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Abstract

by Jude Bayham, Ph.D.
Washington State University

May 2013

Chair: Jonathan K. Yoder

Policy makers face complex situations involving the analysis and weighting of multiple

incentives that complicate the design of natural resource and environmental policy. The

objective of this dissertation is to characterize policy makers’ incentives, and to investigate

the consequences of those incentives on environmental and economic outcomes in the context

of wildfire management and environmental policy.

Wildfire management occurs in a dynamic uncertain environment and requires the co-

ordination of multiple management levels throughout the course of a fire season. Over the

course of a wildfire, management teams allocate response resources between suppression of

fire growth and protection of valuable assets to mitigate damage with minimal regard for

cost. I develop a model of wildfire resource allocation to show that 1) wildfire managers face

the incentive to protect residential structures at the expense of larger and more costly fires,

and 2) response resources are transferred to fires with more threatened structures constrain-

ing the set of resources available to manage other fires in the region. I find empirical evidence

to support the predictions of this model with theoretically consistent regression models of

wildfire duration, size, and cost using data from U.S. wildfires that occurred between 2001

and 2010. These results imply that continued housing development of wildland prone to

wildfire will 1) further distort management incentives, 2) lead to larger and more expensive
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fires, and 3) provide support for fees on rural homeowners.

Governments facing political opposition to renewable energy subsidies may resort to aug-

menting the fixed cost of entry in order to induce environmental outcomes. In global markets,

one government’s entry policy creates either positive or negative pecuniary externalities in

other regions. I develop a two-region model to investigate the behavior of rival governments

setting strategic entry policy, and the subsequent impacts on welfare. The results indicate

that competition between the rival governments prevents the social optimal level of entry

and suggests a role for international environmental agreements.
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Chapter 1

Introduction

Economics offers several clear policy prescriptions for managing natural resources and envi-

ronmental externalities. It is efficient to exploit a resource until the marginal costs exceed

the marginal benefits. When externalities exist, a social planner can increase economic ef-

ficiency in competitive markets by discouraging negative externalities with taxes or quotas,

or encouraging positive externalities with subsidies and mandates. However, the world in

which government agents create and carry out policy is fraught with uncertainty, competing

incentives, and strategic behavior. These factors, among others, may influence the design

and execution of policy, which ultimately impact economic and environmental outcomes.

The goal of policy design and analysis is to identify the mechanism through which policy

alters behavior. Economic models of policy are designed to capture the factors that motivate

agents in order to predict how a policy will affect economic outcomes. However, the factors

that motivate agents are not always clear to the researcher developing the model. The

researcher’s choice of model assumptions may have dramatic effects on the model’s predicted

outcomes.

The objective of this dissertation is to investigate the factors that influence the design and

implementation of natural resource and environmental policy in wildfire management and

firm entry in the presence of positive external benefits. This dissertation is comprised of three

distinct essays woven together by the manner in which I incorporate competing incentives

and strategic behavior into theoretical models to analyze policy. In two of the essays, I

develop a theory of wildfire response to characterize the incentives of wildfire management

and investigate the impacts of these incentives on wildfire duration, cost and size. In a
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third study, I analyze the strategic use of entry policy by governments who compete for the

location of firms that produce a good with positive external benefits. These studies provide

unique insights into analyzing policies in the context of uncertainty, competing incentives,

and strategic behavior.

1.1 Wildfire Management

Wildfire management is an economic problem because, despite its natural occurrence, it

causes property damage and impacts the utilization and quality of other natural resources

(i.e., air and water). Since wildfire does not respect property boundaries, and often involves

costly coordination of many response resources, management responsibilities have largely

been assumed by the government. However, management objectives are unclear and may

depend on the environment, expectations, and political factors. Over the past decade, wild-

fire management costs have risen dramatically highlighting the need for economic analysis

of policy and implementation (Gebert et al., 2008).

Recent wildfire research has identified three important contributors to rising wildfire

costs: prior policy, climate change, and the expansion of the wildland urban interface. Until

recently, the prevailing federal response strategy has been to aggressively suppress any wild-

fire as quickly as possible (Schoennagel, Veblen, and Romme, 2004; Covington and Moore,

1994). Researchers argue that because ecosystems have evolved to rely on regular wildfire

cycles, suppression of all fire has caused a significant accumulation of fuel. This additional

fuel turns what may have been low intensity fires, which are not necessarily destructive,

into very intense fires that are difficult and expensive to manage. Climate change models

predict changing and more volatile weather patterns, which may increase wildfire intensity

and require more costly management (Fried, Torn, and Mills, 2004; Stephens and Ruth,

2005; Westerling et al., 2006). Development of wildland is also receiving significant attention
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from researchers. To the extent that wildfire management prioritizes residential structure

protection, homes built in the wildland urban interface (WUI) increase the need for costly

management (Donovan, Noordijk, and Radeloff, 2004; Liang et al., 2008; Gude et al., 2013;

Yoder and Gebert, 2012; Calkin et al., 2013).

In chapter 2, I study how an increase in the number of threatened structures impacts

wildfire duration, cost, and size. I develop a dynamic model of wildfire response in which

management teams face an intertemporal tradeoff between protection of threatened assets

and suppression (an investment in future protection). An increase in the number of threat-

ened assets increases the marginal benefit of protection relative to suppression. The lack of

suppression allows the fire to grow larger, burn longer, and ultimately, cost more to extin-

guish than it otherwise might. I find support for this theoretical prediction with a trivariate

hazard model of wildfire duration, cost, and size.

In chapter 3, I focus on the interaction between individual and regional fire manager. I

extend the dynamic model of wildfire response developed in chapter 2 to distinguish individ-

ual and regional fire managers in order to characterize a set of estimable resource allocation

equations. I then estimate a theoretically-consistent econometric model of response resource

allocation equations, which are used to generate instruments in a set of second-stage hazard

regressions of duration, cost, and size.

The results in both studies show that threatened structures lead to larger and more

expensive wildfires. My contribution to this literature is threefold: 1) I provide a unique

theory of wildfire response that identifies an economic mechanism causing longer, larger

and more expensive wildfires; 2) I develop and implement a trivariate hazard model in which

correlation between wildfire duration, cost, and size is captured by a trivariate latent variable;

and 3) I estimate a set of response resource allocation equations to show that threatened

residential structures significantly impact the number of resources committed to a given

wildfire.
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1.2 Environmental Entry Policy

Governments may use a variety of price and quantity instruments to regulate the externalities

arising from the production and consumption of goods and services. However, permanent

regulation may require legislative approval, which has proven a formidable obstacle in some

countries (Stokes, 2013). Governments might instead take action to modify the administrative

costs of entry in order to facilitate their desired level of entry (Cato, 2010). Recent efforts

to promote renewable energy in the U.S., Europe, and China have included reduced fees,

favorable loans, and grants to firms entering the production market or expanding capacity.

These entry policies are currently at the root of several trade disputes between U.S. and

Chinese solar panel manufacturers (Bayaliyev, Kalloz, and Robinson, 2011).

The environmental economics literature has extensively studied the implementation of

price and quantity policy instruments. In theory, policy instruments such as taxes, subsi-

dies, and quotas can induce the socially optimal level of production and consumption, under

certain conditions (Baumol and Oates, 1988). However, policy design becomes more com-

plicated in the presence of additional externalities arising from imperfect competition and

international trade(Barrett, 1994; Ulph, 1996; Kennedy, 1994).

In chapter 4 I extend the theoretical literature on environmental policy by analyzing the

use of entry taxes, subsidies, and permit restrictions to regulate an industry with endogenous

market structure in which firms produce a good that yields external benefits. A regulator

then sets a policy to induce the number of firms that maximizes social welfare. I compare

the policy implications of two regulatory structures. In one case, I consider a single regulator

that has jurisdiction over all firms. In a second case, I consider two regions, each with a

respective regulator who has jurisdiction over firms that choose to locate within its region. I

show that the existence of a rival regulator creates pecuniary externalities that prevent both

regulators from inducing their respective domestically optimal level of entry. These results
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highlight the importance of international competition between regulators when designing

environmental policy.
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Chapter 2

Wildfire Hazards

2.1 Introduction

Disaster managers allocate resources to accomplish a set of objectives in a highly uncertain

environment. While the specific objectives of a manager vary depending on the type of

disaster, cost minimization and damage mitigation receive significant attention. Managers

often face tradeoffs between forms of response effort used to accomplish their objectives.

Disaster containment may limit the growth or extent of the disaster while protection may

reduce the damage to specific assets. Managers of infectious disease outbreak, invasive

species, oil spill, and nuclear contamination all face tradeoffs between containment and

protection of threatened assets. The allocation decisions made throughout the course of a

disaster inevitably impact final outcomes such as the damage and cost of a disaster.

Wildfire is a destructive and complex form of disaster in the U.S., and the world, with

recent U.S. federal management costs exceeding $2 billion annually (Gebert et al., 2008).

Management of a wildfire often takes place over the course of several days or even weeks.

Decisions are made each day based on new and updated information relating to fire develop-

ment, including past and present fire behavior, weather changes, differences over space and

time in values at risk, and numerous other factors. The dynamic spatiotemporal path of

the fire is affected by these environmental factors, and the management decisions, over the

course of the fire, until its completion. These environmental factors and resource allocation

decisions affect final fire outcomes by affecting spatial outcomes at any point during the

response effort.
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The wildland urban interface (WUI) has grown significantly over the past several decades,

and wildfire managers find themselves devoting more response resources to structure pro-

tection than ever before (Mercer and Prestemon, 2005). A growing population and a desire

to live near forests have drawn people to build structures in areas inherently susceptible to

wildfire. These structures are often high-value homes and cabins. Wildfire managers face

significant political pressure to protect these structures, which may come at the expense of

other management objectives (Troyer et al., 2003).1

This paper develops an economic theory of disaster response to characterize the impact of

threatened assets on disaster outcomes. A manager chooses containment and protection to

minimizes losses subject to a stochastic process representing the disaster. I adapt the theory

of disaster response to wildfire management, and formulate three hypotheses: when assets

are threatened during the course of a wildfire, the expected 1) duration, 2) final fire size, and

3) total suppression cost increases. I jointly estimate a trivariate hazard model (variously

known as duration, time-until-failure, and event history model) of wildfire duration, size, and

suppression cost. I utilize daily situation report data on individual wildfires in the United

States from 2001 to 2008 to estimate a trivariate hazard model of wildfire duration, size,

and cost. The correlation between outcomes is captured through a jointly distributed latent

variable.

There exists a rich literature on disaster management that spans several fields of social

science. Recent epidemiological-economic models of infectious disease outbreak recognize

tradeoffs between treatment of affected populations and prevention through vaccination or

distancing (Fenichel et al., 2011; Ludkovski and Niemi, 2010). Other disaster management

problems with similar tradeoffs include invasive species, oil spill, and nuclear meltdown

1Quinn (2005) recounts the management actions taken during one of Oregon’s largest wildfires in history,
the Biscuit Fire, which ultimately burned over 500,000 acres. After nearly two weeks of unsuccessful con-
tainment, response resources were reassigned to protect structures on the fires East side, allowing the fire to
grow on the unattended North side.



8

(Finnoff et al., 2005; Bassey and Chigbu, 2012). Altay and Green (2006) provide a survey

of the operations research literature on disaster management in which they categorize four

stages of disaster operations management: preparedness, mitigation, response, and recov-

ery. Gebert et al. (2008) discusses these phases of management as they pertain to wildfire

suppression. This paper focuses solely on the response phase of the management process in

order to understand the implications of response decisions, throughout the event, on final

outcomes.

There have been numerous efforts to estimate the economic relationships and tradeoffs

embodied in wildfire management, as well as forecasts of suppression costs, fire size, and

other outcome measures. Mercer and Prestemon (2005) summarize some of these existing

studies, including models of fire ignition rates or ignition risk, individual or aggregate fire

extent (e.g. area burned), fire effects models (outcomes of other metrics such as fire intensity

or damage), and combinations of these. Some studies develop models based on aggregate

level fire and suppression data (Abt, Prestemon, and Gebert, 2008; Prestemon et al., 2008;

Cardille, Ventura, and Turner, 2001), and others focus on data at the individual fire level

(Holmes, Huggett, and Westerling, 2008; Butry, Gumpertz, and Genton, 2008; Liang et al.,

2008; Gebert, Calkin, and Yoder, 2007; Gude et al., 2013). Of these studies Liang et al. (2008)

and Gude et al. (2013) find evidence that threatened residential property effect suppression

costs. Prestemon et al. (2008) and Butry (2009), among others, focus on the relationship

between ex ante wildfire risk mitigation and wildfire outcomes. Another line of research

has integrated physical spatiotemporal spread models with suppression (Fried, Gilless, and

Spero, 2006; Butry and Donovan, 2008; Petrovic and Carlson, 2012; Petrovic, Alderson, and

Carlson, 2012). While these models provide useful information on the interaction between

resource allocation and fire spread, they do not capture the disaster manager’s response to

economic trade offs during the response effort.

While disaster response and wildfire outcomes have been analyzed with linear regression
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and count models, no studies have used hazard models, which are well-suited to characterize

the dynamic development of wildfire. Hazard models exploit the variation in time-varying

covariates over the course of an event and provide the researcher with information on the

cumulative effects on the probability of an outcome. Economists have used hazard models

to study factors influencing employment spells, marriage duration, and mortgage default

(Meyer, 1990; Bennett, Blanc, and Bloom, 1988; Shumway, 2001). In the medical literature,

hazard models are commonly used to compare the efficacy of treatments, and in some stud-

ies, multivariate extensions have been developed to account for correlation in the disease

treatment of twins (Andersen et al., 1997; Wienke et al., 2005). The most similar empirical

model of wildfire to date is Finney, Grenfell, and McHugh (2009), who propose a general-

ized linear mixed-model (GLMM) of wildfire containment focused on intervals of low- and

high-spread. The trivariate hazard model provides probabilistic information on containment

in terms of fire size and cost in addition to duration.

This paper contributes to the literature on disaster and wildfire response as well as

empirical hazard models. I have found no published research to date that fully utilizes

daily observations over the course of a cross-section of wildfires to estimate a dynamic eco-

nomic/physical model of response beyond Finney, Grenfell, and McHugh (2009). I derive

the components of a hazard model from the theory of disaster response, and estimate a

seemingly-unrelated-regression-like system of three equations by maximum simulated likeli-

hood. This estimator accounts for unobserved fire-specific effects and improves the efficiency

of the parameter estimates. The proposed estimation procedure is similar to the seemingly-

unrelated-Poisson model of King (1989) and seemingly-unrelated-negative-binomial model

of Winkelmann (2000).

I find evidence to support my hypotheses that an increase in the number of threatened

assets raises the expected duration, size, and cost of wildfires. In the model, response

managers devote resources to asset protection at the expense of overall suppression when the
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number of threatened assets rises. As resources are diverted from suppression, the fire grows

and becomes more difficult to suppress. The resulting fire persists longer than it would have

had resources maintained previous suppression efforts. The results of this analysis suggest

that as the WUI continues to grow, federal and state policies that limit or discourage the

expansion of the wildland urban interface may be justified.

The paper proceeds as follows. Section 2.2 develops a stylized model of disaster response

management and the connection to empirical hazard models. Section 2.3 provides a de-

scription of the data I use for the analysis. Section 2.4 provides the results and discussion.

Section 2.5 concludes the paper.

2.2 A Theory of Wildfire Response

Consider a wildfire a self-perpetuating stock of energy that evolves over time.2 Like the stock

of a renewable resource, the fire persists as long as the stock of energy remains above the

minimum threshold necessary to sustain exothermic reaction. In addition to human man-

agement efforts, environmental factors, such as weather, fuel, and geography, may influence

the rate of growth (decline) of the energy stock. Eventually the energy stock falls below the

physical threshold, and the fire is extinguished.

A management team chooses two forms of management effort at time t: protection effort,

which reduces the probability of damage to specific values at risk3; and suppression effort,

which curtails the overall growth of the fire. Protection can be thought of as intensive asset

protection and suppression as extensive asset protection.4 Fire lines that span large sections

2While energy is a flow in the physical sense, I use the term stock to remain consistent with the language
of dynamic modeling. The stock of energy should be interpreted as a snapshot of the energy expended by
the wildfire at any point in time.

