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There is a growing interest of late to enhance our

ability to reduce carbon dioxide levels in the at-

mosphere through tree growth. Although the

spread of development in urban areas may, in

some cases, cause a reduction in forest cover, there

may be opportunities to establish additional trees

in open areas within cities and metropolitan

areas. We assess three freely available aerial or

satellite imagery products for their ability to cor-

rectly identify open areas in six southern United

States cities. A standard supervised classification

process and a statistical assessment of plantable

open areas are employed. Results suggest that

while the United States National Agriculture Im-

agery Program (NAIP) aerial imagery may re-

quire more computer processing time and more

computer memory, classification accuracy is ac-

ceptable for the purpose of identifying open areas

where trees might be planted. Therefore, the use of

NAIP for this purpose is as sufficient as Landsat 5

and 7. Given recent uncertainties in the avail-

ability of Landsat 5 and 7 imagery, and given

analytical needs such as the one proposed here,

improvements in estimates of urban carbon po-

tential can be made over less intensive methods.

En los últimos tiempos hay un creciente interés

para mejorar nuestra capacidad para reducir los

niveles de dióxido de carbono en la atmósfera a

través del incremento de árboles. Aunque la pro-

pagación del desarrollo en las zonas urbanas, en

algunos casos, causa una reducción de la cober-

tura forestal, puede haber oportunidades para es-

tablecer nuevos árboles en zonas abiertas dentro

de las ciudades y áreas metropolitanas. Evalua-

mos tres productos de imágenes aéreas o de satélite

disponibles gratuitamente para determinar su ca-

pacidad para identificar correctamente los es-

pacios abiertos en seis ciudades del sur de los Es-

tados Unidos. Un proceso estándar de clasificación

supervisada y una evaluación estadística de áreas

abiertas plantables se emplearon. Los resultados

sugieren que mientras que las imágenes aéreas del

National Agriculture Imagery Program (NAIP) de

los Estados Unidos pueden requerir más tiempo de

procesamiento y equipos con mayor capacidad de
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memoria, la precisión de la clasificación es acept-

able para el propósito de identificar áreas abiertas

donde los árboles pueden ser plantados. Por lo

tanto, el uso de NAIP para este propósito es tan

adecuado como Landsat 5 y 7. Teniendo en cuenta

las incertidumbres recientes en la disponibilidad

de las imágenes Landsat 5 y 7, y teniendo en

cuenta las necesidades de análisis como el que aquí

se propone, las mejoras en las estimaciones del po-

tencial de carbono urbano se puede hacer con

métodos menos intensivos.

key words: urban forests, carbon sequestra-

tion, supervised classification, remote sensing
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introduction

Over the last two decades natural re-
source managers, planners, and policy
makers have made great advances in iden-
tifying the importance of climate change
to natural resource management. More
specifically, a number of natural resource
professionals have focused on the role
plants’ photosynthetic processes can play
in reducing atmospheric carbon dioxide
(CO2) in urban environments (Dwyer et al.
1992; Nowak 1993; Nowak 1994; Mc-
Pherson 1998; Nowak and Crane 2002).
Urban forests are beneficial to urban en-
vironments for their carbon sequestration
capacities because they are environmen-
tally acceptable, often cost-effective, and
aesthetically pleasing (McHale et al. 2007).
By intercepting and reflecting solar radia-
tion, urban trees help prevent local warm-
ing (mitigating heat islands), cool build-
ings and surfaces (reducing energy costs),
and cool ambient air by absorbing thermal
energy. In many cases, urban forests also

act as windbreaks, intercept particulate
matter, absorb gaseous pollutants, and
help reduce stormwater runoff (Millward
and Sabir 2011).

An understanding of how urban tree
cover is distributed among development
zones, land ownerships, and special areas
is essential to the success of urban forestry
programs. Gaps in the landscape and op-
portunities for tree-planting efforts are
therefore of value for reasons beyond addi-
tional sequestration of carbon. Through
the availability of carbon storage credits,
forestry programs are beginning to recog-
nize the economic benefits arising from
carbon sequestration through carbon ex-
changes (Cairns and Lasserre 2004). How-
ever, due to the uncertainty of financial
markets and the recent global economic
crisis, relying on revenue derived from
these carbon exchanges is risky (ICIS
Heren 2011). For example, recent tradable
carbon allowances for the European Union
Allowances (EUA’s) (one metric ton of car-
bon dioxide emissions), have ranged in
price from 7 to 20 Euros (Thomson Reuters
Point Carbon 2012). Additionally, the se-
curity of carbon registries has come into
question following documented Internet
attacks (ICIS Heren 2011). Finally, while
there are several voluntary forest carbon
markets originating in the United States,
the key trading mechanism, the Chicago
Climate Exchange, recently (2010) ceased
trading carbon credits, leading to addi-
tional scrutiny of the risk involved in these
carbon trading markets (Neeff et al. 2010).
While uncertainty exists in markets, an as-
sessment of the potential tree planting op-
portunities available to municipalities and
private landowners is of value simply due
to the carbon sequestration potential of
these efforts.
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Productive forestland has been under
pressure from rapidly growing urban and
suburban areas in the southern United
States (Wear and Greis 2011) leading to a
gradual reduction in commercial forest
land area. In a number of cases, urban de-
velopment has converted forests and green-
space into reserves managed by local gov-
ernments, non-profit groups, and private
individuals or families. Urban reserves
have the potential to become permanent
carbon repositories. Further, trees planted
in urban areas along roadsides and in resi-
dential areas and vacant lots can serve a
similar function. Nowak and Crane (2002)
found that Atlanta, GA stored approxi-
mately 1,220,000 metric tons of carbon in
forests. Additional research in Chicago
found that within Cook and DuPage coun-
ties, approximately 855,000 metric tons of
carbon could be stored in urban trees, with
the greatest potential found in open spaces,
parks, and urban forests (Nowak 1994).

