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Abstract

Purpose – The purpose of this paper is to be an academic inquiry into rating issues confronted
by the US Federal Crop Insurance program stemming from changes in participation rates as well as
the weighting of data to reflect longer-run weather patterns.

Design/methodology/approach – The authors investigate two specific approaches that differ from
those adopted by the Risk Management Agency, building upon standard maximum likelihood and
Bayesian estimation techniques that consider parametric densities for the loss-cost ratio.

Findings – Both approaches indicate that incorporating weights into the priors for Bayesian
estimation can inform the distribution.

Originality/value – In most cases, the authors’ results indicate that including weighting into priors
for Bayesian estimation implied lower premium rates than found using standard methods.

Keywords Crop insurance, Loss distribution, Crops, Insurance

Paper type Research paper

Introduction
Crop insurance is one avenue available to agricultural producers to protect themselves
against natural hazards. The US Department of Agriculture (USDA) Risk Management
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Agency (RMA), which is in charge of administering the US Federal Crop Insurance
program has, until recently, developed rates primarily based on a simple average
of historical loss-cost ratios (i.e. the ratio of indemnity payments to total liability).
When loss events occur independently, an insurer is able to use fewer years of loss
experience to accurately determine the expected future loss-costs. In the case of
agriculture, losses tend to be spatially correlated (Glauber, 2004). This creates the need
to employ long time-series of yields or losses to accurately model yield risk. Although
the RMA uses several decades of data to compensate for this information problem,
using a simple average has the potential to improperly weight the significance of any
single year’s experience. For instance, in the summer of 2012, the US experienced one
of the most extensive and extreme droughts since the 1950s. Such an event would
be given the same weight as any other year’s loss.

The US Federal Crop Insurance program has become the largest of the agricultural
commodity programs. For 2012, the program carries a total liability just over
$116 billion and insures 281 million acres. The program typically spends approximately
$7 billion annually in premium subsidy payments and provides subsidies to private
companies to administer the program. Currently, a new Farm Bill that remains under
consideration with Congress may expand the current insurance coverage to include
“shallow-losses.” Both farmers adopting crop insurance plans and private insurance
companies issuing plans receive significant taxpayer subsidies. Smith (2011) estimated
that private insurers received $1.44 for every dollar farmers have received in crop
insurance subsidies. Private insurance companies are also provided with an
advantageous taxpayer-supported reinsurance agreement. Important legislative
changes, including the 1994 Crop Insurance Reform Act and the 2000 Agricultural
Risk Protection Act, brought about significant changes in the program including
increased subsidies and a substantial rise in participation. Figure 1 shows total acreage
enrolled in the program in recent years and documents the significant increases
in participation that followed program changes.

The Risk Management Agency recently commissioned two studies to evaluate the
overall approach used to establish premium rates and the terms of coverage

Figure 1.
Total acreage insured in
the federal crop program
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in individual plans of insurance[1]. The fundamental approach used in establishing
base premium rates for yield coverage, which is described in detail in these studies,
has largely involved a simple arithmetic average of historical annual loss-cost ratios.
A number of caveats apply to this basic approach, including smoothing to
accommodate catastrophic losses and various adjustments for other risks in the
program such as prevented planting and differences in crop practices. Annual loss-cost
data from 1975 through the present are typically used to calculate an unweighted
average loss-cost which is then used to represent the base premium rate. Following
recommendations raised in these rate reviews, the RMA adopted significant changes
in this basic rating approach to recognize the problems associated with changes in the
program, technological innovations, and the weighting of weather events to recognize
the relatively short sample of annual data available for rating.

The changes made to address program changes over time are documented in the
accompanying paper by Coble et al. In this paper, we discuss alternative approaches to
empirically addressing the significant changes that have occurred in the program as
well as the weighting of data to reflect longer-run weather patterns. The proper
approach to recognizing these issues in rating remains an important research topic.
Many different approaches are conceivable and there is little existing evidence to suggest
the superiority of any single approach. In this analysis, we investigate two specific
approaches that differ from those adopted by the RMA and instead build upon standard
maximum likelihood and Bayesian estimation approaches that consider parametric
densities for the loss-cost ratio that incorporate changes in participation and weighting
of weather events in calculating premium rates. Our analysis is intended to stimulate
academic inquiry into these rating issues and is not meant to suggest the superiority of
any single approach.

