and crop yield. The detailed crop management data for corn and
soybean are not available for all the agricultural cropland areas in
the BSRW. However, management data from the two  agricultural
experiment stations, located at Stoneville and Clarksdale within
the BSRW provided representative data for the watershed. These
experiment stations maintain records of crop management prac-
tices and crop yields. Stoneville and Clarksdale are located within
the sub-watersheds 30 and 1, respectively of the BSRW (Fig. 1),
where field test plots and variety trial experiments were carried
out. The model was  calibrated using crop yield data from research
plots at the USDA-ARS Crop Production Systems Research Unit
(CPSRU) Stoneville and validated using crop yield data at Clarksdale.
Both locations are used for research test plots using standard agri-
cultural practices for row crop production. Soils are typical alluvial
soils ranging from rapidly draining sandy and silty loams to slowly
drained clays (Vanderford, 1962). Field preparation after harvest-
ing in the fall includes disking and hipping to establish seed beds on
96.5 cm rows. Deep tillage is performed to break up the soil struc-
ture and improve water infiltration into the soil. Prior to spring
planting, seed beds are firmed using a do-all or roller.

Model input parameters were unchanged during the model vali-
dation process. The crop management data include planting date,

harvesting dates, irrigation, and fertilization. Rates of irrigation and
fertilization were assumed to address crop needs, as the research
stations maintained a controlled growth environment in compari-
son to the production crop fields in the BSRW. These assumptions
in the model minimize water stress and nutrient stress in the
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Table 2
Crop rotations and tillage management practices used in the model.

Crop rotation Tillage Planting date Harvesting date Fertilized crop

Corn after soybean Conventional March 15 August 15 Corn only
Corn  after soybean No-Till March 15 August 15 Corn only
Soybean after soybean Conventional March 15 August 15 None
Soybean after soybean No-Till March 15 August 15 None
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Rice  after soybean Conventional A
Rice  after soybean No-Till A

ote: All the crops were under auto-irrigation.

rop fields. The current crop rotation in the watershed was  con-
idered soybean after corn. One crop per year is very common in
he watershed based on the local climatic conditions. Model input
ata includes: planting corn on March 15 and harvesting on August
5, which represent typical field conditions within the watershed.
oybeans have a much broader planting and harvesting window in
he area (Table 2). For simplicity in the simulations, the planting and
arvesting dates for soybean were assumed to be similar to corn.
oth soybean and corn crops were irrigated. Model inputs consid-
red an auto-fertilization (28-10-10) only for corn, which is similar
o the suggested rates based on anticipated yield (Larson, 2008); the

odel assumed soybean had nitrogen fixation capability. Corn and
oybean were established on seed beds to allow adequate early-
eason drainage and within-season irrigation through furrows, as
s the standard practice in the region. In this study we used the fur-
ow out cultivator to create furrows in the model simulation. The
easured crop yield data were recorded in bushels per acre unit,

sing the standard bushel dry weights of 56 lbs bu−1 for corn and
0 lbs bu−1 for soybeans, and converted to dry weight megagrams
er hectare of land for comparison to the SWAT yield prediction.
he standard conversion rate estimates 25 kg of corn per bushel
nd 27 kg of soybean per bushel (Weiland and Smith, 2007). Table 3
resented four crop parameters water stress (AUTO WSTRS), nitro-
en stress (AUTO NSTRS), leaf area index (BLAI), and harvest index
HVSTI) used for corn and soybean yields calibration in the model.
etailed descriptions of these calibration parameters are available

n the SWAT model documentation (Neitsch et al., 2005).
Among crop parameters, the harvest index (HVSTI) parameter in

he model has been commonly utilized to predict crop yield in the
odel simulation studies (Soltani et al., 2005; Craufurd et al., 2002).

he HVSTI is also used in the field level experimental studies to
nalyze crop yields. The SWAT model defined HVSTI as the fraction
f the above-ground plant dry biomass removed as dry economic
ield, which is calculated by the model every day of the plant’s
rowing season during the model simulation period (Neitsch et al.,
005). The HVSTI values for the common crops harvested above the
round are generally used from 0 to 1. The HVSTI values are relative
o obtainable soil-water-content in the water-limited conditions
fter anthesis (Nix and Fitzpatrick, 1969; Passioura, 1986). Since

he HVSTI values are dependent on obtainable soil-water-content,
hey are not considered as an independent value to impact on crop
ield (Kang et al., 2003).

able 3
rop parameters calibrated and suggested final values.