With the acknowledgement of the im-
portance of urban forests in carbon se-
questration, a need arises for assessing
current urban forests and the potential for
additional urban forests. It is important to
develop a quick, cost-effective process for
identifying potentially plantable locations
within a city that could be implemented by
local governments and non-profit organi-
zations. These estimates can be used to as-
sess the incremental carbon sequestration
potential of an urban area, and can also be
used to inform policies (e.g., tax credits)
that might be developed to promote pri-
vate landowner efforts. The use of aerial
or satellite imagery for assessing the urban
environment is a valuable tool for natural
resource managers, planners, and the gen-
eral public (Young 2010) due to the wide
area of coverage and the ability to analyze

the data within a computer system. Wu et
al. (2008) developed a process whereby,
in conjunction with classified satellite im-
agery (of a type not freely available), the
number of tree-planting sites could be esti-
mated in an urban area. After open areas
had been identified using two classifica-
tion processes, a model then assessed the
area available for non-overlapping tree
crowns (given certain local conditions),
and attempted to fit small, medium, and
large tree crowns onto the landscape. Our
goal is different: we intend to assess the
usefulness of three freely available image
products, along with a straightforward
classification system that may be imple-
mentable by a city or county-level planner,
to determine an estimate of the area plant-
able with urban trees (rather than the
number of trees plantable).

The research presented here is a signifi-
cant extension of an initial urban carbon
tree planting potential assessment where
we developed and applied a methodology
to 15 cities in or near the Piedmont of the
southern United States. In the previous
work, we used Landsat 7 satellite imagery
and a supervised classification process
to estimate the potential plantable area
within the Piedmont region of the south-
ern United States. Landsat satellite imag-
ery has been widely used in landscape as-
sessments, yet recent technological issues
cloud its future (Chen et al. 2011). Given
the results of the initial research and our
goal of locating fast, cost-effective meth-
ods for assessing potentially plantable
areas within cities, we felt it important to
further investigate the use of different im-
agery products available free of charge to
the public. For example, digital aerial pho-
tography in the United States, derived
from the National Agriculture Imagery
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Program (NAIP), has become freely acces-
sible to communities despite large data
storage requirements, and therefore may
be an alternative to satellite imagery. Oth-
ers have used paired-point analyses of ran-
domly distributed sample locations on
aerial photographs to determine recent
changes in tree cover in cities (Nowak and
Greenfield 2012) and other similar aerial
photograph analyses (Hall et al. 2012).
Rather than use sample sites within a city
area, we considered it important to embark
on an analysis that involves remotely-
sensed imagery and a continuous surface
classification of plantable areas.

Therefore, from our previous work we
selected six cities (Atlanta, GA, Charlotte,
NC, Greenville, SC, Mount Airy, NC, Roa-
noke, AL, and South Boston, VA) from the
original 15 that were analyzed and had
lower accuracy levels (overall, producer’s,
or user’s accuracy) than our established
accuracy threshold set for Landsat 7 data.
The assumption here being that the use of
other imagery may lead to increases in ac-
curacy due to the perceived advantages of
these sources over the data currently avail-
able through the Landsat 7 program. In
sum, in this research we will compare the
results of identifying plantable areas using
Landsat 7, Landsat 5, and NAIP imagery.

methods

The cities selected fell approximately
within the United States southern Pied-
mont region. The initial 15 cities were
chosen based on population and distribu-
tion across the study region, and were di-
vided into three population classes with
populations less than 10,000 (small cit-
ies), populations greater than 10,000 and
less than 110,000 (medium cities), and

populations greater than 110,000 (large
cities). Defining these population classes
allowed us to test whether there were dif-
ferences in plantable area that could be
attributed to population size accompanied
by the additional infrastructure necessary
to support larger populations. We used the
U.S. Census Bureau’s Designated Places
(U.S. Census Bureau 2000) database to
define our city boundaries. This means
that there may be instances, Atlanta, GA
for example, where adjacent metropolitan
areas with large human populations where
not included in the analysis because they
fell outside of the administrative bound-
ary of the city.

Following the results of previous re-
search, 6 of the original 15 cities (Figure 1)
were chosen for further investigation of po-
tential accuracy improvements using dif-
ferent satellite and aerial imagery sources.
In order to be consistent with the previous
research, the imagery needed to be readily
available, free of charge, and cover the ma-
jority of the conterminous United States.
Cities were selected based on accuracy
values (overall, producer’s, or user’s ac-
curacy) that were lower than our preferred
threshold of 70 percent following analysis
with Landsat 7 imagery. We also wanted to
select at least one city from each popula-
tion group (Table 1). The initial research
used Landsat 7 imagery obtained from the
U.S. Geological Survey (USGS) (U.S. Geo-
logical Survey 2012a) in order to identify
potentially plantable areas in each city.
Landsat 7 imagery has several advantages:
1) the imagery is available for the entire
U.S. for a given year, 2) it is free, and 3) it is
orthorectified by the USGS prior to dis-
tribution over the Internet, reducing the
amount of pre-processing required. These
characteristics also served as guidelines
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Figure 1. Study area including the 6 cities selected for analysis.

Table 1. Cities within the Piedmont of the

southern United States where urban carbon

potential will be assessed.