Short samples, dependencies, and structural changes
The federal crop insurance program has some rather unique issues that are not
commonly encountered in most commercial lines of property and casualty insurance.
As noted, individual loss events tend to be highly correlated in the spatial dimension.
This gives rise to the “sib-pairs” problem that is often encountered in case-control
genetic association statistics, where dependencies among individual observations
suggests that the number of “effective observations” that consists in a sample may be
far less than the actual number of observations. In case-control genetic association
studies, characteristics measured across multiple members taken from a common
group (e.g. a family) are recognized to be non-independent. These related members are
often termed “sib-pairs” (or sibling-pairs). For example, for a sample taken across
N individuals, the effective number of observations may be expressed as lN , where
0 , l , 1. As the correlation among individuals approaches zero, l approaches 1.
However, as this degree of correlation increases, l decreases. The effective number of
observations is defined as the equivalent number of independent observations that
lead to the same variance for the variable of interest. The central question as it pertains
to the changing level of participation in the crop insurance program is whether
200 million insured acres gives ten-times as much information about risks as do
20 million acres.

A common measure of the number of effective observations in a correlated sample
can be derived by considering the number of independent groups and then
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the number of individuals within the correlated groups. For example, consider a case
of 100 observations made up of ten groups of ten. Across the groups, observations are
independent. However, within the groups, observations are correlated with a Pearson
(linear) correlation coefficient of r. The effective number of observations for this sample of
100 observations will be less than 100 if the correlation is greater than zero. In the case of m
equally sized independent groups of sib-pairs, the effective number of observations
is given by N e ¼ N=ð1 þ ðm2 1ÞrÞ[2]. Figure 2 shows the relationship between actual
and effective numbers of observations for correlated groups. Clearly, as the degree
of dependence rises, the number of effective observations falls.

Accompanying this issue is the fact that many underlying structural factors that
may be relevant to risks have changed over time. Such factors include a number of
program changes beyond changing participation. Perhaps most relevant is the fact that
crop insurance offerings have expanded to include a number of innovative plans.
In recent years, over 70 percent of the total liability in the program has been for revenue
coverage. It is also the case that production agriculture has realized a number of
technological changes, including the advent of biotech crops which many believe to
have lower risk than conventional varieties.

The changing structure of crop insurance and agriculture suggests that one should
base measures of risk on the most recently available data, which are more
representative of the contingencies being rated for. On the other hand, the
dependencies of loss events and the systemic nature of weather suggests that data
in the cross-section are likely to be highly correlated and therefore offer much less
information that the total number of (annual and cross sectional) observations might
imply. This suggests that one needs more information (i.e. a longer time-series) to
adequately measure risk. Finally, a related sample size problem pertains to the fact that
many of the relevant risks in agriculture may involve events that are only rarely
observed. Such events may trigger catastrophic losses. Examples would include
a 1 2 in 2 100 year drought such as the type experienced this summer. The Coble et al.
reports noted that a much more extensive time-series of weather variables is available.

Figure 2.
Effective number of

observations in
dependent samples
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They suggested a nonparametric smoothing approach that would properly address
this issue. Here, we explore an alternative approach that uses weather experience
to form empirical frequency priors in Bayesian estimates of a parametric loss-cost
density.

Empirically rating with short samples and structural change
A variety of different approaches exist to deriving insurance premium rates that
account for the aforementioned issues associated with the limited amount of data and
changes that have characterized the underlying risk over time. RMA adopted
a nonparametric approach to rating that involved using variable bin-width histograms
that accounted for the relative frequency of weather events over a longer period of time.
In addition, as is described in the companion piece to this paper, the loss-costs were
adjusted for a structural break that corresponded to significant legislative changes in
1994. Here, we describe alternative approaches to accommodating these issues.
The problem is inherently of a Bayesian flavor. Prior information drawn from a much
longer set of weather data can be used to suggest alternative weights for individual
years of loss-cost experience. Weights based upon the acreage insured may suggest
that later experience data is more relevant to expected losses than the earlier history
based upon experience with far fewer acres. We adopt a heuristic, approximate
Bayesian approach that empirically derives informative priors from weighted
maximum likelihood estimation of a loss-cost distribution. Weather weights are
derived from the frequency of observed events over the much longer set of weather
data (dating to 1895). The resulting posterior distributions for the parameters of
interest incorporate the information contained in the weighted estimates[3].