Parameter/crop Corn Soybean

Range Final value Range Final value

AUTO WSTRS 0.85–0.98 0.95 0.82–0.98 0.95
AUTO NSTRS 0.85–0.98 0.95 NA NA
BLAI 5–8 7 3–5 4
HVSTI 0.5–0.7 0.65 0.3–0.4 0.35

UTO WSTRS: water stress, AUTO NSTRS: nitrogen stress, BLAI: leaf area index,
VSTI: harvest index, NA = not applicable as soybean was not fertilized.
5 September 15 Rice only
5 September 15 Rice only

2.5. Statistical analysis

The SWAT model predicted results were compared with the
field measured data utilizing commonly used statistical parame-
ters such as mean, correlation-coefficient (R2), and Nash-Sutcliffe
efficiency (NSE) categories as recommended by previous studies
(Moriasi et al., 2007; Parajuli et al., 2009). Parajuli (2010) classified
the SWAT model performances of the monthly flow simulations
using six categories (excellent for R2 and NSE ≥ 0.90; very good
for R2 and NSE = 0.75–0.89; good for R2 and NSE = 0.50–0.74; fair
for R2 and NSE = 0.25–0.49, and poor for R2 and NSE = 0–0.24; and
unsatisfactory for R2 and NSE < 0).

The Swat-cup2 and Sufi-2 program calibration method uses
percentage of measured data within the 95% prediction uncer-
tainty (P-factor), which referred a degree of all uncertainties. The
strength of a calibration/uncertainty analysis is determined by R-
factor, which shows the thickness of the 95% prediction uncertainty
band divided by the standard deviation of the measured data. Coef-
ficient of determination (R2) multiplied by the coefficient of the
regression line is bR2. The sum of the squares (SSQR) method meas-
ures frequency distributions of the measured or observed and the
simulated values. The mean square error (MSE) measures the aver-
age of the squares of the errors between measured and simulated
values. More information on P-factor, R-factor, br2, SSQR and MSE
are available in Swat-cup2 calibration and uncertainty programs
(Abbaspour et al., 2009).

3. Results and discussion

This study calibrated and validated monthly stream flow within
the BSRW, corn and soybean yields at two  agricultural experiment
stations within the watershed, and then assessed crop rotation and
tillage impacts on crop yields and water quality (e.g. water yield,
and sediment yield) from the entire BSRW using the SWAT model.
Detailed model calibration, validation, and simulation results and
interpretations are given below.

3.1. Stream flow

Initially the SWAT model simulations were performed using
default model parameters. The default SWAT model results pro-
vided good model performance based on the R2 values but poor
performances with regards to the NSE, which indicated the need
for model calibration. Before conducting a manual calibration, an
automatic calibration was  performed using the SWAT-cup2 and
Sufi-2 algorithms (Abbaspour et al., 2009) within the SWAT model.
Automatic calibration of the SWAT model identified the most sen-
sitive parameters (Tables 1 and 4). The SWAT simulated results
were used to estimate these statistics using SWAT-cup2 (Table 4).
In addition other factors should also be considered to evaluate

model performance. The P-factor is the scale to which uncertainties
are explained within the percentage of measured data banded by
the 95% prediction uncertainty (95PPU) as described by Abbaspour
et al., 2009. The P-factor ranges from 0 to 1; P-factor exactly
equivalent to 1 indicates exact agreement between simulated and
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Table  4
Statistical values determined by SWAT-Cup2 Sufi-2 calibration method.

Gage/variables P-factor R-factor R2 NSE br2 MSE  (m6/s2) SSQR (m6/s2)

m
T
g

r
(
e
e
t
t
v
o
g
o
t
o
s
a
a
T
(

F

Marigold 0.33 0.15 0.81 

Sunflower 0.42 0.21 0.77 

Leland 0.22 0.22 0.67 

easured values. In this study the P-factor ranged from 0.22 to 0.42.
he Sunflower gage station had the best P-factor (0.42) among three
age stations.

The R-factor is defined by the average thickness of the 95PPU
ange divided by the standard deviation of the measured data
Abbaspour et al., 2009) and can vary from 0 to infinity. The R-factor
qual to 0 indicates perfect model simulation that corresponds
xactly to measured values. In this study the R-factor was  found
o be from 0.15 to 0.22. The watershed outlet at Merigold showed
he best R-factor value of 0.15 in this study. The R2 values, which
aries from 0 to 1 with one indicating perfect regression between
bserved and simulated values simulation was determined to be
ood to very good (R2 from 0.67 to 0.81) from all three watershed
utlets tested in this study. The NSE values can vary from nega-
ive infinity to 1, with one indicating perfect efficiencies between
bserved and simulated values simulation; the results from this

tudy indicated good to very good NSE (NSE from 0.61 to 0.79) from
ll three watershed outlets. The Marigold outlet showed the best R2

nd NSE values among the three stations compared in this study.
he br2, MSE, and SSQR factors as described by Abbaspour et al.
2009) also showed good model performance in this study.
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ig. 3. Model responses to the observed soybean yield during model calibration at: (a) St
0.79 0.77 103.39 16.70
0.75 0.65 84.61 41.61
0.61 0.56 114.47 24.73