3Petrovic, Alderson, and Carlson (2012) develops a simulation-based model of fire spread where suppres-
sion reduces the probability that the fire persists in any given cell.

4These notions of suppression and protection are conceptually distinct from the spillover and direct effects
of mitigation efforts developed in Butry and Donovan (2008). In their model, private agents undertake ex-
ante mitigating actions to reduce the probability of own-home ignition, which is a function of mitigating
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of the fire front will stop the growth of the fire along that front. If effective, the lines will

limit the spatial extent of the fire.

Modern wildfire management is an organizationally complex endeavor. Response to any

single fire may involve the cooperation of numerous federal, state, local, and private organiza-

tions. The coordination of resources across many fires during a busy fire season exacerbates

the resource allocation problem. I summarize the goals of reducing costs, c(t), and damage

to values at risk, d(t), in the management team’s loss function5

`(c(t), d(t), t). (2.1)

Losses are increasing in both costs and damage. The general loss function provides flexibility

with regard to the weight (marginal losses) of costs and damage, and may be interpreted

more generally as a disutility function.6

Costs are given by a linear cost equation at time t,

c(t) = sf (t)(wf + wof (t)) + sd(t)(wd + wod(t)) (2.2)

where sf (t) is suppression effort, sd(t) is protection effort, wi is the constant market price

of effort i = {f, d}, and woi (t) is the opportunity cost of effort i = {f, d}. I assume that

the market price of response resources is constant over the fire duration because government

agencies often contract resources for the year so the per unit cost is known a priori. The

opportunity cost of resources depends on their availability within a geography, which may

actions undertaken by neighbors.
5Lowercase symbols are used to represent instantaneous flows at any given point in time whereas capital

symbols denote an accumulation of the stream of those flows. The variable definitions are contained in Table
7 of the appendix.

6This feature is important to modeling disaster response because, as Troyer et al. (2003) suggests with
regard to wildfire, management teams do not always equate a dollars worth of response with a dollars worth
of damage. The loss function may also account for a risk averse fire management team; although, risk
aversion is not necessary to obtain the results below.
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vary over the course of a fire. These opportunity costs are due to scarcity of quasi-fixed

capital during times of high wildfire activity within the region over which response resources

are deployed.

Damage is equal to the product of a vector of threatened asset values, the number of

threatened assets per acre, and the acres burning at time t,

d(t) = ν(t) · y(t)

sd(t)
· a(t) (2.3)

where ν(t) is a 1 × J vector of threatened asset values measured in dollars, y(·) is a J × 1

vector where each element represents the number of threatened assets per acre corresponding

to a particular asset type j, and a(t) is the instantaneous flow of burning area at any point

in time t. One may think of a(t) as the contribution to fire size of the fire front as it moves

through space. I assume that assets are at risk of destruction at time t, and depending on

the level of protection, are destroyed or survive at period t−∆t.7 Threatened asset values,

ν(t), may include assets such as endangered species habitat, watersheds, and marketable

timber. Protection effort, sd(t), effectively reduces the concentration per acre of threatened

asset values across a given landscape.8

The instantaneous growth in fire size at any given point in time t is given by

a(t) = a(z(t), f(t), t). (2.4)

where z(t) is a vector of exogenous geographic and environmental characteristics such as

vegetation and weather.

The energy stock of the fire is f(t). The fire stock evolves according to a stochastic

7This assumption implies that d(t) represents the level of damage that the fire manager will experience
in between states t and t−∆t.

8An alternative, but equally valid, interpretation is that sd(t) reduces the probability that a threatened
asset is destroyed at time t. This alternative interpretation is qualitatively similar to the weighted area
protection measure developed by Kirsch and Rideout (2005).
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process represented by the distribution function

G(f
′ | f(t), sf (t), z(t)) =

∫ f
′

0

g(q | f(t), sf (t), z(t), t) dq (2.5)

where f
′
= lim

∆t→0
f(t+ ∆t) is the energy stock at the next moment in time. The distribution

is conditional on the current level of energy, f(t), exogenous environmental and geographic

characteristics, z(t), and the amount of suppression effort, sf (t).
9 By definition, sd(t) has no

impact on G(·) as an approximation.10 The distribution is lower bounded by zero because

the stock of energy must be positive. Suppression effort and exogenous conditions shift the

mass of the density over different levels of f depending on whether the variable encourages

or discourages growth of the fire stock.11 I assume that the mass of the density shifts over

lower values of f when sf (t) ≥ 0 increases. The impact of the elements of the vector z may

affect G(·) differently. For instance, high wind z1 ∈ z and steep terrain z2 ∈ z may shift the

mass of G(·) over higher values of f while increased humidity z3 ∈ z may shift the mass of

G(·) over lower values of f .12

The initial fire stock, f(0) = f0, is observed by the management team at the date of

discovery and is strictly positive. The wildfire continues to burn until the stock of energy

falls below f̄ at which point the fire is terminated and the response effort is effectively over.13

Therefore, a fire begins iff f0 > f̄ .

The management team’s problem is formalized in the recursive Hamilton-Jacobi-Bellman

9Fenichel et al. (2011) and Fraser et al. (2004) use a similar notion of stochastic evolution to model the
spread of infectious disease throughout a population.

10For example, suppose resources were used to remove vegetation and create a perimeter around a threat-
ened structure. These actions would have a minimal impact on the overall energy content of an established
wildfire.

11Similarly, Pich, Loch, and De Meyer (2002) formulate a model in which project managers choose actions
that impact the probability of event outcomes.

12Fenichel et al. (2011) develop a model of infectious disease in which the probability of transmission –
growth in the disease stock, analogous to the energy stock – is a function of contact with infected individuals.
However, individuals choose their level of contact, and thus, affect the probability of disease spread.

13Note that f̄ is the level of energy above which supports exothermy at any point in a(t).
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equation

V (f(0), 0) = min
sd,sf≥0

{
`(c(t), d(t), t) + Et

{
V

′
}}

= min
sd,sf≥0

{
`(c(t), d(t), t) +

∫ ∞

0

V
′
g(f

′ | f(t), sf (t), z(t)) df
′
}

(2.6)

where V (·) is the value function and V
′
= lim

∆t→0
V (f(t+∆t), t+∆t).14 The objective function

is defined by equation (2.1) and the components, costs and damage, by equations (2.2) and

(2.3), respectively. Because wildfire events take place over short time horizons, I assume

the discount rate to be approximately zero, and omit it to reduce notational clutter. The

probability density function g(f
′
) is defined in equation (2.5). Suppression and protection

effort (sf and sd) are lower bounded at zero.15

The terminal condition determines the end of the response effort which occurs when the

fire’s stock of energy falls below an exogenously determined threshold f(T ) = f̄ . Therefore,

T is a random variable with the following distribution at any point in time t

G(f̄ | sf (t), z(t), f(t), t) = Pr(f
′ ≤ f̄ | sf (t), z(t), f(t), t)

= Pr(T ∈ (t, t+ ∆t] | sf (t), z(t), f(t), T ≥ t). (2.7)

Equation (2.7) states that the probability of the fire’s energy stock falling below the critical

value f̄ is equal to the probability that the response effort ends, T , in the next interval of time.

This relationship effectively connects the model of disaster response to an empirical hazard

model. Before I develop this connection further, I derive testable hypotheses regarding the

impact of threatened assets on expected duration and expected size of wildfires.

14Management effort is assumed to begin at the date and time of fire discovery t = 0.
15A degenerative case would entail a fire with no possibility of damage and thus no required effort.



15

2.2.1 Threatened Assets

As the wildland urban interface continues to grow, wildfire management teams face increas-

ingly difficult tradeoffs between suppression and protection when confronted with threatened

assets. I are interested in the impact of a sudden16 increase in the number of threatened

assets at any point in time, t, on the final outcomes duration, T , total cost, C(T ) and total

size A(T ), where C(t) =
∫ t

0
c(τ)dτ from equation (2.2) and A(t) =

∫ t
0
a(τ)dτ from equation

(2.4). I summarize the primary theoretical results of this study in the following propositions.

Proposition 1. An increase in the number of threatened assets, y(t), at time t leads to

longer expected wildfire duration when the loss function is separable in costs and damages.

Proof. To prove this proposition, I demonstrate that an increase in the number of a single

type of threatened asset,17 y1 ∈ y at any time t during the response effort, increases the

expected wildfire duration Et{T}. Recall that T is directly related to the distribution G(·)

through equation (2.7). By assumption, dg(f
′
)/dsf < 0 and dg(f

′
)/dsd = 0 which imply

that only suppression reduces the expected level of the fire’s energy stock because protection

reduces the density of a given asset without substantially reducing the fire stock. From the

system of first-order conditions, suppression is decreasing in the number of threatened assets

dsf/dy1 < 0 and protection is increasing in the number of threatened assets dsd/dy1 > 0

(see appendix A.1 for derivation). Therefore, a sudden increase in the number of threatened

properties, y
′
1 > y1 ceteris paribus, causes the management team to shift resources from

suppression, sf , to protection, sd, which reduces the probability that f
′
< f̄ and thus

increases Et{T}.

16I choose this language to make the point that during a response effort, conditions may change such
that residential properties become threatened. The dataset explicitly quantifies the number of threatened
structures at various points throughout the response effort.

17Let y1 represent residential property, one of the highest valued assets per unit space that managers
protect.
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Proposition 2. An increase in the number of threatened assets, y(t), at time t leads to a

larger expected wildfire size when the loss function is separable in costs and damages.

Proof. There are two compounding effects that lead to the result dE{A(T )}/dy1 > 0: the

longer expected duration of a fire (from proposition 1), and the larger energy stock through-

out the remaining duration leads to a larger area burned. The first effect follows from

the dependence of final fire size on Et{T}. I define cumulative area burned at time t as

A(t) =
∫ t

0
a(τ)dτ from equation (2.4). Therefore, at any point in time t, the expected area

can be separated into two parts: the known area burned up until time t, and the area

expected to burn during the remaining duration of the fire.

Et{A(T )} =

∫ t

0

a(z(τ), f(τ), τ)dτ + Et

{∫ T

t

a(z(τ), f(τ), τ)dτ

}
(2.8)

where the fire size at t is known to the management team. Proposition 1 shows that if y1(t)

increases at any point in time, Et{T} increases, which implies that the second portion of

equation (2.8) becomes unambiguously larger, ceteris paribus.

The second effect follows from the larger fire on the interval (t, T ). By assumption,

da(t)/df(t) > 0 and dg(f
′
)/dsf (t) < 0, which together with dsf (t)/dy1(t) < 0, imply that

a(z(t), f(y1(t), t), t) < Et
{
a(z(t̂ ), f(y1(t̂ ), t̂ ), t̂ )

}
∀ t̂ ∈ (t, T ). (2.9)

Equation (2.9) implies that the expected fire size is larger at all points in time after the

increase in y1. In summary, the rise in the number of threatened assets increases the expected

area through two channels: the dependence of A(t) on T and the higher expected fire size

at all points on the interval (t, T ).

These analytical results are consistent with the simulation results reported in Fried,

Gilless, and Spero (2006) who find evidence that larger fires are expected when response



17

resources are diverted to protect structures during initial attack.

While fire size and duration are expected to increase with an increase in the number

of threatened assets, the impact on cumulative costs is ambiguous in the model. This

result is confounded by the relative prices and magnitudes of change of suppression and

protection effort. As resources are shifted from suppression to protection (dsf/dy1 < 0 and

dsd/dy1 > 0), total cost rises at any point in time if expenditure on protection is greater

than on suppression

|sd(t)(wd + wod(t))| > |sf (t)(wf + wof (t))|.

Given the explicit costs are constant throughout the response effort, the relative price of the

resources depends on the opportunity cost. If the potential marginal damage to threatened

assets is large enough, the management team will find it optimal to increase protection such

that total costs rise. Additionally, the expected duration of a fire increases (proposition 1),

which implies a longer response effort that may or may not require the use of costly resources.

Proposition 3. Cumulative costs C(T ) =
∫ T

0
c(t) dt rise in response to an increase in the

number of threatened assets y1 when the loss function is separable in costs and damages, and

if one or both of the following hold:

1. increased expenditure on protection is larger than the savings on suppression over (t, T ),

2. expenditure over the excess duration (proposition 1) exceeds any expenditure reduction

due to substitution from suppression toward protection.

The theory does not provide a definitive prediction of the impact of threatened assets on

cost. However, the presence of any valuable asset during the extended duration (proposition

1), would induce a fire manager to apply costly response effort implying larger final costs.



18

2.2.2 Hazard Model

I now draw the connection between the stochastic dynamic program and empirical hazard

models. The following section demonstrates how fire outcomes derived from the model may

be empirically estimated as a reduced-form hazard model.

Assume that solutions for s∗f (t) and s∗d(t) exist and are functions of the exogenous vari-

ables: ν(t),y(t), wf , w
o
f (t), wd, w

o
d(t), z(t). After substituting the optimal policy functions

into the value function (equation (2.6)), the reduced form of the fire stock distribution is

G(f̄ | s∗f (t), z(t), f(t), t) = G(f̄ | ν(t),y(t), wf , w
o
f (t), wd, w

o
d(t), z(t), f(t), t) (2.10)

= G(f̄ | x(τ), f(τ), τ)

where x(t) = [ν(t),y(t), wf , w
o
f (t), wd, w

o
d(t), z(t)′]′ represents all exogenous covariates.

Equations (2.7) and (2.10) state that the probability of the response effort ending in the

next interval of time, conditional on the fire having persisted beyond time t, is equal to the

probability that the fire stock falls below the critical value f̄ . In hazard model terminology,

this conditional probability is known as the hazard rate where hazard refers to the probability

of an event occurring in the next instant of time. In the context of wildfire, the event is the

termination of the fire. As the fire progresses over time, the path of hazard rates forms the

hazard function denoted

h(t | x(t)) =

∫ t

0

G(f̄ | x(τ), f(τ), τ)dτ

≡ lim
∆t→0

Pr(t ≤ T < t+ ∆t | x(t), T ≥ t)

∆t
(2.11)

=
φ(t | x(t))

Ψ(t | x(t))
.
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The hazard function is equal to the density, φ(t | x(t)), over the survival function, Ψ(t |

x(t)) = 1 − Φ(t | x(t)) where Φ(t | x(t)) =
∫ t

0
φ(τ | x(τ))dτ .18 The survival function

represents the probability that the fire will persist beyond a given t and is monotonically

decreasing. In reference to the model of disaster response, the survival function accounts for

the process by which managers accumulate information throughout the disaster.

While hazard models generally study the time until an event occurs, the cost and area

of a wildfire are also valid measures of duration (Triplett, 1999; Etzioni et al., 1999; Jain

and Strawderman, 2002). Because fire size and costs accumulate over the course of the fire,

A(t) =
∫ t

0
a(τ)dτ and C(t) =

∫ t
0
c(τ)dτ , I apply the same logic used to derive equation (2.11)

to construct hazard functions of area and cost:19

h(k | x(k)) =
φ(k | x(k))

Ψ(k | x(k))
where k = a, c

All three outcomes – duration, cost, and size – represent three perspectives on an underlying

stochastic process f , which is imperfectly observed by the fire managers, and completely

unaccounted for in the data. Due to the joint dependence of duration, size, and cost on the

stochastic f , the outcomes are correlated random variables. I exploit this correlation in the

development of the trivariate frailty model of wildfire duration, cost, and size.20

I employ a parametric proportional hazard model to study the impact of covariates on

duration, cost, and fire size. The term proportional implies that the covariates shift a

parametric baseline hazard function proportionately over the support. The hazard function

18While it is instructive to think of the hazard function as a conditional probability, it is not upper bounded
by one. See Kalbfleisch and Prentice (1980); Blossfeld, Hamerle, and Mayer (1989); Petersen (1995) for a
technical development of the components to hazard analysis.

19One may think of cumulative size and cost as alternative measures of the wildfire’s progression.
20In the hazard literature, the introduction of a latent variable gives rise to a variant of hazard models

called frailty models.
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for each outcome k = t, a, c is

h(k | x(k)) = h0(k)γ(x(k)) (2.12)

where h0(k) for k = t, a, c are the baseline hazard functions, and the survival functions are

Ψ(k | x(k)) = Ψ0(k)γ(x(k)) (2.13)

where Ψ0(k) for k = t, a, c are the baseline survival functions. Covariates are introduced

through a multiplicative function, γ(x(k)) = exp{x(k)βk} where k = t, a, c. The exponen-

tial function is commonly used because the hazard function must be non-negative over the

support.