Estimated Land
populationa areaa

City (2000) (km2)

Atlanta, GA 416,474 343.2
Charlotte, NC 540,828 628.5
Greenville, SC 56,002 67.6
Mount Airy, NC 8,484 21.7
Roanoke, AL 6,563 49.6
South Boston, VA 8,491 31.8

aWithin a city boundary, and not representative
of a larger metropolitan area.

for choosing additional imagery sources.
Landsat 7 also has its disadvantages. For
example, the imagery captured by Landsat
7 sensors contains data gaps that result in
stripes across each scene, which are more
prevalent toward the edges of scenes. This
striping is caused by the permanent failure

of the satellite’s scan line corrector (SLC)
which occurred in May 2003 (Chen et al.
2011). Correcting these data gaps can be
accomplished by several methods, includ-
ing the methodology used here, which in-
volved using a secondary (auxiliary) Land-
sat scene to fill gaps through a simple linear
histogram matching technique (Figure 2).
Histogram matching is a process that
merges pieces of older images with new
images containing data gaps in a manner
that best matches the area surrounding the
gap (Rulloni et al. 2012), and thus has
been used for filling data gaps of images by
comparing the relative distribution of land
cover of one (with data gaps) to another
(without data gaps) (ERDAS, Inc. 1999).
In order to account for potential land-cover
changes between the reference scene and
the secondary scene during the gap-filling
process, collection years ranged for the sec-
ondary image from 2009 to 2011. In the
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Figure 2. Example of a Landsat 7 scene prior to the data-gap filling process and

the same scene following the data-gap filling process.

gaps that needed to be filled, inconsisten-
cies in land use between the two images
might arise. By acquiring a secondary im-
age as close as possible in time to the first,
we minimize the possibility of error propa-
gating during the histogram matching
process. While it is preferable to use a sec-
ondary scene obtained within two months
of the reference image, this is not always
possible due to image quality issues or
overlapping data gaps in the reference and
secondary image.

Due to the limitations of Landsat 7, we
chose to select two additional imagery
sources for comparison in order to assess if
accuracy could be increased. We selected
Landsat 5 satellite imagery and NAIP aerial
imagery. Like Landsat 7 imagery, Landsat 5
is managed by the USGS (U.S. Geological
Survey 2012a) while NAIP imagery is a
product of U.S. Department of Agriculture
Farm Service Agency (U.S. Department of
Agriculture 2011). Landsat 5 and NAIP im-

agery are also free of charge, readily avail-
able for download via the Internet, and re-
quire minimal pre-processing activity. Ad-
ditionally, both types of data have been
orthorectified prior to distribution. Land-
sat 7 and Landsat 5 are comparable in that
they both have a 30 m spatial resolution,
although only Landsat 7 has a 15 m pan-
chromatic band. The Landsat 5 program
accommodates coverage of the United
States, and is available through 2011.
However, in November 2011, the USGS ter-
minated imagery collection with Landsat 5
while they investigate a potential failure of
the TM (Thematic Mapper) data retrieval
system. At the time of this writing, Landsat
5 imagery collection is still paused (U.S.
Geological Survey 2012b). Most impor-
tantly, Landsat 5 has had no failure of the
SLC and, therefore, no data gaps occur
across the imagery, reducing pre-process-
ing time. Similar to our analysis of Landsat
7 imagery, the data selected for this anal-
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ysis ranged from 2010 to 2011 dependent
on its availability and quality. Without the
SLC failure, only one Landsat 5 image was
necessary for completing the current as-
sessment, reducing the preprocessing time
and the potential for introducing errors
through the data-filling process.

NAIP imagery is available as natural
color image digital orthoquarter quads
(DOQQ) with a 1 m spatial resolution and
is obtained during the agricultural grow-
ing season of the continental U.S. (U.S. De-
partment of Agriculture 2011). At the time
of this research, 2009 NAIP data was the
most recently available imagery. Only after
completion of this research did 2010 NAIP
imagery become available. Since the dates
of the three imagery products are not ex-
actly the same, there is a risk of introducing
bias into the analysis if significant land-use
changes had occurred during this period of
time. We failed to observe significant de-
velopmental changes amongst the three
imagery products, perhaps given the re-
cent economic situation of the United
States. It should be noted that due to its
fine spatial resolution, NAIP imagery can
require a large amount of computational
time to process and can require a large
amount of computer storage space. In rep-
licating our methodology, these storage
and processing issues were noted. Further,
a single quarter quad may contain data
from more than one aerial image, there-
fore some tonal issues along the edges of
the seams of the individual images may be
present.

Each of the three imagery products was
georeferenced prior to acquisition. With
both Landsat (7 and 5) satellite systems,
scenes were radiometrically corrected in
order to convert raw data from digital
numbers (DN) to spectral reflectance val-

ues. The four bands of the NAIP imagery
were also converted to spectral reflectance
values for this analysis. Using spectral re-
flectance values allows the user to identify
fine differences between bands that are
not distinguishable under the umbrella of
a digital number (Lillesand et al. 2004).
Following pre-processing, each of the
three imagery sources was clipped to the
administrative boundaries of the 6 cities.
The three types of image products (Land-
sat 5, Landsat 7, and NAIP) were then clas-
sified into four land-cover classes using the
same supervised classification process.
Land-cover classes were defined as water,
developed, forested, and open. The devel-
oped class included roads and buildings
while the open class included forest clear-
cuts, agricultural land, bare ground, and
grassy areas. With these four classes, some
confusion may occur during the classifica-
tion process between agricultural fields
and young pine forests, and an estimate of
plantable area could be overstated. How-
ever, we use a sampling process (described
below) to determine how much of the
open class could actually be planted with
new trees.

For each of the six cities, sixty training
sets were selected for each land-cover
class. With a relatively small area to clas-
sify and a minimal number of land-cover
classes, we felt that sixty training sets were
appropriate (Lillesand et al. 2004). In se-
lecting training sets, every effort was made
to minimize the inclusion of mixed pixels
but this was difficult in some cases for the
open class and water class. Further, in
order to represent the diversity of spectral
values for each land class, some training
areas inevitably contained mixed pixels.
For example, a pine forest that had been
thinned may contain various reflectance



86 merry et al.

values that represent parts of trees crowns
in full sunlight, and parts of tree crowns
that are shaded. Further, reflectance val-
ues for rivers, shallow ponds, and deep
ponds could all be quite different depend-
ing on water conditions. Training sets were
located within each city boundary and rep-
resented a diversity of conditions for each
class. Training sets were devised for each
city independent of the other cities. While
differences in elevation and slope between
cities could be problematic, these (we
hope) were minimized. Utilizing NAIP im-
agery is somewhat problematic for large
area landscape classification purposes,
since each NAIP image is a composite of
several digital aerial photographs. There-
fore time of day and sun angle within a
DOQQ composite could affect the ability to
classify land using a supervised classifica-
tion process. These issues (i.e., sun angle,
time of day, elevation, slope) were not spe-
cifically addressed in our analysis, and
could impact the ability to develop highly
accurate land classifications. Finally, each
training set contained a minimum of twenty
pixels. This requirement was only an issue
in one city (Greenville, SC) where areas of
water large enough to use as training sites
were limited within the city boundary.