Considering all the performance statistics estimated by the
Sufi-2–SWAT-cup2, we can conclude that the model is perform-
ing reasonably well when predicting stream flows at the given
watershed outlets. The SWAT model performances were further
improved by manual calibration as described in Section 2.3. Table 5
shows the model statistics (R2, NSE) using defaults and manually
improved model calibration.

Van Liew et al. (2003) investigated hydrologic conditions of
the Delaware Creek watershed in Oklahoma using the SWAT
model. The SWAT model performed well (R2 = 0.68 and NSE = 0.84)
for monthly stream flow simulation in their study. King et al.
(1998) applied the SWAT model in the Goose Creek watershed
(21.3 km2) in Mississippi Delta using two methods of simulating
excess rainfall: (a) the SCS daily curve number method (CN) and
(b) Green-Ampt Mein-Larson (GAML). The simulated and monthly
measured stream flows were evaluated at the watershed outlet.

Uncalibrated SWAT model results indicated good model perform-
ances (R2 from 0.70 to 0.82 and NSE from 0.63 to 0.78) in both
methods used in their study.

Parajuli (2010) applied the SWAT model in the Upper Pearl River
watershed to assess the hydrologic impact of long-term climate
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Fig. 4. Long-term model responses to corn and soybean yields in three crop-rotations under conventional tillage practice in the Big Sunflower River watershed.

Fig. 5. Model predicted corn yields from corn after soybean rotation under (a) conventional till and (b) no-till fields in the watershed.
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Fig. 6. Model predicted soybean yield from corn–soybean rotat

hange (e.g. precipitation, temperature, CO2). The calibrated and
alidated SWAT model showed good to very good performances
R2 from 0.69 to 0.79 and NSE from 0.68 to 0.79) when predict-
ng monthly stream flows from various USGS gage stations in the

atershed. The watershed stream flows were shown to be sensitive
o the climate changes.

The stream flow calibration and validation results of this study
howed good agreement with other research studies reviewed by
assman et al. (2007),  which utilized the SWAT hydrologic model
alibration and validation research.

.2. Crop yield

This study calibrated and validated the SWAT model to predict
rop yield at Stoneville and Clarksdale agricultural experiment sta-
ions. Annual average harvest weight corn and soybean yields from
esearch plots at the experiment stations were compared with the
odel simulated crop yields. The model simulated results from the

ilty clay loam soil texture HRU in the sub-watershed where the

xperiment stations are located were utilized to compare with the
easured crop yield data. The corn crop yield data from 2000 to

009 were used for model calibration and validation, except from
005 for both stations and 2008 for Clarksdale station due to data
navailability (Fig. 2). Simulated average annual corn yields from
der (a) conventional till and (b) no-till fields in the watershed.

model calibrated (Fig. 2a) and validated (Fig. 2b) experiment sta-
tions showed good to excellent model performances (R2 of 0.50,
NSE from 0.83 to 0.96, and RMSE from 1.0 to 1.4).

The soybean crop yield data from 2000 to 2009 were used for
model calibration and validation (Fig. 3) except for 2004 for the
Clarksdale station due to data unavailability. Simulated average
annual soybean yields from model calibrated (Fig. 3a) and validated
(Fig. 3b) stations showed lower model performance (fair to good)
than was observed for corn (R2 from 0.43 to 0.59, NSE from 0.34 to
0.49, and RMSE from 0.48 to 0.80).

The model under-predicted annual average corn yields by 8.8%
at Stoneville and by 0.2% at Clarksdale experiment stations (Fig. 2).
Similarly, the model under-predicted annual average soybean
yields by 4.3% at Stoneville and 16.8% at the Clarksdale experiment
stations (Fig. 3). The corn and soybean yield results of this study
were comparable to previous studies using the SWAT model in the
Lower Mississippi River Basin (Srinivasan et al., 2010).

The calibrated and validated SWAT model was further applied to
the entire BSRW to simulate the impact of long-term (1981–2009)

crop rotation and tillage management on corn and soybean yields
(Fig. 4), and sediment yield. Model simulated corn and soy-
bean yields for corn after soybean rotation using conventional
tillage practices were compared. The corn yield was found to be
the highest in a corn-soybean rotation (mean = 9.88, max  = 12.34,
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Table 5
Final values after automatic and manual calibration of the model at three gage stations.