Holmes, Huggett, and Westerling (2008) and Strauss, Bednar, and Mees (1989) argue that

heavy-tailed distributions most accurately describe the distribution of wildfire size, among

other disaster outcomes. In light of their results, I assume each outcome is distributed

Weibull, which takes on a heavy tail when the shape parameter is less than one (Embrechts,

Klüppelberg, and Mikosch, 1997).

I introduce a jointly distributed random component, ε, correlated across equations, but

constant over time, that represents unobserved heterogeneity beyond that captured in the

covariates x.21 The system of hazard and survival functions is

h(t|x, εt) = h0(t) exp{xβt + εt} Ψ(t|x, εt) = Ψ0(t)exp{xβt+εt}

h(c|x, εc) = h0(c) exp{xβc + εc} Ψ(c|x, εc) = Ψ0(c)exp{xβc+εc}

h(a|x, εa) = h0(a) exp{xβa + εa} Ψ(a|x, εa) = Ψ0(a)exp{xβa+εa}

where ε = (εt, εc, εa)
′ ∼ N(0,Ω) is included in the the function γ(·) in equations (2.12) and

(2.13).22 The “time-varying” notation on covariates x(k) is now used only when necessary

21Wienke et al. (2005) provides a survey of frailty models and their multivariate extensions and discusses
the associated estimation methodologies.

22The restriction of µ = 0 is inconsequential because any deviation from zero would be subsumed into the
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to distinguish variables in an equation. The log-normal distribution23 is chosen to describe

the unobserved heterogeneity because of the heavy-tail properties as well as its explicit

parameterization of the correlation in the covariance matrix Ω .

The joint conditional density is

φ(t, c, a|x, ε) = φ(t|x, εt) φ(c|x, εc) φ(a|x, εa), (2.14)

where φ(k|x, εk) = h(k|x, εk) · Ψ(k|x, εk) ∀ k. The unconditional joint density is obtained

by integrating over ε,24

φ(t, c, a|x) =

∫

ε

φ(t, c, a|x, ε) exp{q(ε)} dε (2.15)

where

q(ε) =
1

(2π)
3
2 |Ω | 12

exp

{
−1

2
ε

′
Ω−1ε

}
.

The Likelihood function for this trivariate problem over i = 1 . . . n wildfire observations is

L(θ|x) =
n∏

i=1

φ(ti, ci, ai|xi)δiΨ(ti, ci, ai|xi)1−δi (2.16)

where δi is the censoring indicator. Maximization of the full trivariate likelihood function

L(θ|x) in Equation 2.16, where θ includes Ω , provides consistent estimates of model param-

eters. Estimating the duration, cost, and size hazard regressions independently is equivalent

to restricting the off-diagonal elements of the covariance matrix Ω to be zero. Equation 2.15

requires integration of the CDF over ε. Unfortunately, a closed form solution to this problem

scale parameter of the Weibull baseline hazard which may be interpreted as the intercept analog in a linear
regression.

23Note that ε appears in the exponential covariate function which implies that the multiplicative effect on
the baseline hazard and survival function is log-normal.

24The use of the term “unconditional” here refers to the fact that the joint density is no longer conditional
on εk. The density, hazard, and survival functions remain conditional on x throughout the remainder of the
analysis.
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does not exist (Wienke et al., 2005).25 Therefore, I apply a maximum simulated likelihood es-

timation (MSLE) procedure that approximates the unconditional joint density φ(t, c, a|x).26

I program the likelihood function in Matlab (Mathworks, 2010) and use the constrained

optimization interior-point algorithm to maximize the function. The algorithm uses the

BFGS method to optimize the nonlinear likelihood function over the parameters β, ς, and λ

of the Weibull distribution, and the covariance matrix parameters of the frailty distribution,

Ω . The algorithm converges on a solution and terminates once the gradient, the change in

the function value, and the change in the norm of the estimated parameter vector reaches

tolerance 10−4.

2.3 Data

The data used in this analysis comes from the Incident Status Summary (ICS-209) databases

(FAMWEB, 2012), the National Interagency Fire Management Integrated Database (NIFMID)

(KCFAST, 2012), and the 2010 U.S. Census (Census, 2012). The National Wildfire Coor-

dination Group maintains a database that contains situational reports, filed intermittently

by wildfire incident commanders throughout the suppression effort. These reports begin at

the time of discovery and end when the suppression effort is complete. Each report includes

data on weather, geographic, and environmental characteristics as well as assets threatened

and destroyed by the fire. The wildfire data is supplemented by home value data from the

2010 U.S. Census at the Census Designated Place (CDP) level.

25The parametric hazard model is chosen over the semi-parametric Cox model because the integral of
the mixture distribution over the latent variable is undefined without specifying the functional form of the
baseline hazard function (Liu, Wolfe, and Kalbfleisch, 2006).

26See Greene (2008) for a brief overview of maximum simulated likelihood estimation.
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Table 8 in the appendix provides variable names, data descriptions, and source informa-

tion for all variables used in the empirical analysis. The wildfire suppression effort is con-

sidered complete when the fire is no longer growing (in terms of my notation, aiτ−1 = aiτ ).
27

This definition is consistent with the terminal condition, f(T ) ≤ f̄ , in the dynamic program.

Because hazard models rely on the accumulation of time, area, and cost, consecutive reports

in which the suppression cost or fire size remained constant yield no additional information

to the model, and are removed from the dataset.

The structure of the likelihood function suggests that each fire is an independent event.

However, we know that fires within a region compete for suppression resources. Therefore, we

construct the variable Resource Scarcity as an instrument for the availability of resources

during a suppression effort. For each observation, we sum the cumulative growth of all

wildfires within a region, within the past five days, and subtract the mean growth of fires in

that region during that month across all years. Positive values indicate that fire activity in

the region is above average, and resources are likely scarce. Negative values imply that fire

activity is less than expected, leaving desired resources available for dispatch. Conditional

on Resource Scarcity the fires are assumed independent.

Suppression resources are regionally managed by Geographic Area Coordination Cen-

ters (GACC). However, the dataset contains the Forest Service region where the wildfire

began. Fortunately, the GACC regions correspond to the FS regions with some exceptions

as illustrated in Figure 1. The two most important exceptions are the division of Califor-

nia into separate GACC regions and Nevada as its own GACC. I do not believe that these

discrepancies significantly affect the results.

There are two general categories of covariate: time-varying covariates, xiτ ∈ x, take on

27Finney, Grenfell, and McHugh (2009) also consider a wildfire contained if the burned area does not
increase between reports.
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Figure 1: Maps of Forest Service and GACC regions. See Table 9 for FS region names.

(a) Source: U.S. Forest http://www.fs.

fed.us/contactus/regions.shtml

(b) Source: Geographic Area Coordination
Center http://gacc.nifc.gov/images/

map_national.gif

different values over the course of the fire and time-invariant covariates, xi ∈ x, remain con-

stant over the duration of the fire. With the exception of weather covariates, time-varying

covariates are lagged one period to avoid endogeneity (Petersen, 1995). For instance, the

number of threatened residential homes reported in period t − 1 is considered predeter-

mined in period t. Recall the conditionality of the hazard function on the survival function.

The survival function effectively accumulates information over the course of the fire such

that increases in duration (size, or cost), from one observation to another, are attributable

to covariate values during that interval.28 Therefore, fire growth in period t cannot influ-

ence covariate values (e.g., number of threatened residential homes) in period t − 1. The

covariates Threatened Structures and Potential Evacuation are chosen over their con-

firmed counterparts (Destroyed Structures and Confirmed Evacuation) because I believe that

“threatened” and “potential” reflect the incident commanders assessment of the wildfire’s

current status. Therefore, any resource allocation decisions made at time t will affect future

outcomes.

28The survival function is qualitatively similar to the number of previous intervals variable included in
Finney, Grenfell, and McHugh (2009) GLMM.

http://www.fs.fed.us/contactus/regions.shtml
http://www.fs.fed.us/contactus/regions.shtml
http://gacc.nifc.gov/images/map_national.gif
http://gacc.nifc.gov/images/map_national.gif
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Table 9 in the appendix presents summary statistics of the covariates used in this analysis.

The dataset contains 10,321 observations on 3,829 fires. Means and standard deviations of

time-varying covariates xiτ are based on all observations (10,321) while the statistics of time-

invariant covariates xi and the dependent variables duration, cost, and size are based on one

record per fire (3,829).

2.4 Results

Table 10 in the appendix contains the parameter estimates βk and standard errors for du-

ration, cost, and area, as well as the ancillary Weibull distribution parameters. In order to

provide context for the coefficient estimates, I first discuss the ancillary parameters of the

Weibull distribution that determine the shape of the baseline hazard function. The baseline

is defined as the hazard function where all of the covariates are null. Because some con-

tinuous covariates, such as temperature, rarely take a null value, I also present the hazard

function with the continuous covariates evaluated at their median value (categorical variables

are left as their null values). The environmental and wildfire characteristics represented by

the baseline and median scenarios are described in Table 11 in the appendix.

The baseline Weibull hazard function h0(k) = λkςk (λkk)ςk−1 for k = t, c, a is parameter-

ized by a shape (ςk) and scale (λk) parameter.29 The baseline hazard functions for duration,

cost, and area are presented in Figure 2.30

The hazard function for duration is increasing over time (ςt (shape) = 1.25), which implies

that as the duration of a wildfire grows, the probability of containment (conditional on no

containment to date) rises. The decreasing hazard functions of suppression cost (ςc = 0.53)

29Because the covariates multiplicatively affect the baseline hazard function through the proportionality
factor, I can subsume λk into the exponential function as γ(x) = eβ0+xβk where β0 = ςk log(λk). In this
form, the scale parameter is analogous to the intercept in a linear regression.

30It is important to note that these estimates are not intended to represent the natural, unsuppressed
growth of a wildfire. The model should be interpreted as the reduced form of an underlying structural
model, with suppression effort implicit in the outcomes.
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Figure 2: Hazard functions of duration, cost, and area: baseline and at median values of
covariates.

(a) Duration (b) Cost (c) Cost

and fire size (ςa = 0.63) imply that as wildfires become more expensive and large in area, the

instantaneous probability of containment declines.31 These results are consistent with those

of Holmes, Huggett, and Westerling (2008) and Strauss, Bednar, and Mees (1989) who find

that while most fires are contained when the fire is small, some fires grow excessively large

and become very difficult to suppress.

The survival function Ψ(k|x) = exp{−(λkk)ςk ·exp{xβk}}, as specified in equation (2.13),

represents the probability that a fire persists beyond a given duration (cost, or size). At the

point of ignition, the fire is certain to persists until the next instant of time (Ψ(0) = 1). As

duration (cost, or size) grows, the probability of persistence, or fire survival, falls. Figure 3

depicts the survival functions of all three models, evaluated at the median covariate values.32

The bottom section of the Table 10 contains the elements of the Cholesky triangle L

which satisfies the equation Ω = LL
′
. The covariance matrix of the normally distributed

31Note that the cumulative hazard rate is always increasing, even when the instantaneous hazard rate is
decreasing over the domain. In other words, the probability of a fire growing larger than 100 thousand acres
is less than the probability of a fire growing larger than 10 thousand acres despite the smaller hazard rate
at 100 thousand acres.

32Recall that the survival function is one minus the probability of containment, Ψ(t | x(t)) = 1−Φ(t | x(t)).
Figure 3 is the complement to Figure 2 in Finney, Grenfell, and McHugh (2009).
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Figure 3: Survival functions evaluated at median covariate values

unobserved heterogeneity, ε, and the associated correlation matrix are

Ω̂ =




σ̂tt σ̂tc σ̂ta

σ̂tc σ̂cc σ̂ca

σ̂ta σ̂ca σ̂aa




=




0.6813 0.6521 0.7687

0.6521 0.6282 0.7409

0.7687 0.7409 0.8740




P̂ =




1 ρ̂tc ρ̂ta

ρ̂tc 1 ρ̂ca

ρ̂ta ρ̂ca 1




=




1.0000 0.9992 0.9990

0.9992 1.0000 1.0000

0.9990 1.0000 1.0000



.

While not all of the estimates of L are statistically different from zero, a likelihood ratio

test rejects the joint hypothesis that σij = 0 for all i, j = t, c, a with a LR = 898.32 ∼ χ2
6

(p-value=< 0.0001).33 The off-diagonal elements of the correlation matrix are above 0.99,

which indicates that the outcomes, duration, cost, and area covary closely. While such close

covariation is expected, this result underscores the importance of jointly modeling duration,

cost, and area.

33I also conduct a LR test of uncorrelated heterogeneity with a null hypothesis of σij = 0 for all i 6= j.
LR = 705.04 ∼ χ2

3 (p-value=< 0.0001).
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Table 1: Selected results. Percent effect of a change in covariate on expected duration, cost,
and size

Duration Cost Area
Threatened Residential (100s) 8.56∗∗ 22.23∗∗∗ 26.02∗∗∗

Threatened OutBuildings (100s) 3.17 16.67∗∗ 35.03∗∗∗

Potential Evacuation 120.89∗∗∗ 330.42∗∗∗ 401.83∗∗∗

Threatened Commercial (100s) -28.95∗∗∗ -15.99 14.58
Resource Scarcity (100k acres) 2.58 3.81∗ 13.42∗∗∗

* p < 0.1, ** p < 0.05, *** p < 0.001

Hypothesis tests are based on underlying parameter estimates

Propositions 1, 2, and 3 are the foundation of three hypotheses: when the number of

threatened assets rise, wildfire management teams divert resources from suppression toward

protection of threatened assets, which causes 1) longer, 2) larger, and 3) more costly expected

wildfires. Table 1 contains a subset of the results that support these hypotheses. Table 10

in the appendix contains the full set of results. The parameter estimates in Table 1 are

transformed to show the percent effect of a one unit change in a covariate on the ex ante

expected duration, size, and cost of a fire.

The results indicate that the expected duration, cost and size of a wildfire are affected

by an increase in the number of threatened assets. When the number of Threatened

Residential homes increases by 100, the expected cost and size of a fire rise by 22% and

26%, respectively. These results contrast with those of Donovan, Noordijk, and Radeloff

(2004) who find that threatened homes have no statistically significant effect on wildfire

cost.34 Similarly, an increase of 100 Threatened Outbuildings raises the expected cost and

size of a fire by 16.6% and 35%, respectively.35 The impact of threatened resources on the

expected wildfire cost suggest that at least one of the conditions in proposition 3 is met. I

attribute these results to a reallocation of response resource away from suppression towards

34Note that Donovan, Noordijk, and Radeloff (2004) treat wildfire size as an exogenous variable in a linear
regression of total suppression costs, whereas the model considers suppression costs an endogenous outcome.

35The magnitude of the estimates for Threatened Residential and Threatened Outbuildings are not
statistically different from each other.
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protection.

Potential Evacuation is a subjective measure of the suppression management team’s

level of concern regarding the safety of a community. Potential Evacuation increases the

expected duration by 121%, the expected costs by 330%, and the expected size by 401%. In

addition to protecting threatened residences, resources may be used to prepare and manage

evacuations, leaving fewer resources available for suppression.

The estimates in the duration and cost equations associated with Threatened Commercial

are not consistent with hypotheses 1) and 2). An increase of 100 Threatened Commercial

reduce the expected duration by 29% and reduces the expected costs by 16% (not statistically

significant). However, the expected size increases by 15% when the number of Threatened

Commercial rises by 100. While the duration and cost results do not appear to be consistent

with the theory, the management team’s perception of insurance may impact resource alloca-

tion decisions. Suppose that fire managers believed commercial structures are fully insured

against fire damage as opposed to residential structures and outbuildings whose non-market

value cannot be fully insured (Yoder, 2010). The management team may treat commercial

structures as a low value asset and continue suppression rather than shifting suppression

effort toward protecting specific assets.

The ability of suppression management teams to optimally allocate resources to a specific

fire is contingent on the availability of the desired resources, which depends on fire activity

in the region. The cost function in the theoretical model given by equation (2.2) includes

an opportunity cost woi for i = f, d meant to capture the availability of resources. I include

the variable Resource Scarcity as an instrument for woi . I find that when fire activity

in the region increases by 100,000 acres within a span of five days: the expected duration

increases by 2.5% (not statistically significant), the expected cost increases by 4%, and the

expected size increases by 13%. As the opportunity cost of suppression resources rises, the

management team may not apply sufficient suppression effort leading to larger and more



30

costly expected fire outcomes.