After each image was classified, an ac-
curacy assessment was undertaken. Fifty
sample points were geographically located
by employing an equalized random sam-
ple for each land-cover class. The objective
of the accuracy assessment was to obtain
an overall accuracy of 70 percent and a 70
percent user’s and producer’s accuracy
amongst the classes using Landsat 5 and
NAIP imagery. Specifically, we focused on
the open land cover class in order to iden-
tify potentially plantable areas within the
city. In assessing accuracy, we relied on

omission/commission tables and error
matrices. While overall accuracy is a use-
ful tool in assessing the quality of a classi-
fication, it can be misleading. Therefore,
attention to error matrices can help fur-
ther identify accuracy between land-cover
classes (Steham 1997). While our accept-
able level of accuracy is subjective, the op-
timal level of acceptable accuracy is debat-
able, for which many examples are found
in the literature. For example, Aguirre-
Gutiérrez et al. (2012) found a wide range
(41 to 93 percent) of producer’s and user’s
accuracies for bare soil in a recent object-
based classification of Landsat imagery for
an area of northern Mexico. And Im et al.
(2012) found that producer’s and user’s
accuracies ranged from 48 to 75 percent
for bare ground in a recent hierarchical
classification of Landsat imagery for an
area of northern New York.

Following completion of the supervised
classification process (Figure 3) and the ac-
curacy assessment, 100 randomly sampled
points within the open land-cover class of
each city were examined to determine
whether they were potentially plantable.
Although a lack of specific information on
buildings and other landscape features
prevents us from taking all tree-planting
factors into account (as in the case of Wu et
al. 2008), we developed several assump-
tions to classify a pixel as plantable or not
plantable. First, powerline right-of-ways,
forest clearings, residential lots, and road-
sides that follow existing patterns of vege-
tation were considered to be plantable
with some type of tree species. Second,
open areas within or near airports, athletic
facilities (e.g., golf courses and baseball
fields), cemeteries, and public areas with
designated specific purposes were classi-
fied as not plantable. As an example, in Fig-
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Figure 3. An example of each imagery source following the supervised classification.

ure 4 a randomly sampled point fell within
a cemetery and would have been classified
as not plantable. To be considered plant-
able, the area sampled also needed to be
large enough to plant one tree. If an area
were one pixel wide (in the case of Landsat
data) or about 30 pixels square (in the case
of NAIP data), they would have been con-
sidered plantable given the area required
by at least one large-crowned tree. Ob-
viously, spatial resolution differences be-
tween NAIP (1 m) and Landsat imagery
(30 m) may bias this assessment since
‘‘open’’ areas defined using the NAIP imag-
ery would require a collection of pixels,
while with Landsat imagery, this would re-
quire a single pixel (and thus could accom-
modate more urban trees). These remote
sensor spatial resolution issues are inher-
ent in this assessment of urban forest plant-
ing sites.

Third, if a sample point fell within a
forested area where there was space to
plant one tree, it was not classified as
plantable but instead classified as forest.
However, if a point fell within a clear-cut,
the point was classified as plantable. Fi-
nally, sample points within a pixel classi-
fied as open, but that were misclassified

(were actually another class), were noted
as being non-plantable with trees. Process-
ing the imagery, completing the super-
vised classification, assessing accuracy,
and determining plantable area within the
city required, on average, two days for
each image product.

results

Overall accuracy of the supervised clas-
sification of the four land-cover classes us-
ing Landsat 7 imagery ranged from a low of
69 percent to a high of 84 percent in Char-
lotte, NC and Atlanta, GA, respectively
(Table 2). Each of the six cities should have
had at least one measure (overall, produc-
er’s, or user’s accuracy) below 70 percent
when using Landsat 7 (the reason we chose
them for this study). Although some of the
overall accuracy values are above 70 per-
cent, corresponding producer’s or user’s
values are below 70 percent for the Land-
sat 7 imagery. Using Landsat 5 imagery
yielded similar results with an overall ac-
curacy ranging from 64 percent in Char-
lotte to 84 percent in Atlanta and South
Boston, VA. With NAIP DOQQs, overall ac-
curacy amongst the six cities ranged from



Figure 4. A randomly sampled point classified as non-plantable.
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Table 2. Accuracy assessment results for six southern United States cities where a supervised

classification process was employed to located open areas.

Open area
Remote producer’s Open area Overall
sensing accuracy user’s accuracy accuracy
system City (%) (%) (%)

Landsat 7 Atlanta, GA 86.36 63.33 84.17
Charlotte, NC 73.97 90.00 68.75

Greenville, SC 86.84 55.00 78.33
Mount Airy, NC 50.49 86.67 71.25

Roanoke, AL 64.71 73.33 74.58
South Boston, VA 69.05 96.67 82.08

Landsat 5 Atlanta, GA 94.59 58.33 84.17
Charlotte, NC 86.11 51.67 63.75

Greenville, SC 82.35 70.00 82.35
Mount Airy, NC 87.50 81.67 87.50

Roanoke, AL 62.07 90.00 74.17
South Boston, VA 85.00 85.00 84.58

NAIP Atlanta, GA 89.19 55.00 85.42
Charlotte, NC 68.06 81.67 62.50

Greenville, SC 77.27 85.00 73.75
Mount Airy, NC 73.24 86.67 68.33

Roanoke, AL 92.86 86.67 94.17
South Boston, VA 56.70 91.67 67.08

63 percent in Charlotte to 94 percent in
Roanoke, AL, averaging 75.2 percent. The
highest average overall accuracy for the
open class was derived from Landsat 5 im-
agery, with a 79 percent average overall ac-
curacy. Both Landsat 7 and NAIP imagery
had an average overall accuracy of 77 per-
cent and 75 percent, respectively.