Our basic approach is as follows. We first develop a weight based on historical
weather or acreage and apply this weight to a maximum likelihood estimated density
for the loss-cost ratio over the 1981-2010 period. A truncated normal defined over the
[0,1] interval is used to represent the loss-cost ratio. RMA has adopted a truncated
normal density in various aspects of its rating and the specification is quite flexible in
representing skewness while maintaining consistency in restricting loss-costs to lie
between zero and one. The shape parameter estimates and standard errors derived
from maximizing this weighted likelihood function are then used to define empirical
priors. Specifically, we adopted normal priors with the mean and standard errors set
using the weighted maximum likelihood estimates[4]. Two versions of the priors
are considered - one using the standard error from the weighted ML estimates as
the standard deviation for the prior and a second which uses one-half of the standard
error – representing tighter priors. In this paper, we focus on six important corn
producing counties from 2010 in Iowa-Kossuth, Lyon, O’Brien, Plymouth, Sioux, and
Story. The distribution of loss-costs for yield protection coverage is shown in
Figure 3[5]. Note that the yield risk for the selected counties tends to be relatively low,
with many instances of zero losses. This results in the data being concentrated at zero
with a substantially skewed right tail.

Development of likelihood weights
Although the most recently available data may be more representative of the
contingencies being rated for, the dependencies of loss events and the systemic nature
of weather suggests that data in the cross-section are likely to be highly correlated.
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Figure 3.
Distribution of loss-costs

for yield protection
coverage

The UNIVARIATE Procedure
fips = 19,109

The UNIVARIATE Procedure
fips = 19,149

The UNIVARIATE Procedure
fips = 19,119

The UNIVARIATE Procedure
fips = 19,167

The UNIVARIATE Procedure
fips = 19,141

The UNIVARIATE Procedure
fips = 19,169

O' Brien Story
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We would thus expect less information that the total number of (annual and cross
sectional) observations might imply. This suggests that one needs more information
(i.e. a longer time-series) to adequately measure risk. To incorporate this longer
time-series of data, we develop two types of weights-one based on historical weather
information and one on insured acreage.

We first fit a parametric density to the weather variable thought to be most relevant
to yield risks – the Palmer Z drought index. The Palmer Z index is a short-term
drought index available from the National Oceanic and Atmospheric Administration
(NOAA)[6]. In this application, we use the index values for July only since it is a key
month for corn yields. Experimentation with alternative parametric distributions
suggested that a normal density was appropriate for representing the distribution of
Palmer’s Z index. The density of the index was then used to estimate the relative
frequency with which each observation of the Palmer Z index in the sample of crop
insurance experience data (1981-2010) occurred in the longer series of weather data.
Letting pi be the probability of each observation i, and p ¼

PT
t21pt, be the sum of all

observations at the county level, we can construct the weather weight as:

ww ¼
pi
p

Acreage weights are constructed as a share of total acreage insured in the
county over the years 1981-2010. Letting at be the acreage insured in the county at year
t of each observation i, and a ¼

PT
t21at, be the sum of all observations across all years

at the county level, we can construct the acreage weight:

wa ¼
at

a

In this way, years with more insured acreage are given more weight in the likelihood
function.

Estimation and results
The loss-cost ratio is the ratio of indemnity payments to liability, and thus is
bounded on the unit interval. Most approaches to rating consider the mean of the
loss-cost ratio as an estimate of the actuarially-fair premium rate. RMA has adopted
a truncated normal density in various aspects of its rating and the specification is
quite flexible in representing skewness while maintaining consistency in restricting
loss-costs to lie between zero and one. The log likelihood function of interest is
given by:

LLFðLCR;m;s; 0; 1Þ ¼ dw £ log
ð1=sÞfððLCR2 mÞ=sÞ

Fðð1 2 mÞ=sÞ2Fð2m=sÞ

� �

where d ¼ 0 for the unweighted specification, and d ¼ 1 for a weighted specification
(either by weather or acreage). Maximizing the likelihood function yields ML estimates
of the parameter vector u ¼ (m, s), for each county of interest. These estimations
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form the priors for our Bayesian estimation using a random walk Metropolis
algorithm.