The covariate coefficients provide information about the impact of a covariate at any

given point in time. However, conditions change over the course of the wildfire. These

changes cause the hazard function to “jump” from the hazard rate reflecting the previous

covariate state to that of the new state. Therefore, the hazard function is not continuous over

the course of a particular wildfire. The survival function, on the other hand, is continuous

and provides an intuitive representation of the wildfire’s progression over time.

Figure 4 contains the hazard and survival functions of the Huggins fire, a wildfire in

Curry County, Oregon that started in July 2005. In order to illustrate the effect of a time-

varying covariate on the hazard rate and survival function, I fix all covariates, except for

potential evacuation, to their within-fire median values. The Huggins wildfire lasted 40

days, however, the transition between covariate values is clearer when the duration axis is

truncated.

Figure 4a displays four hazard functions: 1) at the population median covariate levels, 2)

at Potential Evacuation = 0 (with other covariate fixed to their within-fire median), 3) at

Potential Evacuation = 1, and 4) the hazard function based on the Huggins fire data. The

initial duration hazard rate corresponds to Potential Evacuation = 1 that persists for 12.5

days.36 Given that potential evacuation reduces the hazard of containment (βpot evac =

−0.792 from table 10), the Huggins fire hazard function lies below the median population

hazard function. The jump in the Huggins hazard function represents the instantaneous

transition to a new state corresponding to a new ICS-209 report. During the interval 12.5

to 13.7 days, the potential for evacuation is removed, and the hazard of containment jumps

to the hazard function associated with Potential Evacuation = 0. After day 13, the

potential for evacuation was reinstated, and the hazard of containment fell once again. I

36Note that the dataset contains numerous reports within the 12 day interval in which other time-varying
covariates change. However, all other covariate are fixed at their median level to illustrate the marginal
effects of a change in a time-varying covariate during a fire.
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Figure 4: Hazard and survival function of Oregon wildfire experiencing potential evacuation.

(a) Hazard function

(b) Survival Function
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attribute these large shifts in the probability of containment to shifts between suppression

and protection strategies in response to threatened assets.

Figure 4b displays the population median survival function, and the Huggins fire survival

function, which represents the cumulative effects of changing potential evacuation over

the course of the fire. During the first 12.5 days, the probability of the fire persisting another

day gradually declines due to the existing potential for evacuation. Midway through day 12,

the potential for evacuation is removed and the slope of the survival function decreases.

The kink in the survival function reflects the instantaneous transition to the higher hazard

rate depicted in figure 4a. Once the potential for evacuation is reinstated, the slope of the

survival function rises to a level consistent with that during the interval from 0 to 12.5 days.

However, the curve has shifted down, due to the interval of increased containment probability,

reflecting the cumulative nature of the survival function. I consider the cumulative aspect

of the survival function an important feature of this hazard model approach because it

approximates the wildfire manager’s accumulation of information over the course of the fire.

2.5 Conclusion

I have proposed a model of disaster response applied to wildfire in which managers face

tradeoffs between suppression and protection while attempting to minimize costs and dam-

age. I hypothesize that an increase in the number of threatened assets causes managers

to shift resources from suppression toward asset protection. The model predicts that the

diversion of resources causes the expected duration, cost, and size of the fire to rise.

The model of disaster response, and the focus on disaster outcomes, lends itself to an

empirical duration model. I derive the foundations of a duration model from the dynamic

model of disaster response and estimate a trivariate hazard model. The results support

the predictions of the theory: an increase in the number of threatened assets increases the
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expected duration, cost, and size of the fire. In addition, I find that the trivariate hazard

model with correlated unobserved heterogeneity outperforms the model with independent

unobserved heterogeneity, which outperforms the model without unobserved heterogeneity.

This result underscores the importance of jointly estimating disaster outcomes; specifically,

modeling wildfire size and cost as jointly determined outcomes.

The results of this analysis imply that the growing wildland urban interface has, and

will continue to influence wildfire size and cost. As more structures are built in zones with

high risk of fire, the results imply that fires are expected to last longer, grow larger, and

cost more as structures are threatened during wildfire. Given the emphasis on structure

protection, policies that limit, or discourage, the expansion of wildland urban interface may

lead to smaller fires and lower federal annual expenditures on fighting wildland fire. The

recent rural homeowners fee imposed by the state of California charges those with homes in

the wildland urban interface and annual fee of $150 to offset the cost of structure protection.

The modeling framework proposed in this analysis provides ex-ante and ex-post infor-

mation to fire-fighting agencies at all levels. The Huggins fire example demonstrates how

the results of this model may be used by wildfire managers to understand the probabilis-

tic behavior of wildfire given the limited information they accrue throughout the response

effort. Results from the hazard model may be integrated with existing management tools

such as the Wildland Fire Decision Support System, used to project fire behavior and fu-

ture resource needs (Service, 2011). Furthermore, analyzing the survival function after the

response effort is complete may provide information that would help agencies such as the

U.S. Forest Service and Bureau of Land Management assess their management and resource

prepositioning strategies.
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Chapter 3

A Model of Wildfire Response Resource Allocation

3.1 Introduction

Wildfire is a dynamic and stochastic physical process that alters ecosystems and destroys

natural and manmade assets. As such, costly suppression activity is undertaken to manage

wildfire growth and protect threatened assets. Fire managers, operating in an uncertain en-

vironment, accumulate information and develop, implement and update management plans.

When multiple wildfires are burning within a region, a regional command unit allocates

response resources between fires constraining the operations of an individual fire manager.1

The incentives of an individual fire manager throughout the course of a fire are complex and

poorly understood (Calkin et al., 2013).

The recent escalation of wildfire management costs has focused the attention of policy-

makers and researchers on the factors that contribute to large expensive wildfires. This

question depends on the micro-level behavior of individual wildfire managers, as well as

regional command units, during a response effort. A clear understanding of wildfire manage-

ment incentives is a prerequisite to analyzing the factors that contribute to growing wildfire

costs.

The objectives of this study are twofold: develop a bioeconomic model of wildfire response

that explicitly incorporates the interaction between fire managers and regional command

1The term fire manager describes the individual decision maker “on the ground” at any single fire. This
individual, or group of individuals depending on the size and complexity of the fire, is called the incident
commander or incident management team. The term regional command unit refers to Geographic Area
Coordination Centers (GACC) who coordinate the distribution of response resources within a geographically
defined area.
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units; estimate a theoretically consistent two-stage econometric model of wildfire cost, size,

and structure damage where the first stage is a set of response resource allocation equations.

The theoretical model motivates a hypothesis for how an increase in threatened residential

structures leads to larger and more expensive fires. The econometric model provides support

for this hypothesis and offers new insights into the relative productivity of response resources

throughout the course of a wildfire.

Since Sparhawk (1925), theoretical models of wildfire response management have focused

on the cost plus net loss framework for a given fire or fire season (Bratten, 1970; Mees and

Strauss, 1992; Donovan and Rideout, 2003; Donovan and Brown, 2005). However, few stud-

ies model the complexity of managing multiple wildfires simultaneously; notable exceptions

include Kirsch and Rideout (2005) and Petrovic, Alderson, and Carlson (2012). Of these

studies, none have explicitly modeled, theoretically or empirically, the interaction between

individual fire managers and the regional command unit. By explicitly modeling this in-

teraction, I show how the fire manager conveys his or her marginal value of a resource to

the regional command unit. Furthermore, the model yields a set of structural equations

from which I derive a set of estimable reduced-form response resource allocation equations.

Estimates from the response resource allocation equations are used to generate instruments

for endogenous response resources in a set of second-stage regressions on wildfire cost, size

and damage.

Most empirical studies of wildfire outcomes rely on data aggregated over a fire, or even an

entire fire season (Liang et al., 2008; Abt, Prestemon, and Gebert, 2009; Yoder and Gebert,

2012).2 The few studies that have used micro-level panel data to study wildfire outcomes

estimate reduced-form models from which the estimates contain both direct and indirect

2Another class of studies construct models of wildfire response, and simulate response strategies (Fried,
Gilless, and Spero, 2006; Haight and Fried, 2007; Petrovic, Alderson, and Carlson, 2012). While the policy
implications of these studies are comparable to empirical studies based on data, the method of analysis is
not.
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impacts (Donovan, Noordijk, and Radeloff, 2004; Finney, Grenfell, and McHugh, 2009; Gude

et al., 2013). Such models offer insights into the factors that contribute to wildfire cost and

size, but are unable to identify a mechanism that leads to the observed wildfire outcomes. In

contrast, this study utilizes a dynamic panel dataset that covers the entire U.S. from 2001 to

2010 and includes data on response resource allocation. Data on response resources allows

us to test the mechanism proposed to explain how more threatened homes lead to larger and

more expensive fires.

Dynamic panel models have been used to study a variety of economic phenomenon from

employment (Arellano and Bond, 1991) to growth an development (Dietz, Neumayer, and

De Soysa, 2007), but have not yet been applied to resource allocation problems in the con-

text of disaster response. Wildfire response is driven by the evolution of the wildfire, which

is inherently a dynamic process. The Arellano-Bond systems estimator, proposed by Blun-

dell and Bond (1998), accounts for a dynamic process with a lagged dependent variable

and accommodates endogenous regressors. The estimator overcomes dynamic panel bias by

instrumenting the lagged dependent variable (and any endogenous regressors) with further

lags established to be exogenous by the specification test proposed in Arellano and Bond

(1991). I use the Arellano-Bond systems estimator to consistently estimate the first-stage

resource allocation equations derived from the proposed model of wildfire response.

In a second stage, I estimate a set of shared frailty hazard models of wildfire cost and

size (as in chapter 2), and a zero-inflated negative binomial model of number of residential

structures damaged and destroyed. In each of these second-stage models, I instrument

endogenous response effort with predicted values from the first-stage models of response

resource allocation. This study extends the analysis in chapter 2 by 1) identifying the

channels through which environmental factors and threatened resources affect wildfire cost

and size, and 2) estimating the effectiveness of response effort in mitigating damage to

residential structures.
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The results suggest that wildfires in which residential structures are threatened receive

more firefighter crews and bulldozers and fewer engines. Second stage results then indicate

that firefighter crews and bulldozers reduce structure damage, but lead to larger more expen-

sive fires. In contrast, highly trained firefighter crews and engines reduce fire size and only

marginally increase fire cost, but do not significantly reduce structure damage. Together

these results provide support for the hypothesis that threatened homes cause fire managers

to divert response resources from suppression toward protection, which allows the fire to

grow larger, and ultimately cost more to manage.

The remainder of the paper is outlined as follows. Section 3.2 develops a model of

wildfire response to explicitly characterize the interaction between individual fire managers

and a regional command unit. Section 3.3 describes the data and empirical models used in

this analysis. Section 3.4 presents the results of the response resource allocation equations

(first stage) and the hazard and count models of wildfire cost, size, and damage to structures

(second stage). Section 3.5 discusses the policy implications and concludes.

3.2 Model

Consider an individual fire manager that allocates response resources within a fire, subject

to a set of resource constraints determined by the regional command unit. Individual fire

managers convey all relevant information about the marginal value of response resources to

the regional command unit. The regional command unit aggregates this information and

allocates a finite set of response resources to each fire such that the marginal value of an

additional resource is equal across all simultaneously burning fires.

I model the wildfire as a stochastic process that evolves over time and may lead to eco-

nomic damage. While weather and other environmental characteristics affect fire growth,

feedback loops exist between human intervention and the growth of the fire. For any single
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wildfire manager with a constrained number of response resources, there exists an intertempo-

ral tradeoff between protection of currently threatened assets and suppression of fire growth.

Sections 3.2.1 and 3.2.2 describe the individual fire manager’s and regional command unit’s

problems, respectively.

3.2.1 Wildfire Manager

The fire manager faces a tradeoff between total fire costs and damage. Fire managers ben-

efit by applying available response resources to mitigate damage to threatened assets, but

face political pressure and employment consequences if costly resources are found to have

exceeded reasonable limits. The fire manager’s loss function is

`t(dt, ct),

where `t is the loss function and is increasing in both damages, dt, and costs, ct, at any point

in time t.34 The cost of response at time t is

ct = y′twt,

where yt is the (J × 1) vector of response resources and wt is the (J × 1) vector of corre-

sponding wages. I classify response in terms of suppression and protection, where suppression

mitigates fire growth and protection mitigates damage to currently threatened assets. All

3Donovan and Brown (2005) argue that wildfire managers are not subject to a budget constraint, but
rather face disincentives for grossly exceeding reasonable levels of expenditure. Calkin et al. (2013) also
acknowledge the lack of a true budget constraint in a choice experiment study of wildfire manager incentives.

4This general specification of the objective function accounts for several important features of wildfire
management not present in the often used linear cost plus loss specification. Expenditure on response
effort assigned to protect a specific structure or structures may exceed the value of the structure receiving
protection (Troyer et al., 2003; Calkin et al., 2005; Calkin et al., 2013), which suggests that wildfire managers
place unequal weights on costs and damage.



39

resources are assigned to either suppression or protection, yt = yst + ypt .
5 Wildfire damage

at time t is given by

dt = d(ypt ; xt,vt(δ, at(ft))), (3.1)

where ypt is a vector of response resources devoted to asset protection, xt is a vector of

exogenous environmental and geographic characteristics, vt(δ, at) is a vector of threatened

asset values that depends on asset density, δ, and fire growth at time t, at(ft), which in

turn depends on the energy stock of the fire at time t.6 Damage is decreasing in protection

resources, and increasing in the number of threatened assets, which is increasing in fire

growth.7 Environmental characteristics may facilitate or hinder the productivity of response

resources. Difficult terrain may severely limit the productivity of engines and dozers, while

precipitation may increase the productivity of fire crews (Hirsch and Martell, 1996; Plucinski

et al., 2012).

The stock of energy grows according to an equation of motion,

ft+1 = ft + gt(y
s
t ; xt) + εt, (3.2)

5Protection and suppression effort may also be thought of as direct and indirect strategies for mitigating
damage to assets. Where direct effort is necessary to mitigate damage likely to occur within the next
planning period, indirect effort mitigates expected future damage beyond the next planning period. Note
that the use of direct and indirect attack in this context do not correspond to the firefighting terms direct-
and indirect-attack.

6The vector of threatened asset values may include residential and other private structures, watersheds,
harvestable timber, and wildlife habitat. I focus on residential structures because I have data on number of
threatened residential structures and the county median home price over the course of a fire.

7A particular functional form that satisfies the assumptions of equation (3.1) is

dt =

(
K∑

k=1

ωktvkt(δkt, at)∑J
j=1 ρjk(xt)y

p
jkt

)
,

where ωkt is the subjective weight the fire manager places on asset k, ρjk(xt) is the productivity of resource
j at protecting asset k as a function of environmental factors, and ypjkt ∈ ypt , vkt ∈ vt, and at are as defined
in text.



40

where yst is the vector of suppression resources, xt is a vector of exogenous environmental

characteristics, and gt(·) is growth function. The stock of energy is decreasing in all elements

of yt and may be increasing or decreasing in xt. High windspeed may promote fire growth,

while higher levels of humidity may inhibit fire growth. The stock of energy is unobserved

by the researcher and is therefore treated as a random variable with a disturbance εt. The

response effort ends when the stock of energy falls below some exogenous threshold, which I

normalize to zero for convenience, fT = 0.8

The fire manager allocates response resources subject to a set of resource constraints

imposed by the regional command unit. At any time t the fire manager faces the following

J constraints in vector form,

ȳt ≥ yst + ypt ,

where ȳt is a vector of J resources committed to the fire by the regional command unit.9

This allocation is exogenous at time t because the regional command unit commits these

resources at t − 1. The resource constraint (and the associated Lagrange multiplier in the

constrained optimization problem) serves as the point of connection between the individual

fire manager and the regional command unit.