Overall Kappa coefficient values (Table
3) ranged from 0.922 (NAIP imagery, Roa-
noke) to 0.500 (NAIP imagery, Charlotte).
The Kappa coefficient is an indicator of the
extent to which the correct values in the
error matrices are due to correct agree-
ment with true landscape features and the
extent to which they are due to random
chance (Lillesand et al. 2004). An overall
Kappa coefficient value of 0.922 suggests

the observed classification is 92 percent
better than one resulting from chance or
random processes. There is no apparent
pattern in our overall classification results
that would suggest one of the three imag-
ery products is superior in this regard to
the others. Further, the larger cities were
both high and low in this ranking, as were
smaller cities. It is difficult to ascertain at
this time whether topography had an in-
fluence, as all of the cities are contained
in the Piedmont region of the southern
United States. Further investigation of the
correlation between topographic variables
(slope, aspect, and elevation) and mea-
sures of overall classification may be as-
sessed in the future.

In addition to overall accuracy, we ex-
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Table 3. Ranked overall Kappa coefficient values

for six southern United States cities where a

supervised classification process was employed to

located open areas.

Remote Overall
sensing Kappa
system City coefficient

NAIP Roanoke, AL 0.922
Landsat 5 Mount Airy, NC 0.833
NAIP Atlanta, GA 0.806
Landsat 5 Greenville, SC 0.800
Landsat 5 South Boston, VA 0.794
Landsat 7 Atlanta, GA 0.789
Landsat 5 Atlanta, GA 0.789
Landsat 7 South Boston, VA 0.761
Landsat 7 Greenville, SC 0.676
Landsat 7 Roanoke, AL 0.661
Landsat 5 Roanoke, AL 0.656
NAIP Greenville, SC 0.651
Landsat 7 Mount Airy, NC 0.617
Landsat 7 Charlotte, NC 0.583
NAIP Mount Airy, NC 0.578
NAIP South Boston, VA 0.561
Landsat 5 Charlotte, NC 0.517
NAIP Charlotte, NC 0.500

amined producer’s and user’s accuracy as
indicators of the validity of our supervised
classification. Producer’s accuracy, or
omission, represents the percentage of
pixels that should have been assigned a
given class, but were not by the supervised
classification process. User’s accuracy, or
commission, represents the percentage of
pixels assigned a given land class that actu-
ally belong to another class (Lillesand et al.
2004). With Landsat 7 imagery and for all
four land-cover classes, the producer’s ac-
curacy ranged from approximately 51 per-
cent for open areas in Mount Airy, NC to
100 percent for the water class for Atlanta,
Roanoke, and South Boston. Additionally,
producer’s accuracy was 100 percent for

the developed class in South Boston. With
Landsat 7 imagery, for the open class, the
producer’s accuracy for all six cities ranged
from 51 percent in Mount Airy to 87 per-
cent in Greenville, SC, with an average pro-
ducer’s accuracy in the open class of 72
percent.

The user’s accuracy with Landsat 7 im-
agery ranged from 10 percent for the wa-
ter class in Charlotte to 100 percent for the
forested class in South Boston. High user
accuracies were also found in the forested
class in Mount Airy (97 percent) and Roa-
noke (99 percent). Both Charlotte and
Mount Airy had very low user’s accuracies
for the water class with 10 and 15 percent,
respectively. The user’s accuracies for the
developed class in Roanoke (45 percent)
and South Boston (57 percent) were also
low. Both Atlanta and Greenville had
lower user’s accuracies for the open class
(63 and 55 percent, respectively). The
average open class user’s accuracy when
using Landsat 7 imagery was 77.5 percent.

When using Landsat 5 imagery, the
producer’s accuracy ranged from 49 per-
cent for the developed class in Charlotte to
100 percent for the water class for Atlanta,
Roanoke, and South Boston. The produc-
er’s accuracy was low for forested areas in
both Roanoke and South Boston (67 and
69 percent, respectively). Additionally, the
producer’s accuracy was below 70 percent
in the open class in Roanoke (62 percent).
There were several instances of 100 per-
cent producers accuracies, including de-
veloped and water classes in Roanoke,
along with the water class in both Atlanta
and South Boston. The producer’s ac-
curacy was highest in Atlanta (over 94 per-
cent) for the open and lowest in Roanoke
(62 percent). When using Landsat 5 imag-
ery, the average producer’s accuracy in the
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open class was about 83 percent, which
was the highest of the three imagery
sources.

The user’s accuracy for open areas in
both Atlanta and Charlotte was below the
70 percent threshold (58 and 52 percent,
respectively) when using Landsat 5 imag-
ery. Additional issues arose with user’s ac-
curacy for the water class in the Charlotte
analysis (17 percent) and the developed
class in Roanoke (35 percent). There were
instances of 100 percent user’s accuracy in
South Boston (the water land cover class)
and in Roanoke (forested class). The aver-
age open area user’s accuracy for all 6
cities using Landsat 5 imagery was about
73 percent with the highest user’s accur-
acy for the open class found in Roanoke
(90 percent) and the lowest in Charlotte
(52 percent).

Using NAIP DOQQs, the producer’s ac-
curacy ranged from a low of 53 percent for
the developed class of Charlotte to a high of
100 percent for the water class in Green-
ville, Mount Airy, and South Boston. The
producer’s accuracy was comparable for
the developed class in Charlotte (53 per-
cent), Greenville (57 percent) and Mount
Airy (56 percent). In the open class, the
producer’s accuracy ranged from about 57
percent in South Boston to 93 percent in
Roanoke. The average overall producer’s
accuracy for the open class was 76.2 per-
cent.