The final step in our process involves using the metropolis algorithm in a Markov
chain Monte Carlo (MCMC) estimation context to derive estimates of parameters of the
posterior densities. The logarithm of the posterior density is as follows:

logð pðujyÞÞ ¼ logðpðuÞÞ þ
Xn
k¼1

logð f ð ykjuÞÞ

where u are the priors determined by the weighted maximum likelihood estimations
detailed above and logðpðuÞÞ is the sum of the log of the prior densities. We again
assume that the density of the loss-cost ratio ð f ð y; uÞÞ follows a truncated normal
distribution and that each observation in the data set is independent. The algorithm
runs 10,000 iterations to obtain the posterior. We discard the first 1,000 iterations to
account for starting values of the chain (e.g. the “burn-in”). The procedure cumulatively
adds the log likelihood for each observation. The unweighted maximum likelihood
estimates and posterior estimates for weighted specifications are presented in Table I.
Figure 4 shows trace plots and posterior densities for selected counties. The plots are
representative of those obtained for all cases considered and indicate proper
convergence and satisfactory mixing, supporting the validity of the Bayesian
estimates.

Maximum likelihood and Bayesian posterior estimates of the parameters (m and s) of
the truncated normal loss-cost densities are presented in Table I. Three versions of the
density are estimated for each county. The first uses standard maximum likelihood
estimation techniques. The estimates include unweighted versions as well as estimates
derived from weighted likelihood functions, with weights derived from historical acreage
and weather variables. The estimated mean parameters of the truncated normal
distributions are all negative, suggesting a positive skewed distribution. The standard
deviations of the distributions are all relatively small, indicating relatively low loss-costs
and thus low risks.

In general, weighting for the frequency of observed weather events or for relative
changes in acreage tends to shift the maximum likelihood estimates. The biggest
differences are naturally observed for the fully weighted maximum likelihood versions.
In the case of the Bayesian posterior mean values of the parameters, the densities are
a combination of the unweighted and weighted estimates. Specifically, the posterior
estimates represent a “shrinkage” type estimate from the priors. The extent of
shrinkage is determined by the variance of the priors, with a larger variance reflecting
less confidence in the prior and therefore placing greater weight on the unweighted
sample.

The most straightforward comparison of the implications for rating from the
alternative sets of estimates can be derived from a consideration of the implied
distributions of loss-costs. In particular, the mean loss-cost represents an estimate of
the premium rate and various quantiles of the distribution can be taken to imply
probable maximum loss (PML) values, which represent the loss-cost ratio that one
would expect to exceed over a particular number of years[7]. Table II presents
summary statistics for the implied loss-costs. In general, the differences in mean
loss-costs across the alternative approaches to estimation are relatively modest.
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In most cases, weighting by the frequency of observed weather events tends to result in
lower premium rates. However, for Kossuth county, with the exception of the weather
weighted maximum likelihood estimates, the results all indicate a higher premium rate
than the unweighted specification. A comparison of the MCMC generated mean
loss-cost ratios to the 2011 yield protection premium rates (evaluated at a rate yield
equal to the county reference yield) for 70 percent coverage or above indicates our

Unweighted Weather weighted Acres weighted
m s m s m s

Maximum likelihood
Kossuth 20.1996 0.0749 20.1805 0.0664 20.0555 0.0276

(0.4273) (0.0527) (0.0701) (0.0085) (0.2604) (0.0384)
Lyon 20.0488 0.0333 20.0487 0.0312 20.0430 0.0224

(0.1326) (0.0232) (0.0234) (0.0040) (0.2025) (0.0308)
O’Brien 20.1212 0.0373 20.0923 0.0386 20.0393 0.0201

(0.2459) (0.0263) (0.0373) (0.0049) (0.1838) (0.0276)
Plymouth 20.0552 0.0390 20.0490 0.0351 20.0406 0.0287