Upon discovery of a fire, a fire manager learns the initial stock of energy, f0, and develops

a strategy, {ypt ,yst}Tt=0, to solve

min
{yp

t ,y
s
t }

T∑

t=0

Et[`t(y
′
twt, dt)] (3.3)

s.t. ȳt ≥ yst + ypt

ft+1 = ft + gt(y
s
t ; xt) + εt

8This terminal condition is similar to the containment constraint defined in Donovan and Rideout (2003).
9This constraint is equivalent to the resource constraint in the linear programming model of wildfire

response resource allocation Bratten (1970).
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ft, ȳt,y
s
t ,y

p
t ≥ 0 ∀ t

fT = 0,

where dt is defined in equation (3.1).10 The expected duration, T , is implicitly determined

by the path of {ypt ,yst}Tt=0 and the terminal condition fT = 0. The structure of this problem

reflects a forward-looking rational fire manager that formulates a response policy over the

planning horizon. I assume that the total resources available to the fire manager are com-

mitted to the fire by the regional commander in t−1, which implies that they are exogenous

to the fire manager in each period t. Over the course of the fire, the manager accumulates

information and resolves his optimization problem at every period t.11

After substituting equation (3.2) into equation (3.1), the first order conditions of the fire

manager’s minimization problem are

[Protection] Et

[
∂`t
∂ct

wt +
∂`t
∂dt

∂dt
∂ypt
− λt

]
= 0 ∀ t (3.4)

[Suppression] Et

[
∂`t
∂ct

wt +
∂`t+1

∂dt+1

∂dt+1

∂gt

∂gt
∂yst
− λt

]
= 0 ∀ t (3.5)

[Constraints] ȳt − ypt − yst ≥ 0 ∀ t

λjt[ȳjt − ysjt − y
p
jt] = 0 ∀ j, t

λjt ≥ 0 ∀ j, t.

Each vector equation is of dimension (J × 1). Equations (3.4) and (3.5) imply that a fire

manager applies response resources to equate the marginal losses across both suppression

10While this model captures the incentives that lead to costly response effort, it also can represent the
case in which few or no assets are at risk and the optimal policy is little or no response.

11This formulation is consistent with the actual behavior of fire managers on the ground. In fact, the data
used to estimate the empirical resource allocation equations is based on reports by fire managers when an
update to the response policy is filed.
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and protection. The marginal benefit of suppression is the reduction of future threatened

assets which implies lower expected future costs and damages. The marginal benefit of

protection is the mitigation of damage to currently threatened assets. The marginal cost of

protection (suppression) include the marginal “disutility” of incurring higher costs and the

opportunity cost (λ) of using the resource to provide suppression (protection) effort. The

system of equations, initial, and terminal conditions implicitly define {ŷst , ŷ
p
t , λ̂t}Tt=0.

3.2.2 Regional Command Unit

The federal contract for securing a resource states that the award is based on the “best

value” conditional on meeting a minimum set of requirements (NIFC, 2011). This notion

of “best value” refers to the individual fire managers marginal benefit of receiving an ad-

ditional resource.Individual fire managers communicate their need for response resources to

the regional command unit through the shadow price λji for each resource j and fire i. Once

resources are committed to a fire, they remain committed for the entire day, after which they

may be reassigned to another fire.12 While tactics and strategies may vary idiosyncratically

across individual fire managers, their primary objectives remain consistent. The regional

command unit chooses I sets of J resources to minimizes the sum of expected losses across

all wildfires I burning at time t,

min
ȳit

I∑

i=1

`it(ȳit) ∀ t (3.6)

s.t. ¯̄yt ≥
I∑

i=1

ȳit,

where ¯̄y denotes the constraint on resources available to the region at any given point in

time, and ` is defined in equation (3.3). Wildfires begin and end throughout the year, so

12This assumption may be strong for aircraft given their mobility.
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the regional command unit repeatedly solves this static minimization problem at every point

in time t. However, the model remains dynamic because each fire manager’s shadow price,

λit, is based on the decisions of a forward-looking agent.13 The first-order conditions of the

regional command unit’s problem are

∂`it(ȳit)

∂ȳit
= µt ∀ i, t (3.7)

¯̄yt −
I∑

i=1

ȳit ≥ 0

µjt

[
¯̄yjt −

I∑

i=1

ȳijt

]
= 0 ∀ j

µjt ≥ 0,

where µt is a (J × 1) vector of shadow prices corresponding to each resource type. Equation

(3.7) implies that in equilibrium, the marginal benefit of an additional resource j is equal

across all fires. By definition, the regional command unit’s marginal benefit of committing

resource j to fire i is equal to fire manager i’s shadow price of the resource, i.e., ∂`i
∂ȳij

= λij.
14

However, the regional command unit allocates a finite set of resources and recognizes the

cost of committing resource j to fire i in terms of the losses expected on fire n 6= i. Therefore,

fire n’s shadow price of resource j is inversely related to the number of resources committed

to fire i.

13In practice, another source of uncertainty arises from the stochastic nature of wildfire ignitions. I abstract
from this complication in the theoretical model because incorporating it would increase the complexity of
the model and provide little substantive information.

14The individual fire manager’s Lagrangian function amounts to adding λ′t(ȳt − ypt − yst ) to the objective
function

L ≡
T∑

t=0

`t(y
p
t ,y

s
t ) + λ′t(ȳt − ypt − yst ) =

T∑

t=0

`t(y
p
t ,y

s
t )

Differentiating L with respect to the constraint yields the desired equality

∂L

∂ȳt
≡ ∂`t(·)

∂ȳt
= λt ∀ t

.
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Figure 5: Regional command unit’s problem.
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Figure 5 illustrates the regional command unit’s problem of allocating a finite set of one

resource type, ¯̄y, across two fires. Fire 1’s marginal benefit of resources is decreasing in the

number of resources it receives while fire 2’s marginal benefit is increasing along the same

dimension. The efficient allocation of ¯̄y occurs at µ = λ1 = λ2. If the total available number

of resources in a region increased, the x-axis would expand, possibly to the point where λ1

and λ2 no longer intersect in which case, more resources are available than requested and

the regional command unit’s constraint would not bind µ = 0. If, in contrast, a single fire

requested more resources than available, µ = λ1 at the vertical intercept.

Equation (3.7) implies that λijt = λ−ijt = µjt for all i, j and t and forms the basis for the

set of reduced-form response resource allocation equations. The solution to the individual

fire manager’s optimization problem implies that the shadow price, λijt, is a function of

expected outcomes at time t.

λijt = λ(ȳijt;wijt,vit(ait),xit) ∀ i, j, t (3.8)
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As long as there are diminishing returns to resource j, the shadow price is a decreasing

function of the quantity of resources committed to fire i. The remaining variables shift the

marginal benefit of fire manager i up or down. The shadow price, λ−ijt represents the social

marginal cost of allocating resource j to fire manager i in terms of damage on all fires −i.

The solution to the regional command unit’s optimization problem implies that λ−ijt is a

function of the exogenous characteristics that influence all fires −i at time t.

µijt = µ(ȳijt; ȳ−ijt, w−ijt,v−it(a−it),x−it, I) ∀ i, j, t (3.9)

The marginal social cost of allocating resource j to fire i at time t is an increasing function

of ȳijt. The remaining variables shift the marginal benefit of fire managers −i; and are

therefore, expected to shift the social cost.

By the equilibrium condition in equation (3.7), λijt = λ−ijt = µjt for each fire i, resource

j, and time t. Therefore, equations (3.8) and (3.9) form a system of structural equations.

However, I as a researcher, do not observe λ, but I do observe the quantity, ȳijt, of resource

j allocated to fire i. The equilibrium condition in equation (3.7) implies the existence of the

reduced-form equation

ȳijt = y(

Demand Factors︷ ︸︸ ︷
wijt,vit(ait(fit)),xit,

Supply Factors︷ ︸︸ ︷
ȳ−ijt, w−ijt,v−it(a−it(f−it)),x−it, I ) + εt (3.10)

In the theoretical model, εt, represents the uncertainty about the growth of the fire’s

energy stock. In the empirical model, the error term εt captures the uncertainty about

weather, fire behavior, and the ignition of new fires. The number of assets at risk depends

on the growth of the fire, which implies that many of the factors that influence the allocation

of response resources are uncertain outcomes. Intuitively, both fire managers and regional

command units request and commit resources prior to learning the outcome of the random
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variable. Therefore, these so called supply and demand factors are expectations formed in

period t− 1 that influence the committed resources observed in period t.

3.2.3 Hypotheses

Weather factors such as temperature, windspeed, and humidity impact the physical pro-

cess of wildfire, which cumulatively impact wildfire outcomes. Since response resources are

committed prior to the realization of weather outcomes, allocation decisions are based on

forecasted weather. Studies of the physical process of wildfire find that windspeed and tem-

perature facilitate fire spread while humidity inhibits fire spread (Finney, 1998). Therefore,

I assume that growth of the fire’s energy stock is increasing in windspeed and temperature,

and decreasing in humidity. An expected increase in fire growth increases the potential

losses, and thus, the marginal value of resource j.15 The following three hypotheses pertain

to the impact of forecasted weather on response resource allocation:16

Hypothesis 1. An increase in the forecasted temperature increases the number resources

committed to fire i.

Hypothesis 2. An increase in the forecasted windspeed increases the number resources com-

mitted to fire i.

Hypothesis 3. An increase in the forecasted relative humidity decreases the number re-

sources committed to fire i.

The impact of weather on wildfire cost, size, and structure damage is conditional on

hypotheses 1, 2, and 3. If fire managers correctly forecast the weather and receive their

15Finney, Grenfell, and McHugh (2009) argue that fire managers exploit opportunities during periods of
low fire spread.

16To the extent that weather is homogenous within a region, a change in weather may affect all fires within
the region similarly and show no significant impact on the quantity of resources allocated to fire i. The reader
may think of an ambiguous change in the equilibrium quantity of a good when the same exogenous factor
shifts demand outward and supply inward. I include data on forecasted weather on all fires −i to account
for this possibility.
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requested resources in anticipation of wildfire behavior, the impact of high wind and tem-

perature on wildfire cost, size, and structure damage may be ameliorated, or even reversed.

If on the other hand, weather is incorrectly forecasted or fire managers do not receive their

requested resources, high wind and temperature would increase fire growth and lead to larger

and more expensive wildfires that cause more damage.

When the fire manager faces a resource constraint, an increase in the number of threat-

ened assets translates into a larger marginal benefit, λit, for resources used in protection

effort.

Hypothesis 4. An increase in the number of threatened assets on fire i increases the allo-

cation of protection resources j to fire i. Similarly, an increase in the number of threatened

assets on fire −i decreases the allocation of protection resources j to fire i.

The model in chapter 2 abstracts from the allocation of response resources by considering

the individual fire manager and regional command unit as a single agent. While the results

of the trivariate hazard model suggest that threatened assets increase wildfire cost and size,

the reduced-form model is unable to distinguish between direct and indirect effects that

flow through resource allocation decisions. In contrast, this analysis distinguishes between

these effects by estimating a first-stage model of response resource allocation. Therefore,

threatened structures should only affect wildfire cost, and size and structure damage through

an increase in protection resources.

Hypothesis 5. An increase in the number of threatened residential structures indirectly

affects wildfire cost, size, and structure damage through a reallocation of response resources.

The regional command unit faces an exogenous resource constraint at any point in time.

If there exists enough demand for response resources, the constraint will bind and µ is

a decreasing function of the maximum available resources. Therefore, each fire i is more
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likely to receive their requested quantity of resources when the maximum available resources

increase.

Hypothesis 6. An increase in the total available resources in the region increases the allo-

cation of resources to fire i.

3.3 Data and Empirical Methods

The dataset used in this study is compiled from several publicly available datasets. Table

12 contains the data sources and a brief description of the data gathered from each source.

The Incident Status Summary (ICS-209) data are based on reports completed by wildfire

managers intermittently throughout the wildfire response effort. These data include the

response resources committed to the fire at various stages during the fire, weather, geographic

characteristics, and relevant wildfire outcomes such as cost, size, and damage to structures

on large wildfires in the U.S. from 2001 to 2010.17 ICS-209 reports are filed for fires that

exceed 300 acres in grass and brush, or 100 acres in timber, or receive type 1 and 2 crew

teams (NICC, 2012), which creates truncation that may bias the regression estimates of fire

size downward (Yoder and Gebert, 2012).

The ICS-209 data contain the number of response resources committed to fire i by agency.

The resources are aggregated by agency because regional command units coordinate the

distribution of units amongst various agencies. The resources are then grouped by the tasks

a resource is designed to accomplish (e.g., Type 1, 2, and 3 helicopters are aggregated to

form the variable Helicopter). However, type 1 and 2 firefighting crews are not aggregated

because of the significant differential in training, autonomy, and expected productivity.18

17These data have been criticized for inaccuracies and inconsistent reporting of daily response costs (Gude
et al., 2013; Gebert, Calkin, and Yoder, 2007). However, the data contain microlevel information on the
daily management of a significant proportion of large fires across the U.S., and there is no reason to believe
that missing data or input errors occur systematically in the data. Therefore, the consequence on inference
should be one of efficiency rather than bias.

18Type 1 crews are usually full time employees with high-level training, whereas type 2 crews are often
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The ICS-209 data distinguish between single resources and strike teams. A strike team is a

defined set of resources with a common leader (FIRESCOPE, 2012), which implies that one

strike team consists of more than one single resource. Based on the minimum strike team

requirements as defined in FIRESCOPE (2012), I multiply the number of strike teams by

the number of resource type j and sum the result with the single resource observations.19

The ICS-209 data also includes variables on the wildfire outcomes and conditions through-

out the fire. Wildfire cost and size are reported as cumulative outcomes and the number of

structures threatened, damaged, and destroyed are reported in each period. The variable

Thr. Residential almost perfectly represents the notion of potential damage to structures

developed in the theory. However, fire managers engaged in suppression also care about

containment of the fire perimeter. While there are no variables that explicitly provide this

information, a combination of fire size and percent containment are used to generate an in-

strument for the uncontrolled perimeter. By treating the fire size as the area of a circle, one

can use the radius to calculate the perimeter at any observation. This lower bound approx-

imation of a perimeter is then multiplied by the (1-% contained) to generate the covariate

uncontrolled perimeter.20

Figure 6 contains a plot of the covariates Uncontrolled Perimeter, Threatened Residential

over the course of the Siskiyou Complex wildfire that occurred in Northern California. Type

2 Crew is chosen as a representative resource although, other resources follow a similar

pattern. The figure illustrates the response of resource allocation to a growing Uncontrolled

Perimeter and an increase in Thr. Residential. As the Uncontrolled Perimeter continues to

grow (until day 28) the number of Type 2 Crew members increases but at a slower rate. In

comprised of seasonal firefighters with limited training.
19When resource j data is missing at time t within a fire for which other resource −j data is non-missing,

the missing observations are assumed to denote a lack of change in the number of resources committed to
fire i and are filled by resource data at t−1. If there is no prior non-missing data, the observation is replaced
with a zero. Without replacement of intermittently missing data, the entire observation would be excluded
from the estimation, which would confound the use of lagged covariates.

20The formula for this calculation is Uncontrolled Perimeter = 2π
√

(Area/π)(1−%contained).
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Figure 6: Plot of Uncontrolled Perimeter, Thr. Residential, and Type 2 Crew over duration
of Siskiyou Complex.
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addition, the number of Type 2 Crew members increases in response to a sharp increase in

the number of Thr. Residential. This figure clearly illustrates the dynamic nature of wildfire

management in the data.

The response resource allocation equations derived in section 3.2 indicate that the re-

sources committed to fire i depend on the same conditions that affect all fires −i within the

region. Therefore, I develop an algorithm to search the dataset for wildfires burning in the

region within the past 48 hours and collect data on the total number of response resourcej

committed, average forecasted weather, total number of threatened residential structures,

total number of potential evacuations, and total length of uncontrolled perimeter. These are

imperfect measures of the factors that influence the allocation of resources within a region

because the truncated ICS-209 dataset does not contain every fire. However, they should be

highly correlated and provide good instruments for the true but unknown values. Details of

the algorithm can be found in B.3.
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The National Interagency Fire Management Integrated Database (NIFMID) contain

many additional factors that influence wildfire and fire management behavior. These data

are cross sectional and represent a summary of the entire suppression effort, particularly

whether a fire was managed by federal, state, or private agencies as well as the slope, ele-

vation, aspect, and fuel model at the point of ignition. In addition, the NIFMID dataset

contains variables redundant to the ICS-209 data such as start date, final cost, final size,

location (latitude and longitude), and fire name.