There were several instances (Char-
lotte, Greenville, Mount Airy, and South
Boston) where user’s accuracies fell below
30 percent for the water class. This was
surprising as water was more easily identi-
fied in the higher resolution NAIP imagery,
yet was less often correctly classified. Ad-
ditionally, forested pixels had a likelihood
of 63 percent of being correctly classified

in Charlotte while in Atlanta open pixels
were correctly classified 55 percent of the
time. Forested pixels had a one hundred
percent likelihood of being correctly clas-
sified in South Boston and 95 percent in
Atlanta. While Charlotte had a user’s ac-
curacy of 63 percent in the forested class,
South Boston, VA had a 100 percent user’s
accuracy in the class. The developed class
user’s accuracy was lowest in South Bos-
ton (62 percent) but was above 90 percent
in all other cities. With an overall average
user’s accuracy of 81 percent for the open
class, the NAIP was the best in this regard
among the three imagery sources.

Table 4 provides the error matrices with
the conditional Kappa coefficients derived
from the accuracy assessment. These ma-
trices illustrate how randomly sampled
validation points correspond with the re-
sults of the supervised classification pro-
cess and indicate the agreement to which
the correct values are real or the result of
chance (Lillesand et al. 2004). Values
greater than 0.75 indicate excellent agree-
ment (Fitzgerald and Lees 1994) and a
lower probability of agreement by chance
(Banko 1998). Error matrices were gener-
ated for each of the three imagery systems
for all land-cover classes across the six
cities. Several patterns can be found using
the error matrices. For example, issues
arose in classifying the water class using
both Landsat 7 and NAIP imagery. With
Landsat 7 imagery, water was misclassified
as the developed class 22 times, the forest
class 21 times, and the open class 11 times
in Charlotte resulting in a conditional
Kappa coefficient of 0.073, and suggesting
an approximate 7 percent agreement be-
tween the ground truth and the supervised
classification. This may have occurred be-
cause of the striping problem and histo-
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Table 4. Error matrices associated with the classification process for the six southern United States

cities analyzed using Landsat 7, Landsat 5, and NAIP imagery.

Remote
sensing
system City Class Water Devel. Forest Open Kappa

Landsat 7 Atlanta, Water 53 0 5 2 0.850
GA Devel. 0 52 4 4 0.822

Forest 0 1 59 0 0.975
Open 0 7 15 38 0.551

Charlotte, Water 6 22 21 11 0.073
NC Devel. 0 48 6 6 0.714

Forest 1 0 57 2 0.921
Open 0 2 4 54 0.856

Greenville, Water 0 0 0 0 —
SC Devel. 0 56 1 3 0.875

Forest 1 5 52 2 0.805
Open 0 23 4 33 0.430

Mount Airy, Water 9 0 5 46 0.113
NC Devel. 1 52 3 4 0.824

Forest 0 1 58 1 0.953
Open 0 5 3 52 0.766

Roanoke, Water 49 2 5 4 0.770
AL Devel. 0 27 14 19 0.374

Forest 0 0 59 1 0.973
Open 0 0 16 44 0.628

South Boston, Water 45 0 0 15 0.692
VA Devel. 0 34 15 11 0.495

Forest 0 0 60 0 1.000
Open 0 0 2 58 0.949

Landsat 5 Atlanta, Water 59 0 1 0 0.978
GA Devel. 0 52 7 1 0.812

Forest 0 3 56 1 0.904
Open 0 15 10 35 0.507

Charlotte, Water 10 37 10 3 0.127
NC Devel. 1 55 3 1 0.844

Forest 0 2 57 1 0.925
Open 0 18 11 31 0.431

Greenville, Water 51 0 4 5 0.808
SC Devel. 2 55 2 1 0.880

Forest 0 1 56 3 0.908
Open 0 13 5 42 0.619

Mount Airy, Water 56 0 4 0 0.912
NC Devel. 1 51 4 4 0.803

Forest 0 3 54 3 0.860
Open 1 3 7 49 0.761
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Table 4. (Continued)

Remote
sensing
system City Class Water Devel. Forest Open Kappa

Landsat 5 Roanoke, Water 43 0 2 15 0.655
AL Devel. 0 21 21 18 0.288

Forest 0 0 60 0 1.000
Open 0 0 6 54 0.843

South Boston, Water 60 0 0 0 1.000
VA Devel. 0 34 19 7 0.490

Forest 0 0 58 2 0.949
Open 0 2 7 51 0.800

NAIP Atlanta, Water 59 0 0 1 0.978
GA Devel. 1 56 2 2 0.907

Forest 0 1 57 2 0.927
Open 0 11 16 33 0.468

Charlotte, Water 6 33 8 13 0.069
NC Devel. 1 57 0 2 0.909

Forest 1 13 38 8 0.532
Open 0 5 6 49 0.738

Greenville, Water 16 34 1 9 0.214
SC Devel. 1 58 0 1 0.942

Forest 0 3 52 5 0.826
Open 0 6 3 51 0.793

Mount Airy, Water 9 39 4 8 0.117
NC Devel. 0 59 0 1 0.970

Forest 0 6 44 10 0.656
Open 0 2 6 52 0.811

Roanoke, Water 59 1 0 0 0.978
AL Devel. 1 57 0 2 0.934

Forest 0 0 58 2 0.954
Open 0 1 7 52 0.826

South Boston, Water 9 10 22 19 0.117
VA Devel. 0 37 0 23 0.523

Forest 0 0 60 0 1.000
Open 0 0 5 55 0.860

gram correction process. Similarly, Mount
Airy had a conditional Kappa coefficient of
0.113 for the water class or an 11 percent
agreement between the classification and
the ground truth. Misclassification of the
water class using Landsat 7 possibly re-
sulted from too few instances of water

across the scene, and the inability to de-
velop robust training sets. In one instance
(Greenville) no identifiable water pixels
could be found resulting in no training sets
for the water class.