(0.1526) (0.0271) (0.0249) (0.0045) (0.2201) (0.0392)
Sioux 20.0204 0.0213 20.0198 0.0214 20.0174 0.0174

(0.0706) (0.0147) (0.0128) (0.0027) (0.1146) (0.0236)
Story 20.0798 0.0570 20.0751 0.0482 20.0398 0.0208

(0.2221) (0.0397) (0.0362) (0.0061) (0.1882) (0.0286)
Posterior means and standard deviations (prior 1: ŝ)
Kossuth 20.1855 0.0674 20.1893 0.0674

(0.0428) (0.0055) (0.0659) (0.0080)
Lyon 20.0506 0.0317 20.0624 0.0334

(0.0149) (0.0026) (0.0289) (0.0045)
O’Brien 20.0956 0.0391 20.1049 0.0402

(0.0230) (0.0031) (0.0395) (0.0050)
Plymouth 20.0509 0.0357 20.0629 0.0377

(0.0152) (0.0029) (0.0307) (0.0052)
Sioux 20.0207 0.0217 20.0260 0.0227

(0.0080) (0.0017) (0.0149) (0.0030)
Story 20.0777 0.0489 20.0663 0.0463

(0.0226) (0.0038) (0.0279) (0.0048)
Posterior means and standard deviations (prior 2: ŝ/2)
Kossuth 20.1797 0.0666 20.1492 0.0620

(0.0285) (0.0035) (0.0476) (0.0063)
Lyon 20.0488 0.0313 20.0560 0.0324

(0.0095) (0.0017) (0.0244) (0.0040)
O’Brien 20.0919 0.0387 20.0874 0.0378

(0.0148) (0.0020) (0.0297) (0.0042)
Plymouth 20.0490 0.0352 20.0591 0.0370

(0.0100) (0.0019) (0.0270) (0.0047)
Sioux 20.0198 0.0215 20.0245 0.0225

(0.0053) (0.0011) (0.0136) (0.0027)
Story 20.0749 0.0484 20.0434 0.0405

(0.0146) (0.0026) (0.0190) (0.0033)

Note: Standard errors/posterior standard deviations in parentheses

Table I.
Parametric loss-cost
distribution estimates
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Figure 4.
Selected MCMC plots

(under priors 1)

Kossuth Story

Story

Story

Kossuth

Kossuth

The MCMC Procedure

The MCMC Procedure

The MCMC Procedure

The MCMC Procedure

The MCMC Procedure The MCMC Procedure

Notes: These plots serve as illustration of the MCMC process; the MCMC algorithm runs
10,000 iterations to obtain the posterior distribution; the trace plots provide strong evidence
of proper convergence and satisfactory mixing
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estimates are all below actual rates. This suggests that extremely dry weather events,
such as in a drought, may be receiving too much weight in a simple average. Likewise,
weighting by acreage results in lower rates in most cases, reflecting the fact that those
years with greater participation have tended to have more positive loss experience.
The PML values are quite similar across the alternative estimates, with the unweighted
and posterior estimates yielding very similar PML values.

Figures 5 and 6 show the loss-cost density functions estimated using the alternative
approaches. In general, weighting by weather frequency results in the biggest
differences in the implied densities. This is also reflected in the mean values implied by
the distributions. The densities obtained from the posterior estimates are quite similar
to the unweighted densities in most cases.

Conclusion
In this paper we present a new method for incorporating weather and participation into
the parametric distribution for the loss-cost ratio. Past RMA methods have used simple
averages in the construction of county level base rates, which may result in improperly
weighting weather experience or compensate for structural changes which have
changed participation rates. Our method expands upon previous maximum likelihood
and Bayesian methods, and indicates that incorporating weights into the priors
for Bayesian estimation can inform the distribution.