Both ICS-209 and NIFMID datasets contain information relevant to this analysis, how-

ever neither contain a common identifier that would facilitate a simple merging of the two

datasets. Therefore, I develop an algorithm to merge the datasets based on an index com-

prised of word matches based on name, location, cost, size, and start date. A detailed

description of the algorithm can be found in appendix B.2.

3.3.1 Econometric Model

The econometric model of wildfire cost, size, and damage consists of two stages. In the first

stage, I estimate the response resource allocation equations with a dynamic panel model and

generate predicted values for the number of response resources committed to fire i at time

t. These predicted values instrument the endogenous response resource covariates in the

second-stage hazard equations of wildfire cost and size, and zero-inflated negative binomial

equation of wildfire damage to structures. Since the regressions in the first-stage resource

allocation equations provide information about a subset of hypotheses developed in section

3.2, I devote attention to the estimation method and results separate from the second stage

estimation.
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First-Stage Model: Response Resource Allocation Equations

I estimate the response resource allocation equations (3.10) with the dynamic panel estimator

commonly referred to as the Arellano-Bond systems estimator (Arellano and Bover, 1995;

Blundell and Bond, 1998). Response resource allocation is based on the evolution of the

wildfire over time, which implies that resource allocation is a dynamic process. Frictions

also exist in the transportation of response resources, which contribute to the dynamic

nature of the problem.21 In addition, many factors that influence the allocation of response

resources are themselves influenced by the use of response resources over the course of the

wildfire, which implies that many regressors are likely endogenous. The Arellano-Bond

systems estimator exploits the panel structure of the data to create instruments for the

lagged dependent variable and endogenous regressors.

The Arellano-Bond systems estimator jointly estimates a system of two equations: one

in levels, and one in first differences.2223

ȳijt = αj ȳij,t−1 + xi,t−1βj + cijtγj + εijt where εijt = uij + vijt (3.11)

∆ȳijt = αj∆ȳij,t−1 + ∆xi,t−1βj + ∆cijtγj + ∆vijt (3.12)

where ȳijt is the number of resources of type j = {firefighting crews, helicopters, fixed-wing

aircraft, tractors, and engines} committed to fire i at time t, xi,t−1 is a lagged vector of

covariates, cijt is a vector of contemporaneous control covariates, αj,βj, and γj are coeffi-

cients for resource j, and ∆ is a first-difference operator. Covariates in both x and c may

21Arellano and Bond (1991) study firm-level employment, which they argue is dynamic because it is costly
to hire and fire workers. In fact, the allocation of resources within a firm provides a direct analogy to the
resource transfer frictions faced by regional command units and individual fire managers.

22The original Arellano-Bond model estimates only the first difference equation. The systems estimator
generates additional moment conditions, and also allows the inclusion of covariates fixed throughout the
panel, which are differenced out in the first difference equation. As with any random effects estimator, any
fixed covariate are assumed to be uncorrelated with the fixed component of the error term.

23I implement the Arellano-Bond systems estimator with xtabond2 for the Stata statistical software package
(Roodman, 2006).
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be endogenous and are instrumented by a vector of covariates z that may include l lags of

the y and covariates in x and c.

Each resource allocation equation includes lagged covariates representing weather and

threatened assets on both fire i and fires −i. Additional covariates are included to control

for the evolution of the wildfire. The lagged values are chosen over their contemporaneous

counterparts because the observed committed resources at time t are based on decisions made

with all available information at time t − 1. This justification for the lagged structure of

covariates is also consistent with the assumption in the theoretical model that total number

of resources available to fire manager i are fixed at any point in time.

I include the lagged values of Forecasted Temperature, Forecasted Windspeed, and Fore-

casted Humidity on fires i and −i to test the hypothesis that forecasted variation in the

weather impact the request and receipt of response resources. Lagged Thr. Residential and

Potential Evacuation on fires i and −i are included to quantify the variable impact of poten-

tial damage to a highly-valued asset on each type of response resource. Lagged Uncontrolled

Perimeter is included to control for the progression of the response effort and isolate the im-

pact of the weather and threatened assets covariates. I also include Day of Year to account

for the seasonality of wildfire response.

When multiple fires are simultaneously in need of response effort, the regional com-

mand unit’s resource constraint is likely to bind. Therefore, I include the variable Response

Resourcesj −i, which is the sum of resource j committed to all fires within the region, to

account for changes in total resource availability within a region.24

The Arellano-Bond estimator exploits the dynamic nature of panel data by using lagged

covariate values, as well as external covariates, as instruments for the lagged dependent

variable and any endogenous covariates. Use of lags as instruments is justified when the

24The inclusion of covariates with information on other fires within the region also promotes the indepen-
dence of observations between fires (panels), which is an assumption of the Arellano-Bond systems estimator.
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observation-specific error term vijt is not serially correlated (Roodman, 2006). Arellano and

Bond (1991) construct a test of autocorrelation in l lags of first-difference residuals to vali-

date the inclusion of l + 1 and beyond lags of the dependent variable and any endogenous

covariates. I use this test to determine the optimal lag structure of the instrument matrix

for each equation discussed below.25

In addition to the lagged values of y and x, I include external instruments that indirectly

influence resource allocation decisions through already included covariates. A binary variable

indicating a subjective potential for evacuation and a count variable representing the number

of injuries also provide information about resource allocation over the course of the wildfire.

Because these variables are also endogenous, they are lagged at the same distance as the

endogenous covariates in x.

Estimation of the Arellano-Bond systems estimator is based on a set of theoretical mo-

ment conditions E[ze] = 0 where z is a matrix of valid instruments and e = y− xβ. When

the system is overidentified, not all moment conditions may be satisfied and the problem

amounts to choosing a weighting matrix to obtain the most precise estimates. I use the

two-step version of the estimator, which is robust to within-panel heteroskedasticity and au-

tocorrelation (Roodman, 2006).26 Standard errors of model parameters are estimated based

on the two-step estimator correction proposed by Windmeijer (2005).

25The instrument matrix is constructed such that E[z′ê] = 0 which implies a set of moment conditions∑
i yij,t−2êijt = 0 for each j, and t > 2. By construction, the number of moment condition is quartic in T ,

which can be almost 50 on large fires in the dataset. A theoretically consistent way to reduce the number
of moment conditions without dropping these large fires from the dataset is to “collapse” the instrument
matrix such that moment condition becomes

∑
i,t yij,t−2êijt = 0 for each j since the sum of zeros is zero.

This method reduces the likelihood of overidentification (Roodman, 2006).
26Any symmetric positive semidefinite weighting matrix A yields consistent parameter estimates, which

implies that one can estimate a preliminary regression (first step) to obtain estimated errors. The covariance
matrix of the preliminary estimation is inverted to provide a robust second-step weighting matrix Ar =
(z′Ωz)−1.
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Second Stage Model: Wildfire Cost, Size and Damage

The second-stage regression models quantify the impact of response resources, environmental

characteristics, and economic factors on final wildfire cost, size, and damage to residential

structures. I estimate the cost and size equations with a hazard model as in chapter 2.

In theory, one could also treat damage to residential structures as a cumulative outcome

like cost and size. However, hazard models attribute covariate values to intervals in the

progression of the fire, and data limitations would yield very few observations that fit this

criteria. Therefore, I estimate the damage equation with a zero-inflated negative binomial

regression.

I use a Cox shared frailty (hazard) model to estimate final wildfire cost and size (Cox,

1972). The term shared implies that all observations within a fire share a common frailty

which captures the correlation between within-panel observations. The wildfire cost and size

models are estimated by maximum partial likelihood the methods of which are detailed in

Kalbfleisch and Prentice (1980).

The residential structure damage model is estimated by a zero-inflated negative binomial

(ZINB) model that accounts for the count nature of the data and the abundance of zeros

observed in the data. The negative binomial model accommodates over dispersion by mix-

ing the Poisson and Gamma distributions; although, other justifications of the model exist

(Cameron and Trivedi, 2005). The model is given by27

damagei ∼ Poisson(µi) where µi = exp{xiβ + νi + εi} and eνi ∼ Γ

(
1

α
, α

)
.

This mixing Gamma distribution is parameterized Γ(a, b) such that the mean is ab = 1 and

the variance is ab2 = α which accounts for the over dispersion.

27The notation used to describe the negative binomial model is chosen to remain consistent with the
literature and does not necessarily correspond to the notation used to describe the Arellano-Bond systems
estimator.
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Despite the media attention that damaged and destroyed residential structures receive,

they occur less frequently than the Poisson and negative binomial would predict because

not all wildfires threaten residential structures. The over abundance of zeros in the data

create bias if left unaddressed. The zero-inflated model treats the problem as one of sample

selection in which a latent variable describes the process by which the dependent variable

damage = 0 or damage > 0. The ZINB model is defined by Cameron and Trivedi (2005) as

g(damage) =





f1(0) + (1− f1(0))f2(0) if damage = 0

(1− f1(0))f2(damage) if damage > 0

(3.13)

where f1(·) is a logit model and f2(·) is a negative binomial density. The logit portion

of the likelihood function estimates the latent variable that determines whether structures

are at risk of damage. Fortunately, I have data on the number of threatened residential

structures that provides direct information about this latent variable. In addition to lagged

Thr. Residential, I include Human Caused, WUI Interface, WUI Intermix, and County Road

Miles as covariates that increase the probability that a home is at risk.

The second stage shared frailty and ZINB models accommodate time-varying as well as

time-invariant covariates. The ICS-209 data used to estimate the first-stage model is merged

with the NIFMID data using the algorithm described in appendix B.2. This merged dataset

contains time-invariant covariates that account for environmental and economic character-

istics of a wildfire. I instrument the response resource covariates in the second-stage models

with predicted values from the first-stage Arellano-Bond equations. Because of the preva-

lence of missing data in the ICS-209 dataset and the lack of a unique identifier between the

ICS-209 and NIFMID datasets, a substantial amount of data is lost between the first and

second stage estimations. I have no reason to believe that the data are missing systemat-

ically. Therefore, the consequence should be one of efficiency and not bias. The summary
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statistics of the data subsets used in each regression are contained in tables 14, 15, and 16

in appendix B.4.

The ZINB model is not inherently dynamic, which is incongruous with the theory and

other empirical models. Damage to structures early in the response process may be funda-

mentally different than damage in later stages of a fire. In an effort to capture the dynamic

features of the problem with a static model, I calculate a cumulative sum of the predicted

response resources committed over the course of the fire and divide it by the duration of the

fire in days. This transformation is applied to all resource types and is used in the ZINB

model of structure damage.

Current Windspeed, Temperature, and Humidity are used in the second-stage models to

control for the physical characteristics that impact fire growth. In contrast to the first-stage

regressions in which forecasted weather was used, current weather captures the direct impact

of covariates on wildfire outcomes when endogenous response resources are instrumented.

In addition to ICS-209 data on threatened residential properties, I use county level log

median home value from the 2010 U.S. Census (Census, 2012), and the acres in a county

classified as either wildland-urban interface or wildland-urban intermixed. The interface

classification is assigned to land with six or more homes per square kilometer with less than

50% vegetation located within 2.414 kilometers of land covered by over 75% vegetation. The

intermixed classification contains land covered by more than 50% vegetation and contains

six or more homes per square kilometer. These two landscape types pose very different

challenges to fire managers and I expect the parameter estimates on the covariates to differ.

Based on the model of wildfire response in section 3.2, intermixed landscape receives more

protection effort, which increases cost and allows the fire to grow larger, but should save

structures from damage. In contrast, interface landscape receives more suppression effort,

which reduces cost by exploiting economies of scale in fire line construction, decreases fire

size, and may or may not reduce the damage to residential structures.
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Other NIFMID variables are included as controls for the environment. Day of Year is

converted into radians and transformed by cos(x). Conditions conducive to fire growth are

likely to occur in the summer months, which occur in the [−1, 0] range of a cosine function.

Elevation and slope account for the accessibility of the terrain during the initial attack.

Timber takes a 1 if the reported fuel model is H, R, E, P, U, or G, and a 0 otherwise.

Private and State Management capture the differences in stated priorities across agencies

(Federal is the omitted dummy variable). Human Caused is a binary covariate (Lightning-

caused is omitted) that captures differences in discovery and response time. Lightning-caused

fires often occur further from development and grow larger before discovery and response.

3.4 Results

This section provides a discussion of the first- and second-stage estimation results.

3.4.1 First-Stage: Resource Allocation Equations

Table 2 contains the coefficient estimates and associated p-values of covariates in the resource

allocation equations where the dependent variable is the number of response resources al-

located to fire i. The bottom of the table includes the number of observations, individual

fires, and the number of instruments used in each model. I also report the results of a model

χ2 test and the Hansen test of overidentification. The null hypothesis of the Hansen test is

that the system of moment conditions is not overidentified.28

Resource Allocation Dynamics

The lagged dependent variable in each response resource equation provides information on

the mobility of a resource and accounts for the dynamics of wildfire activity (modeled in

28The Sargan test of overidentification is not appropriate for the two-step version of the Arellano-Bond
systems estimator.
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the theory as the wildfire stock). The estimates in each model are highly significant. The

magnitudes of the lagged dependent variable in the Type 1 Crew and Engine models (0.967

and 0.905) imply that the allocation of both resources is highly dependent on the allocation

in t− 1. One possible explanation is that Type 1 Crews and Engines are often permanently

employed by a local dedicated wildfire unit, and are generally assigned to wildfires in their

locale. In contrast, the coefficient estimates on Helicopters, Type 2 Crews, and Dozers

suggest that these resources may be moved between fires more frequently.29

Recall that the covariate Resource −i is an instrument for the total number of resource

j available to the regional command unit for dispatch. When the regional command unit

has more resources available, all fires within the region should receive a greater allocation.

Hypothesis 6 predicts that this coefficient estimate should be positive in each model. This

is the case for Type 1 Crew, Type 2 Crew, and Dozer (0.017, 0.010, and 0.003), although,

the Type 2 Crew model is only statistically significant at the 10% level.

Forecasted Weather

Forecasted weather covariates are chosen over their observed counterparts to isolate the

impact on decision-makers rather than fire behavior. The statistical significance on many

of the parameters is low which may indicate that forecasted increases in measured weather

simply increases the uncertainty about fire behavior.30 In response, both fire managers

and regional command units focus on strategic goals and place less emphasis on weather

outcomes.

29Roodman (2006) suggests an ad hoc specification test based on the pooled OLS and fixed-effect estima-
tors. The existence of dynamic panel bias, caused by a lagged dependent variable, implies that the pooled
and fixed-effects parameter estimate of the lagged dependent variable are biased but provide a theoretical
upper and lower bounds for the Arellano-Bond estimate. Appendix 19 contains a table with the lagged
dependent variable estimates from the Arellano-Bond, pooled OLS, and fixed effect models for comparison.

30Wald tests of joint significance are also conducted on the pair of weather coefficients corresponding to
fires i and −i for each resource j. The results fail to reject the null that both coefficient estimates are jointly
equal to zero in all resource models except for Engine, where Temperature and Windspeed reject H0 at 5%
significance.
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The coefficient estimates on Forecasted Temperature are negative in all model except

Type 1 Crew, which contradicts hypothesis 1. The estimates on average forecasted tem-

perature on all other fires within the region are positive for all resources and reinforce the

estimates of forecasted temperature on fire i. The windspeed estimates tell a similar story

with negative coefficients in the Type 2 Crew, Dozer, and Engine models. The windspeed

coefficient is positive, and supports hypothesis 2, in the Type 1 Crew and Helicopter models

(while only significant in the Type 1 Crew model). These results may imply that fire man-

agers perceive temperature increases as potentially dangerous to all resources, but trust that

highly trained resources (type 1 crews and helicopters) can avoid hazardous situations.

The forecasted humidity coefficient estimates are negative and support hypothesis 3. The

estimates of forecasted humidity on other fires in the region imply that a decrease in expected

fire growth makes those resources available for fire i.

Threatened Residential Structures

Thr. Residential and Potential Evacuation are included in the model to capture the incentives

of both individual fire managers and regional command units to protect threatened assets.

The difference between the covariates is based on the degree to which residential structures

are threatened. A potential for evacuation conveys a more serious threat to the regional

command unit.

The coefficient estimates on Thr. Residential and Potential Evacuation are positive in

almost all models (except Engine, but the estimates are not significant), which provide sup-

port for hypothesis 4. The magnitude of the coefficient on Thr. Residential may contain

information about the fire manager’s perception of the resource’s ability to mitigate damage.