With Landsat 7, confusion in the open
class most commonly occurred with the
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forest and developed classes. For example,
the open class in Atlanta was classified as
developed 7 times and forested 15 times.
In the developed class, forested and open
pixels were most commonly misclassified
as developed. A similar pattern of confu-
sion in the open class occurred when using
Landsat 5 imagery for classification. Mis-
classification of the open and developed
classes was reduced using NAIP imagery
but confusion occurred more frequently in
the water class. Water was most com-
monly confused for the developed class in
Mount Airy and for the forest and open
classes in South Boston. In both Landsat 7
and Landsat 5 classifications, there were
several instances of Kappa values of 1.0 or
100 percent for the forested class. On the
whole, the greatest agreement between
the ground-truth and classification of the
open class occurred using the NAIP imag-
ery. With one exception (Atlanta), all of
the Kappa coefficients were above 0.70 or
70 percent in that class. Three instances of
Kappa coefficients below 70 percent oc-
curred in the open class using Landsat 7,
while two instances occurred in Landsat 5.

As a function of total estimated open
area, Landsat 7 and 5 are comparable (64
and 66 percent, respectively) in estimated
area available for planting (Table 5). As
one would assume, across all three imag-
ery sources, Atlanta and Charlotte had the
lowest percentage of plantable area. The
density of these larger cities and the amount
of land required to support their larger pop-
ulations would be assumed to reduce the
amount of open area available for planting.
However, in terms of the estimated plant-
able area within the city, both Atlanta and
Charlotte had the largest quantity of area
available for planting across all three imag-
ery sources. With Landsat 7 imagery, the

city with the highest percentage of plant-
able open area was Mount Airy (92 per-
cent). Similarly, Roanoke and Mount Airy
(81 and 79 percent, respectively) had the
greatest percentage of open plantable area
estimated with Landsat 5 imagery. Using
NAIP imagery, Roanoke was again identi-
fied as the city with the highest percentage
of open, plantable area (88 percent).

In implementing this protocol for iden-
tifying potentially plantable areas, the
computational time required to process the
imagery as well as the computer memory
required for storing the imagery needs to
be considered. On average, classifying
each imagery source through supervised
classification, assessing the accuracy of the
classification, and identifying potentially
plantable areas within a city can be com-
pleted in two days. Computer storage re-
quirements vary based on imagery source
and size of the city being analyzed. Landsat
5 and 7 scenes can require 1 gigabyte of
storage while NAIP imagery for a single
city is downloaded in several quads and
mosaicked into larger images that can re-
quire up to 15 to 20 gigabytes of storage for
large cities such as Atlanta and Charlotte.

discussion

Our intent with this research was to as-
sess three data sources for their value in
determining and understanding the po-
tential for increased urban tree planting,
since the benefits derived from urban for-
ests are directly related to tree cover (No-
wak and Greenfield 2012). This is a com-
plex issue, since the ability of an urban or
metropolitan area to expand its tree cover
and thereby increase the amount of car-
bon sequestered from the atmosphere is
not only a function of land availability,
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Table 5. Assessment of the ‘‘open’’ class in each of the six southern United States

cities represented in this analysis.

Estimated Estimated
Remote total open Total city Open area plantable
sensing area area plantable city area
System City (ha) (%) (%) (ha)

Landsat 7 Atlanta, GA 10,919 31.8 64 6,988
Charlotte, NC 6,778 10.8 52 3,525

Greenville, SC 3,231 47.8 73 2,358
Mount Airy, NC 560 25.8 92 515

Roanoke, AL 1,027 20.7 84 770
South Boston, VA 708 22.3 82 581

Total 23,223 14,737

Landsat 5 Atlanta, GA 7,280 21.2 61 4,441
Charlotte, NC 25,864 41.2 67 17,070

Greenville, SC 2,000 29.6 75 1,500
Mount Airy, NC 752 34.6 79 594

Roanoke, AL 1,033 6.4 81 894
South Boston, VA 743 23.4 70 520

Total 37,672 25,019

NAIP Atlanta, GA 7,952 23.2 55 4,692
Charlotte, NC 12,985 20.7 70 9,090

Greenville, SC 2,210 32.7 69 1,525
Mount Airy, NC 634 29.2 80 507

Roanoke, AL 1,567 9.7 88 1,379
South Boston, VA 874 27.5 81 708

Total 26,222 17,901

ownership, and development policy, but
also a function of human behavior. Fur-
ther, significant financial investment and
ample labor supplies may be necessary
conditions of the success of tree planting
programs (Yang and Jinxing 2007). Some
underlying demographic factors might
also affect the distribution of tree cover
within a city. The general affluence of
landowners and age of a neighborhood
positively influence the amount of tree
cover, while increases in housing density
decreases tree cover (Hall et al. 2012).
Strategies for economic development and

land-use planning vary from one city to
another, and land development codes may
require tree installation procedures to be
followed (Gatrell and Jensen 2002). Land
development policy, particularly in the
area around roads, might also prohibit the
planting of trees due to effects on road
traffic and safety (Hall et al. 2012). On
privately-owned land, incentives for land-
owners might be necessary to increase tree
cover. These could include tax incentives
or educational programs, as some land-
owners may prefer not to have trees near
their structures. Finally, human behavior
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with regard to tradable carbon credit or
carbon offset markets is unpredictable;
humans may refrain from participating in
tradable carbon credits due to distrust of
the market mechanism or the volatility of
prices (Sovacool 2011). These complex-
ities aside, the potential area plantable
with trees is important as tree cover de-
creased in some metropolitan areas in the
last decade (Nowak and Greenfield 2012).