Means
Maximum likelihood Priors 1: ŝ Priors 1: ŝ

Unweighted Weather Acres Weather Acres Weather Acres
Kossuth 0.0180 0.0102 0.0231 0.0199 0.0194 0.0216 0.0236
Lyon 0.0134 0.0086 0.0149 0.0129 0.0128 0.0135 0.0134
O’Brien 0.0129 0.0077 0.0083 0.0124 0.0124 0.0126 0.0128
Plymouth 0.0156 0.0128 0.0176 0.0159 0.0152 0.0152 0.0156
Sioux 0.0116 0.0090 0.0114 0.0113 0.0114 0.0115 0.0113
Story 0.0211 0.0080 0.0257 0.0207 0.0203 0.0207 0.0204

1 in 10 PML (90th percentile)
Maximum likelihood Priors 1: ŝ Priors 1: ŝ

Unweighted Weather Acres Weather Acres Weather Acres
Kossuth 0.0415 0.0226 0.0539 0.0476 0.0424 0.0495 0.0489
Lyon 0.0300 0.0189 0.0331 0.0286 0.0284 0.0292 0.0300
O’Brien 0.0290 0.0176 0.0194 0.0281 0.0268 0.0287 0.0290
Plymouth 0.0347 0.0286 0.0387 0.0355 0.0336 0.0346 0.0342
Sioux 0.0253 0.0195 0.0249 0.0248 0.0250 0.0252 0.0248
Story 0.0470 0.0178 0.0562 0.0455 0.0455 0.0455 0.0458

1 in 20 PML (95th percentile)
Maximum likelihood Priors 1: ŝ Priors 2: ŝ/2

Unweighted Weather Acres Weather Acres Weather Acres
Kossuth 0.0551 0.0279 0.0648 0.0613 0.0524 0.0623 0.0604
Lyon 0.0371 0.0243 0.0417 0.0373 0.0369 0.0373 0.0376
O’Brien 0.0361 0.0219 0.0205 0.0351 0.0352 0.0350 0.0370
Plymouth 0.0437 0.0355 0.0485 0.0446 0.0429 0.0428 0.0436
Sioux 0.0310 0.0244 0.0306 0.0308 0.0310 0.0312 0.0305
Story 0.0591 0.0219 0.0700 0.0561 0.0574 0.0560 0.0556

Table II.
Estimated loss-cost
means and PML
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Figure 5.
Weather PDFs

Weather Weather

Weather Weather

Weather

O' Brien

Lyon

Kossuth Plymouth

Sioux

Story

Weather

Notes: In each plot we present the probability distribution function yielded from the
unweighted maximum likelihood specification, the specification weighted by weather
and the two weather weighted MCMC results; for all counties the weather weighted
ML specification is more negatively skewed than its unweighted counterpart, implying
lower premium rates; for four counties (Plymouth, Lyon, Sioux and O’Brien), the
MCMC procedure predicts the distribution to be between the two ML estimates,
indicating a shrinkage type estimator resulting from this two stage process
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Figure 6.
Acreage PDFs

Acres Acres

Kossuth Plymouth

Acres Acres

Lyon

O'Brien Story

Sioux

Acres Acres

Notes: In each plot we present the probability distribution function yielded from the
unweighted maximum likelihood specification, the specification weighted by acreage
and the two acreage weighted MCMC results; in most cases, the MCMC weighting
indicates lower rates; however, unlike in the case of weather weighting, the result of
weighting the ML estimates does not skew the loss-cost distribution in a consistent way
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Notes

1. See Coble et al. (2010, 2011) for details on each study.

2. See, for example, Yang et al. (2011) for a discussion of the determination of effective sample
sizes among correlated groups of sibs.

3. Our approach is similar in spirit to the density smoothing methods of Whittle (1958) and the
weighted likelihood bootstrap method of Newton and Raftery (1994)

4. The distribution of the standard deviation was restricted to be positive.

5. It is important to note that coverage has steadily shifted away from yield to revenue
coverage. Thus, the total acreage from which the loss-cost ratios are drawn has declined in
recent years after rises significantly prior to the mid-1990s. As is described in the Coble et al.
(2010) review, RMA actually converts revenue coverage to equivalent yield coverage.
However, the converted loss-costs are not publicly available and thus we rely on yield-only
APH coverage to illustrate our method.

6. In cases where a county lies in multiple divisions, we adopt the same procedures as
Coble et al. (2010) for determining which division counties are assigned to.

7. The PML values are equivalent to value-at-risk (VaR) values.
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