The estimate in the Type 1 Crew model (0.012) implies that an additional type 1 crew mem-

ber is allocated to fire i when the number of threatened residential structures increases by

100 (alternatively, a 20-man crew is allocated to fire i when 1,600 structures are threatened).
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Controls

The covariates Uncontrolled Perimeter and Day of Year are included in each model to account

for other factors that influence response resource allocation. By controlling for the evolution

of the wildfire, I hope to better isolate the effect of weather and threatened assets on response

effort.

Uncontrolled Perimeter is an approximation for the amount of effort still required to

contain fire i. Since the covariate is calculated based on fire size (in square miles) and

percent of containment, the variable is endogenous and is instrumented along with the other

endogenous covariates. This covariate captures the progression of the response effort and

explains much of the variation that would otherwise be captured by the lagged dependent

variable. The coefficient estimates are positive and significant in all models indicating that

more response resources are allocated to fire i when either the percentage contained is low

or the burned area is large. The coefficients on Uncontrolled Perimeter −i are all negative

as expected. The covariate is calculated in miles so an additional 10 miles of uncontrolled

perimeter earns 1.3 dozers.

The cosine transform of Day of Year implies that a negative coefficient indicates more

resources are allocated in the summer months (when the cos(x) < 0) and less in the winter

months (when the cos(x) > 0). The coefficient in the Type 2 Crew model is negative which

is expected given that Type 2 Crews tend to consist of seasonal staff.

Long-Run Marginal Effects

In addition to the short run marginal effects presented in table 2, I present long-run marginal

effects in appendix ?? table 17. The long-run marginal effects provide information about
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the impact of a unit change in a covariate over the entire suppression effort.31 The long-run

marginal estimates of Thr. Residential in the Type 1 Crew equations is not significant at

a 10% level, despite its short-run significance. However, weather factors such as Forecasted

Temperature on fire i and on fires −i do remain significant in the long-run. These results

may indicate that while fire managers quickly react to short-run changes of threatened assets,

weather forecasts impact long-run strategies. These results do not imply that short-run

changes in resource allocation have no impact on wildfire outcomes. In fact, the theoretical

results imply that even short-run reallocation of resources from suppression to protection

allow the fire to grow and ultimately cost more to suppress. The next section investigates the

impact of resource commitment, and the direct impacts of weather and threatened residential

structures on wildfire cost, size, and structure damage.

3.4.2 Second-Stage: Wildfire Cost, Size, and Structure Damage

Table 3 contains the parameter estimates of the hazard regressions of wildfire cost and size,

as well as the ZINB regression of residential structure damage. The bottom half of the table

contains the parameter estimates from the Logit Zero-Inflation Equation and the model

summary statistics.32 The existence of unobserved heterogeneity in the hazard regression

31Long-run marginal effects, reported in table 17, are derived under the assumption that the system is in
equilibrium, which implies,

ȳ = αȳ + xβ + cγ

ȳ =
1

(1− α)
(xβ + cγ) .

The marginal effect of x1, i.e., Thr. Residential, is

∂ȳ

∂x1
=

β1
(1− α)

.

32The variation in the number of observations and fires included in each regression equation is due to the
structure of hazard models and missing observations. The shared frailty hazard model estimates the impact
of a set of covariates on the probability that the fire is extinguished in the next interval of growth in cost
or size. The covariate information is incorporated into the model by associating a covariate state with an
interval of growth in cost or size. If there is no growth in fire size or cost, the model interprets no change in
the dependent variable regardless of changes in the covariates. Therefore, observations for which fire cost or
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models is tested with a likelihood ratio test distributed χ2. The tests suggest that there

does exist unobserved fire-level heterogeneity in costs (P-value=0.000), but not in fire size

(P-value=0.493).33 The Vuong test finds evidence (P-value=0.011) that there exists two

separate data-generating processes leading to zeros in the structures variable.

The instrumented response resource covariates account for the indirect impacts of weather

and threatened assets on wildfire cost, size, and structure damage. The set of regressions

in this section are interpretable as direct impacts. Regression estimates of a shared frailty

model is complicated by the conditionality of the estimates on the unobserved heterogeneity

parameter. Therefore, I focus on the sign of the parameter estimates and the magnitude

relative to other covariates.

The interpretation of parameter estimates of a proportional hazard model differ from that

of a conventional linear model. The coefficients shift the baseline hazard function, which

represents the probability that an event occurs in the next interval of progress conditional

on having persisted until now. Therefore, a positive coefficient increases the hazard rate,

which decreases the magnitude of the expected outcome (wildfire cost and size).

The Logit Zero-Inflation equation estimates the impact of a set of covariates on the

probability that an observation is certainly zero, rather than described by the negative

binomial distribution. Lagged Thr. Residential is a natural indicator of whether a structure

will be damaged or destroyed. Human-caused fires often occur near residential structures,

which implies Human Caused is a good instrument for proximity of fire ignition to residential

structures. County Road Miles captures the extent to which a county’s land is developed

and thus, susceptible to wildfire. The WUI covariates are included to capture county-level

size do not grow provide no additional information and are dropped from the regression. In order to maintain
as many observations as possible, I estimate each model separately and always keep the latest observation if
observations are dropped.

33This finding is consistent with the estimates of unobserved heterogeneity in the fire size component of
the trivariate shared frailty hazard model estimated in chapter 2. The results of the trivariate hazard model
also indicate that correlation between the fire cost and size components is not statistically significant.
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Table 3: Parameter estimates of hazard and ZINB models of wildfire cost, size, and damage.

Wildfire Cost Wildfire Size Structure Damage
β P-val β P-val β P-val

Type 1 Crew∗ 0.003 (0.044) 0.001 (0.339) -0.001 (0.821)
Type 2 Crew∗ -0.031 (0.151) -0.013 (0.320) -0.126 (0.059)
Helicopter∗ -0.275 (0.000) 0.024 (0.482) 0.356 (0.017)
Dozer∗ -0.069 (0.023) -0.112 (0.000) -0.184 (0.159)
Engine∗ -0.024 (0.000) 0.010 (0.041) -0.000 (0.991)

Thr. Residentialt−1 -0.004 (0.705) 0.003 (0.621) -0.013 (0.658)
Log(Med Home Value) -0.990 (0.000) -0.301 (0.067) -3.371 (0.023)
WUI Intermix×Rest−1 -0.000 (0.536) -0.000 (0.014) 0.000 (0.853)
WUI Interface×Rest−1 0.000 (0.340) 0.000 (0.060) -0.000 (0.843)
Log(Med Home Value)×Rest−1 0.000 (0.748) -0.000 (0.653) 0.001 (0.616)

Windspeed -0.016 (0.298) -0.016 (0.188) 0.087 (0.060)
Temperature 0.013 (0.196) 0.017 (0.048) 0.017 (0.617)
Humidity 0.015 (0.033) 0.032 (0.000) -0.019 (0.316)

Day of Yeara 0.339 (0.401) 0.364 (0.151)
Elevation (1000ft) 0.161 (0.003) 0.058 (0.153)
Slope -0.010 (0.031) -0.002 (0.425)
Timber -0.997 (0.000) 0.073 (0.654) -2.379 (0.223)
Private Management 0.378 (0.709) 1.460 (0.046)
State Management -0.452 (0.221) 0.242 (0.306) -2.797 (0.020)
Constant 39.876 (0.037)
Heterogeneity Parameterb 0.882 (0.000) 0.000 (0.493) 1.043 (0.000)

Logit Zero-Inflation Equation

Thr. Residentialt−1 -0.003 (0.013)
Human Caused -0.354 (0.630)
WUI Interface -0.012 (0.550)
WUI Intermix -0.007 (0.466)
County Roads -7.857 (0.171)
Constant 4.597 (0.006)
Observations 1874 1228 746
Fires 274 228 85
χ2 184.50 (0.000) 81.27 (0.000) 4400.95 (0.000)
Vuong Testc ∼ N(0, 1) 2.30 (0.011)
∗Response resources are cumulative in Structure Damage equation.
aCosine transform
bOver dispersion parameter in the ZINB model. Significance tests are likelihood ratio.
c H0: ZINB=standard negative binomial.
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land characteristics. All of the coefficients are negative which implies that as the value of

the covariate increases, the more likely the observation is described by the negative binomial

model and is less likely to be zero.

With the exception of Type 1 Crews, all response resources increase the total expenditure

on a wildfire (negative estimate reduces hazard rate and implies higher expected costs). The

magnitude of the Helicopter estimate (-0.275) implies that the use of helicopters contribute

the most to wildfire cost.34 The estimate on Type 1 Crews implies that highly trained crews

may actually reduce net fire costs.

The covariate estimates in the Wildfire Size and Structure Damage equations provide

information about the productivity of each resource relative to other resources within the

same regression equation. The Type 1 Crew, Helicopter (not significant), and Engine esti-

mates are all positive implying that these resource types reduce fire size. The results imply

that Dozers increase fire size (-0.112). However, Dozers and Type 1 and 2 Crews reduce

damage to structures (-0.184, -0.001, and -0.126), where sign of the coefficient estimates in

a ZINB model carry the conventional interpretation. Furthermore, the magnitude of the

estimate on Dozer (-0.184) implies that dozers are the most effective at reducing damage

to residential structures. The positive estimate on Helicopter (0.356) implies that a larger

number of structures are destroyed when helicopters are committed to fire i.

The second block of coefficient estimates represent the direct impact of threatened struc-

tures on wildfire cost, size, and structure damage conditional on response resource allocation.

Lagged Thr. Residential is interacted with Log(Med Home Value), WUI Intermixed, and

WUI Interface to investigate whether economic or spatial characteristics significantly impact

34Other aircraft are excluded from the model because data is only reported in selected regions and such a
systematic removal of observations would bias the parameter estimates.
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wildfire outcomes.35 The striking result is the highly insignificant coefficients on Thr. Res-

idential in each model conditional on resource allocation. This result provides support for

hypothesis 5. Furthermore, the interaction of Thr. Residential with WUI Intermix suggests

that when homes are mixed with dense vegetation, wildfire cost (-0.003), size (-0.008), and

damage (0.011) increase (while only statistically significant in the size model). The results

of the interaction between Thr. Residential and WUI Interface are opposite in each model,

which implies that in the presence of a clear boundary between vegetation and structures,

fire managers invest in suppression. The results on Log(Med Home Value) imply that coun-

ties with higher median home values face larger (-0.301) and more expensive (-0.999) fires,

but sustain less structure damage (-3.371). These results may be due to the use of property

taxes to fund firefighting units.

The weather covariates in the second stage hazard regressions represent direct impacts

and are consistent with those in the trivariate hazard model in chapter 2. Windspeed in-

creases fire size (-0.016) and cost (-0.016), and the number of structures damaged and de-

stroyed (0.087). In contrast, Temperature and Humidity reduce fire size and cost, but have

no statistically significant impact on structure damage.

3.4.3 Discussion

The results of this analysis suggest that weather and threatened residential structures in-

fluence wildfire cost, size, and structure damage. Fluctuations in temperature, windspeed,

and humidity have small effects on response resource allocation, but still impact wildfire

outcomes. In contrast, threatened residential structures impact response resource alloca-

tion which then indirectly affect wildfire outcomes. These results complement the analy-

sis in chapter 2, and highlight the importance of modeling endogenous resource allocation

35Log(Med Home Value), WUI Intermixed, and WUI Interface are time-invariant covariates that were
omitted from the response resource allocation equations, and thus represent indirect effects unaccounted for
by the inclusion of the instrumented response resource covariates.
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throughout the course of a wildfire.

The response resource covariates also provide important information about the produc-

tivity of resources used throughout the response effort. One of the most striking results is

the high cost, but relatively ineffective, use of helicopters in either suppression or protection

effort. These results suggest that if response costs are actually important to wildfire man-

agement officials, a critical evaluation of helicopter use should be a priority. The results also

suggest that dozers and type 2 crews are among the most productive resources to engage

in structure protection, while type 1 crews and engines are adept at mitigating fire growth.

This result may be due to the relatively low response time, and high level of training of type

1 crews and engines.

Of the several control covariates, Private Management and State Management contain in-

formation relevant to a policy discussion. Privately-managed fires are smaller than federally-

managed fires, which is to be expected since there is no private benefit to letting a wildfire

burn. State-managed fires are smaller, but more expensive and have significantly less struc-

ture damage than federally-managed fires; however, state-managed fires significantly reduce

the damage to structures.

The ICS-209 data used in this analysis is an invaluable resource to researchers because it

provides a summary of environmental and economic conditions that impact response resource

allocation and wildfire outcomes throughout the course of a fire. However, poor quality

control of data entry renders many of the observations unusable. While data limitations

restrict the sample size, there is no reason to believe that data are missing in any systematic

way that would bias regression estimates. The consequence of the restricted sample is evident

in the high standard errors (and low statistical significance of estimates) in the second-stage

hazard regression estimates.

Throughout this analysis, I assume that both the individual fire manager and regional

command unit have complete information, and thus truthfully communicate the marginal
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benefit of an additional resource. One may also imagine a scenario in which the regional com-

mand unit managing a large number of fires has incomplete information about the marginal

benefit of committing resource j to fire i. Individual fire managers may have the incentive

to “overstate” their need for resources if doing so allowed them to complete their objectives

and possibly receive a promotion. On the other hand, a fire manager might want to prolong

a management effort if paid hourly or receives over time benefits.

3.5 Conclusion

I extend the model of wildfire response proposed in chapter 2 to distinguish between indi-

vidual fire managers and a regional command unit that allocates response resources between

fires. I derive a set of estimable resource allocation equations used to quantify the impact

of weather and threatened assets on the number of resources committed to a particular fire.

These regressions provide information on the factors that influence response resource alloca-

tion over the course of a wildfire. In addition, the results are used to generate instruments

for the number of resources committed to a particular fire in a second stage regression of

wildfire cost, size, and structure damage.

The results suggest that threatened residential structures are a top priority to wildfire

management at all levels and receive significantly more response resources than fires without

threatened residential structures. The effect of threatened residential structures on wildfire

cost occurs primarily through the indirect channel of response resource allocation. Further-

more, the two resources (Type 2 Crews and Dozers) increased when residential structures are

threatened, increase fire size and cost suggesting that an increase in the number of threatened

residential structures causes a reallocation of resources from suppression toward protection,

which increases wildfire cost and size, but reduces structure damage.

These results provide the strongest evidence to date on the impact of the growing wildland
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urban interface on wildfire costs. As long as wildfire protection is provided as a public

government service, homeowners and developers do not internalize the full cost of building

and owning a home in the WUI. Policy-makers should recognize the pressure they impose

on wildfire management when designing policies that may facilitate the growth of the WUI

while simultaneously cutting budgets. These results also support policies, such as the fire

prevention fee recently implemented in California, that impose a fee on homeowners in WUI

land under the protection of state and federal firefighting agencies (CABOE, 2013).
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Chapter 4

Entry Policy as Indirect Environmental Policy

4.1 Introduction

Growing concern over pollution and climate change have prompted government interven-

tion in energy production. Governments promote renewable energy with a variety of subsidy

instruments. European nations offer feed-in tariffs to those who generate energy from renew-

able sources, i.e., solar and wind. Direct capital subsidies for large-scale solar installations are

available in many developed countries including the U.S (IEA, 2011). However, governments

often face political opposition to policies designed to promote renewable energy, especially

during periods of low economic growth (Stokes, 2013). In such cases, governments may offer

grants or low-interest loans to new firms, or simply reduce the administration costs of firm

entry as a form of indirect environmental policy.

Governments must also recognize the implications of domestic entry policy on the market

structure of the regulated industry. When firms located in regions subject to different entry

policies compete in a global market, the optimal domestic entry policy depends on the policies

in other regions.1 Given the global nature of many product markets, the following questions

arise: How do domestic entry policies impact firm entry in imperfect globally competitive

markets? Do governments have the incentive to strategically set entry policy?

The objective of this paper is to characterize the conditions under which competing

governments use entry policy as an indirect form of environmental policy, and to analyze the

1Golombek and Hoel (2011) highlight this point in an analysis of R&D subsidies for climate-friendly
technology in an international context.
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subsequent welfare implications of such policies. I develop a model of strategic entry policy

in which regulators located in two different regions set entry taxes, subsidies, or permit

restrictions to deter or attract entry of firms that will subsequently compete in a Cournot

oligopoly.