The process employed to identify and
quantify opportunities for increased tree
planting on open, plantable areas within
cities of the southeastern United States
was designed to be as time-efficient and
cost-effective as possible. One of our main
assumptions was that land-use planners
may need to perform quick and timely as-
sessments along these lines. Using error
matrices, confusion in classification can be
found across all three imagery sources.
Whether we obtained our goal of increas-
ing accuracy through the use of additional
imagery sources is debatable. While the
use of other imagery processing processes
(object-based or neural networks) or imag-
ery products (Lidar) may support higher
levels of classification accuracy (Weng
2012), on the whole, we were hoping to
reach an overall accuracy, producer’s ac-
curacy, and user’s accuracy of 70 percent or
greater in all cases using our methods and
data. In most instances, we were able to
achieve our overall threshold, with Char-
lotte as the only city that fell short of that
criteria across all three imagery sources
and in Mount Airy and South Boston when
using NAIP imagery. Overall accuracies
were very similar between the three imag-
ery sources with Landsat 5 having the
greatest overall accuracy. Focusing on the
open class, the highest producer’s accuracy
was obtained when using Landsat 5 imag-

ery, while the highest user’s accuracy was
obtained when using NAIP imagery. Lower
accuracy values could be the result of sev-
eral issues, including deficiencies in the
quality of the imagery, insufficient data gap
filling, cloud cover, shadows on the image,
and the inclusion of mixed pixels in the su-
pervised classification. For example, when
using Landsat 7 imagery, Charlotte was left
with visible striping in the image following
the histogram matching (Figure 5).

Additional research would help to ad-
vance increases in overall accuracy and the
ability to assess how much open land area
may be plantable with trees. An explora-
tion of the impact of shadows and higher
heterogeneity of spectral reflectance val-
ues per unit area in NAIP imagery may be
important. While NAIP imagery is visually
more effective for identifying landscape
features, due to high spatial resolution
compared to Landsat imagery, these prob-
lems could amplify misclassification error.
In addition, future research endeavors
could replicate the methodology with leaf-
off imagery and the identification of open
areas may be enhanced with a reduction in
the live forest cover within the imagery. Al-
though we suggest this as an area of fur-
ther research, at this time we are unsure
whether leaf-off analysis would actually
improve classification accuracy of some of
the classes. We avoided including this pro-
cess in our analysis because we were dem-
onstrating reasonable cost-effective (and
straightforward) methods for detecting
the amount of open areas that could be
plantable with urban trees using a single
image source. The additional steps neces-
sary to accommodate spectral changes ob-
servable during different periods of the
year would add complexity to the process,
and perhaps induce some error due to
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Figure 5. Visible striping following the data-gap filling process.

land-cover changes that could have oc-
curred. However, estimating potentially
plantable open areas would benefit from
multi-year assessments so that changes in
plantable area can be estimated across
space and time. Additionally, introducing
supplemental GIS data sets, such as imper-
vious surface cover or roads, may increase
the accuracy of identifying developed
areas. Either dataset could be used to mask
areas in the imagery unavailable for plant-
ing prior to performing the supervised clas-
sification. Finally, the open assessment
would benefit from an expansion in land-
cover classes. With confusion amongst the
classes evident in the error matrices, spe-
cifically the open class, the ambiguous defi-

nition of the class itself may be leading to a
reduction in accuracy. For example, if the
open class were further subdivided into
bare ground and grass classifications, a re-
duction in misclassification of pixels might
be achieved. These shortcomings aside,
this work provides a reasonable, cost-effec-
tive methodology for estimating the poten-
tially plantable area in a city. Also, using
different imagery sources has shown that
there is flexibility in implementing this
methodology and it can be customized to
meet the needs of planners and managers
based on their familiarity with the imag-
ery, their ability to process and store large
datasets, and the desired resolution of
their classification.
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conclusions

The focus of the research described
here was to investigate the use of a variety
of readily available, cost-efficient imagery
sources and whether these could lead to
increases in the accuracy of a classification
process developed to quickly identify open,
plantable opportunities within cities in the
southern United States. The reasons that
such an assessment is important range
from the need to assess carbon sequestra-
tion opportunities to the need to perform
zoning analyses. The results we have pro-
vided are promising and the methodology
developed is flexible enough to be applied
and implemented to areas beyond the
southern United States. However, while
NAIP imagery resulted in the greatest aver-
age user’s accuracy for open areas and
Landsat 5 imagery resulted in the greatest
average producer’s accuracy for open areas,
some questions remain as to the utility of
these data sources. In our analysis, the lim-
ited number of training sites for certain
cities makes widespread application of a
common protocol problematic to other
cities. Further, each city seemed to have its
own classification issue, with regard to one
or more land classes, amongst the three
imagery options. The future of Landsat 5 is
also in doubt. As of June 2012, electronics
problems continued to plague the system
and further acquisition of data is question-
able. Landsat 7 continues to have a SLC
problem and about 25 percent of any im-
age contains gaps that need to be filled
using a process such as histogram match-
ing. While the timeline for data availability
is unclear at this time, a new Landsat satel-
lite (Landsat Data Continuity Mission, or
LCDM) is expected to be placed in orbit in
early 2013. One may assume that hyper-

spectral imagery (e.g., Ikonos) might be
used to alleviate these concerns, yet this
type of imagery is not currently free of
charge nor as widely applied as the imag-
ery products assessed here. NAIP imagery
is commonly used in conjunction with geo-
graphic information systems and on-line
mapping tools. While other methods of
processing NAIP imagery (e.g., McGee et
al. 2012) may lead to greater image classi-
fication accuracy, these generally require
greater knowledge of remote sensing and
will likely require a larger time commit-
ment for development of the final product.
In sum, for timely and efficient estimates of
plantable open areas, NAIP imagery seems
adequate in conjunction with a supervised
classification process. The other imagery
products (Landsat 5 and 7) may also be ad-
equate, yet their spatial resolution is larger,
and their continued availability is in
question.
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