Process Parameter Default statistics Merigold Sunflower Leland

Calibration R2 From 0.55 to 0.66 0.69 0.75 0.68
Validation R2 From 0.55 to 0.71 0.83 0.82 0.77
Calibration NSE From −0.31 to −0.75 0.63 0.51 0.62
Validation NSE From −0.18 to −2.26 0.53 0.52 0.62
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ig. 7. Model predicted cumulative annual average sediment yield for no-till, co
atershed. Note: NT = no-till, CST = conservation-till, CT = conventional till.

in  = 6.53 Mg  ha−1; Fig. 4). Model results were generally affected
y climate change parameters including annual rainfall in the pre-
eding year.

Simulated long-term average soybean yields for soybean
fter rice for conventional tillage practices were the highest
mean = 3.01, max  = 3.53, min  = 2.22 Mg  ha−1) as the soil moisture
emaining after the rice crop would help grow the soybean crop.
oybean yield for the soybean after rice rotation consistently sim-
lated higher yields than soybean after corn and soybean after
oybean rotations in most of the years (Fig. 4; Kurtz et al., 1997).
oybean yield under continuous soybean production had the low-
st soybean yield simulated in this study (mean = 2.07, max  = 3.24,
in  = 1.03 Mg  ha−1), which is very similar to other studies (Kurtz

t al., 1997). Simulated corn yield for corn after soybean for conven-
ional tillage showed higher corn yields than no-till practices in the
atershed (Fig. 5), which is similar to other studies (e.g. Hargrove,

985).
Conversely, soybean yields were not influenced by tillage prac-

ices under the soybean after corn rotation (Fig. 6). Similar results
ave been reported previously (Hairston et al., 1990).

.3. Sediment yield

The cumulative average annual sediment yield simulated by
he model showed that continuous soybean production under con-
entional tillage resulted in the greatest sediment yield from the
elds within the BSRW. Although the difference in sediment yield

t the beginning of the time period was not significantly greater,
t showed consistent increases at the end of the simulation period
Fig. 7). By the end of the simulation period (2009), a maximum dif-
erence of about 8 Mg  ha−1 was observed between the no-till and
onventional tillage practices. No-tillage management resulted in
ation till and conventional till from continuous soybean production fields in the

the lowest sediment yield. The cumulative difference of the sedi-
ment yield between no-till and reduced till was  about 2 Mg  ha−1.

4. Conclusion

This study calibrated and validated the SWAT model for the
monthly stream flow using measured USGS gage station data from
three spatially distributed gage stations and crop yields using
annual corn and soybean yield data from the two agricultural
experiment stations (Stoneville and Clarksdale) within the BSRW.
Further, three crop rotation and three tillage management scenar-
ios were developed for the entire BSRW to assess their effects on
corn and soybean yields as well as sediment yield.

This study successfully evaluated the impact of spatially dis-
tributed crop rotation and tillage practices on crop yield and
sediment yield from the BSRW. The results of this study allow devel-
opment of future watershed management strategies based on best
crop and tillage management practices to reduce environmental
impacts. The model simulation results indicated that corn yields for
a corn–soybean rotation under conventional tillage practice pro-
duced the greatest yields (mean = 9.88 Mg  ha−1). The corn yields
under conventional tillage practice were greater than those for no-
tillage practices. However, tillage practices had no effects on the
soybean yield under the corn–soybean rotation. The soybean yields
in conventional tillage practice under the rice–soybean rotation
showed greater yields than corn–soybean rotation. The continuous
soybean production under conventional tillage had the lowest sim-
ulated crop yield (mean = 2.07 Mg  ha−1) and the greatest sediment

yield (mean = 5.2 Mg  ha−1) in this study. Overall, the long-term
average soybean yields were the greatest (mean = 3.01 Mg  ha−1)
under soybean–rice crop rotation. The cumulative (1981–2009) dif-
ference of the sediment yield at the end of the simulation period
(2009) showed about 8 Mg  ha−1 between no-till and conventional
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illage practices. The no-till practice resulted in the lowest sedi-
ent yield from the fields within the watershed. The cumulative

ifference of the sediment yield between no-till and conservation
ill was found to be about 2 Mg  ha−1. Further study with more
rop-rotations and tillage management scenarios within or out-
ide the current watershed would help to determine crop yields
nd sediment loads from the watershed. Results of this study will
elp to practically compare the spatial variation of potential corn
nd soybean yielding areas within the BSRW. The results of this
tudy will help to guide watershed crop management and water
uality improvement in the BSRW or any other crop dominated
atersheds.
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