I show that the existence of a rival regulator precludes the socially optimal level of

entry, which leads to suboptimal welfare. Furthermore, equilibrium outcomes may differ

dramatically under price and quantity policies. If competing governments are restricted

to price-based entry policies (i.e., taxes and subsidies), the game structure is analogous to

Bertrand competition and entry taxes become ineffective while entry subsidies are provided

in only one of the two regions. If governments use quantity policies, the game structure is

analogous to Cournot competition and a subset of optimal outcomes are attainable.

Over the past several decades, the WTO has actively discouraged countries from using

strategic trade policies to promote the competitiveness of firms within their jurisdiction. As

environmental policy has gained acceptance, concern over the strategic use of environmental

policy has grown (Whalley, 1991; Barrett, 1994; Bayındır-Upmann, 2003). A large literature

has since analyzed the strategic use of emission standards and fees and the subsequent welfare

impacts of such policies. While this literature has considered environmental policies under

both exogenous and endogenous market structures, no studies have analyzed the strategic

use of entry policies in an multi-region open economy under an endogenous market structure.

This paper lies at the intersection of a literature on strategic environmental and trade

policy, and tax competition. The early literature on strategic trade policy demonstrates that

governments may promote the competitiveness of domestic firms in imperfectly competitive

international markets with R&D subsidies (Spencer and Brander, 1983) export subsidies

(Brander and Spencer, 1985), import tariffs (Brander and Spencer, 1981) and domestic

taxes and subsidies (Eaton and Grossman, 1986). Barrett (1994), Ulph (1996), and Kennedy

(1994), among others, then extended the analysis to include environmental policy in an
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open economy. The common theme in this literature suggests that governments may adopt

environmental policies in an open economy that would be suboptimal in a closed economy.

Several studies have since extended the literature on strategic environmental and trade

policy to include endogenous entry in response to changes in policy (Katsoulacos and Xepa-

padeas, 1995; Bhattacharjea, 2002; Greaker, 2003; Bayındır-Upmann, 2003; Fujiwara, 2009;

Haufler and Wooton, 2010; Etro, 2011). Katsoulacos and Xepapadeas (1995) shows that

under endogenous entry, the optimal emission fee is in excess of marginal external damage

to mitigate the social inefficiency due to excessive entry. Cato (2010) develops a three-part

instrument that includes a license fee that may be positive or negative. Bayındır-Upmann

(2003) argues that governments may weaken environmental regulation to indirectly support

domestic firms in a globally competitive environment with endogenous entry. This litera-

ture focuses almost exclusively on pollution externalities in production and the emission fees

and standards used to control them. In contrast, I investigate environmental policies in the

presence of external benefits from goods that reduce pollution.

In a closely related literature on tax competition, rival governments compete over the

foreign direct investment and associated tax revenue from domestically located firms. Com-

petition between governments occurs through the relaxation of regulation (Zodrow and

Mieszkowski, 1986; Wilson, 1999). Mintz and Tulkens (1986) characterizes a non-cooperative

fiscal equilibrium in multi-region model where tax rates are the strategic variable and gov-

ernments seek to raise revenue to fund public goods. Janeba (1998) develops a two-region

model in which firms selling a homogeneous good to a third market choose to locate in the

region with the lowest cost. As in this paper, the lack of transportation costs implies that

governments face large discontinuities (due to aggregate firm profits) when setting tax policy

in a globally competitive environment. Markusen, Morey, and Olewiler (1995) studies the

mechanism driving this welfare discontinuity with a model of firm location in which nega-

tive pollution externalities are regulated by governments two regions. The model developed
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in this study also exhibits welfare discontinuities that prevent the attainment of mutually

beneficial outcomes.

Entry subsidies have been studied in the context of differentiated products where con-

sumers desire variety (DeRemer, 2011; Pflüger and Südekum, 2013), but have received little

attention in models of homogeneous goods.2 One notable exception is Reitzes and Grawe

(1999) who develop a two-country model to analyze the optimal entry policy under a vari-

ety of scenarios. Their analysis of entry policies is unique because they assume an existing

number of incumbent firms in both countries and characterize the conditions under which

entry taxes or subsidies are welfare improving in the home country. In contrast, this study

considers a purely endogenous market structure in which two regulators strategically choose

entry policy in open economies with positive environmental externalities.

The chapter is organized as follows. Section 4.2 establishes the unregulated and regulated

equilibrium in a single exporting region. Section 4.3 extends the model to account for inter-

regional competition in a two-region economy. Section 4.4 compares the welfare outcomes

of the single- and two-region case and highlights the impact of interregional competition on

entry policy. Section 4.5 discusses the policy implications of the model and concludes the

paper.

4.2 Single Region

Consider a complete information model of oligopoly where firms sell a homogenous product

domestically and abroad. Each firm i = 1, . . . , n faces an inverse demand P (Q) = a − bQ

where Q denotes total output. Output is either sold domestically, QA = γQ, or in a foreign

market, QB = (1 − γ)Q where γ denotes the share of output sold domestically. In this

section, all output is produced by domestic firms. Firms are identical in their technology

2Mankiw and Whinston (1986) develops a simple model of imperfect competition with endogenous entry
to show that privately optimal entry is not socially optimal when fixed entry costs exist.
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with a constant marginal cost of production, c, where a > c ≥ 0 ensures that the first unit

of output will be produced. Conditional on the number of firms in the market, n, each firm

earns post-entry profits of

πi(n) ≡ (a− c)2

b(n+ 1)2
.

As a benchmark for comparison, I first identify the equilibrium number of firms when regu-

lation is absent (referred to as the unregulated equilibrium), and in the following subsection

I examine the optimal number of firms from the regulator’s perspective (referred to as the

regulated equilibrium).

4.2.1 Unregulated Equilibrium

Upon entry, firms pay a fixed irrecoverable cost F > 0 that represents industry specific

research and development necessary to enter the market. Therefore, a firm i enters if πi(n)−

F ≥ 0. In order to guarantee the entry of at least one firm, I assume that the fixed entry

cost is not prohibitive, i.e., πi(1) ≡ Fmax ≥ F . The unregulated level of entry is given by

the following lemma.

Lemma 1. The unregulated equilibrium number of firms, nU , solves πi(n) = F and is given

by nU = a−c√
Fb
− 1

Figure 7 depicts the result of lemma 1, where profits of the representative firm decrease

in the number of competing firms.3 Equilibrium profits, π(n), shift upward as a increases,

which increases nU as a consequence; and shift downward in b and c, which decrease nU .

Similarly, an increase in F reduces the equilibrium number of firms, nU .

3The parameters chosen to generate figure 7 are a = 2, b = 1, and c = .1 for n ≥ 1. Other parameters
yield similar results and can be provided by the authors upon request.
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Figure 7: The unregulated equilibrium number of firms.
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4.2.2 Regulated Equilibrium

Entry in the unregulated equilibrium is not necessarily optimal from the domestic regulator’s

perspective. While a potential entrant may find it profitable to enter, it competes for market

share with, and erodes the profits of, incumbent firms. In this section, I introduce a regulator

that can choose the number of market entrants in order to maximize the domestic welfare

function4

W (n) ≡ γCS(Q(n)) +
n∑

i

{πi(n)− F}+D(QA(n)), (4.1)

where CS is total consumer surplus and D(QA(n)) = dQA(n) is the external benefit of

reduced pollution (and d is the marginal external benefit).5 The following lemma identifies

4To demonstrate why the planner’s direct choice of n is equivalent to an indirect entry policy that alters
the fixed entry cost, consider an alternative welfare function: W (n) ≡ γCS(Q(n)) +

∑n
i {πi(n)− (F + z)}+

nz + D(QA(n)) where z is the entry tax or subsidy, and
∑n
i z = nz. This welfare function simplifies to

W (n) ≡ γCS(Q(n)) +
∑n
i {πi(n)− F}+D(QA(n)), and thus is equivalent to (4.1).

5This external benefit arises from a substitution away from polluting goods. In the case of energy,
d represents the marginal benefits of using renewable energy instead of carbon-based fuels, i.e., coal and
petroleum.
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the welfare-maximizing number of firms.6

Lemma 2. The regulated equilibrium number of firms, nR, maximizes domestic welfare and

solves the first-order condition

γ

CSn(n)︷ ︸︸ ︷
nγ(a− c)2

b(n+ 1)3
+

πi(n)−F︷ ︸︸ ︷
(a− c)2

b(n+ 1)2
− F +

Dn(n)︷ ︸︸ ︷
d

2

(
γd(a− c)
b(n+ 1)2

)
=

nπin(n)︷ ︸︸ ︷
2n

(a− c)2

b(n+ 1)3
. (4.2)

The left hand side of equation (4.2) represents the domestic benefit of an additional

entrant including the increased consumer surplus due to a larger aggregate output, CSn(n),

the net profits of the new entrant, πi(n) − F , and the external benefits associated with

an increase in domestic consumption, Dn(n). Each of these three terms is positive, but

diminishing in n. In contrast, the right hand side of the first order condition represents

the domestic social marginal cost of entry, namely, the dissipation of aggregate profits that

incumbents experience after the entry of a new firm. The domestic social marginal cost is

positive and decreasing in n. Figure 8 depicts the domestic social marginal benefits and cost

as a function of the number of firms, n.7 Hence, the regulated number of firms, nR, occurs

at the point where the domestic social marginal benefits of an additional firm, SMB(n),

coincide with the associated domestic social marginal cost, SMC(n).8 For comparison, the

figure also illustrates the net profit, πi(n) − F , which a firm considers in its private entry

decision, which yields the unregulated number of firms, nU , when πi(n)− F = 0.

The domestically optimal level of entry, nR, may differ from the privately optimal level

of entry, nU . In this case, the regulator can utilize an entry policy to induce the domestically

optimal level of entry. In particular, the regulator may set a tax, z, which solves π(nR) =

F + z, where z > 0 as long as private entry exceeds the domestic optimum, nU > nR,

6The subscripts denote partial derivatives.
7For consistency, figure 8 also considers the same parameter values as in figure 7, i.e., a = b = d = γ =

1, F = .2, and c = 0 for n ≥ 1.
8Since the domestic welfare function is locally concave in n, a unique equilibrium for nR exists. See

appendix C.2
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Figure 8: Regulator’s marginal cost and benefit curves along with the firm’s profit less entry
cost.
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ultimately deterring firms from entering into the industry. This occurs, for instance, when

no external benefit arises from the domestic consumption of the good, i.e., d = 0, which is

consistent with the results in Mankiw and Whinston (1986).9 Alternatively, the regulator

may require a permit to enter and operate, and only make nR permits available. Because

the tax policy amounts to a revenue neutral transfer, both policies are equivalent in the

single-region economy. When private entry is below the domestic optimum, nU < nR, as in

figure 8, the regulator may set an entry subsidy z < 0, which again solves π(nR) = F + z.

Such a policy creates the incentive for additional firms to enter the market.10

Lemma 3 compares the unregulated and regulated equilibrium number of firms showing

that the former exceeds the latter when the domestic social marginal cost of entry exceeds

9Mankiw and Whinston (1986) demonstrate that social inefficiency arises when an additional entrant
erodes the profits of incumbent firms to a greater extent than the additional social benefit this firm brings,
captured by the increase in aggregate output.

10In this case, the permit policy is immaterial because even if the number of permits available is increased,
firms do not enter because they would earn negative profits. In addition, note that this model assumes that
all firms are homogeneous in technology. If firms are heterogeneous in technology, some inefficient firms
exist, and entry subsidies may promote their entry, thus generating a welfare loss (Pflüger and Südekum,
2013; Santarelli and Vivarelli, 2002).
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the domestic social marginal benefit of entry at the unregulated equilibrium.11

Lemma 3. The privately optimal level of entry exceeds the domestically optimal level of

entry, nU > nR, if and only if nπn(nU) > γCSn(nU) + Dn(nU), or alternatively, when the

external benefit is sufficiently low, i.e., d < d̄ where

d̄ ≡
(

2

γ
− 1

)(
a− c−

√
Fb
)

Hence, when d < d̄, entry is excessive, nU > nR, and the regulator must implement entry

taxes; as in Mankiw and Whinston (1986) who focus on the case in which d = 0. In contrast,

if d ≥ d̄, entry is insufficient from the regulator’s point of view, nU < nR, the regulator must

implement an entry subsidy. Figure 9a illustrates the cutoff, d̄, as a function of the fixed

entry cost, F , while figure 9b depicts it as a function of the share of domestic consumption,

γ.12 Given the chosen parameter values in panel a, (F, d) pairs below d̄ would imply an

entry tax, z > 0, which induces the domestically optimal number of entrants, nR (or the

allocation of a fixed number of permits, nR), whereas those (F, d) pairs above d̄ would imply

an entry subsidy, z < 0. As the fixed cost of entry rises, firm profits fall, which curtails

both private and domestically optimal entry. However, the domestic social marginal benefit

decreases at a lower rate than private marginal benefits. Panel b illustrates the impact of

the domestic sales on the external benefit threshold, d̄(γ). Intuitively, the regulator is more

willing to subsidize entry as the share of domestic consumption rises. Specifically, as a larger

share of output is consumed domestically, both consumer surplus and the external benefit

(which depend on the quantity consumed) increase. As a consequence, insufficient entry

occurs under a larger set of (γ, d) pairs.13

11See appendix for proof.
12I continue with the parameter values in figure 8: a = b = γ = 1 and c = 0 for F ∈ [0, Fmax] where

Fmax = (a−c)2
4b = 1

4 . Fmax is the entry cost that would prevent all but one entrant.
13Note that when γ = 1, the economy is effectively closed to trade, as in Katsoulacos and Xepapadeas

(1995). However, in contrast to Katsoulacos and Xepapadeas (1995) where production generates external
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Figure 9: Cutoff for parameter d, d̄, above which z is a subsidy.
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4.3 Two-Region Economy

I now extend the model to include two regions. When firms operating under separate juris-

dictions compete for market share, regulation of one set of firms can impact welfare in other

jurisdictions. Therefore, each regulator anticipates the actions of the rival regulator when

choosing its welfare maximizing policy.

Firms in each region are subject to separate entry regulation. All agents are fully in-

formed. Consider x firms operating in region A, and y firms operating in region B. Firms

are still homogeneous in technology within and between regions as factors of production are

freely mobile between regions. The cost of production, c, is symmetric across regions.14 The

fixed entry cost is allowed to differ between regions A and B, denoted FA and FB, respec-

tively. All firms face the same global demand curve defined in section 4.2, a proportion of

which (γ) is sold in region A, while the remaining share (1− γ) is sold in region B.

Firms in each region simultaneously choose output to maximize profits given the behavior

of other firms within the region and those operating within the other jurisdiction. Since firms

costs, consumption generates additional benefits in this model, which leads the regulator to favor further
entry when these benefits satisfy d > d̄, but hinder entry otherwise.

14In addition, production cost is invariant to regional destination of output as in Janeba (1998) and
Bayındır-Upmann (2003).
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are symmetric, the equilibrium output of each firm i = 1, . . . , x + y now depends not only

on the number of firms in its own region, x, but also on those in a foreign region, y.

qki (x, y) =
a− c

b(1 + x+ y)
for k = A,B

The equilibrium output of each firm is decreasing in the number of competing firms, x+ y,

regardless of their location. The equilibrium profits of a representative firm located in any

region k = {A,B} are πk(x, y) = (a−c)2
b(1+x+y)2

, which are also decreasing in the number of

entrants.15

In a format similar to section 4.2, I first examine the equilibrium number of firms when

regulation is absent (unregulated equilibrium), then analyze the regionally optimal number

of firms in the regulated equilibrium.16

4.3.1 Two-Region Unregulated Equilibrium

Since this model does not consider transportation costs and consumers perceive the goods to

be perfect substitutes, firm location is uniquely determined by the fixed entry cost. If entry

costs are lower in region A than region B, all firms would enter in region A and vice versa.

If the entry cost is equal between countries A and B, firms are indifferent between operating

in either region. The following lemma confirms this result.

Lemma 4. Firm i enters market k = {A,B} if πki (x, y)− F k > π`i (x, y)− F `, where k 6= `,

and is indifferent between entering either if πki (x, y) − F k = π`i (x, y) − F `. Hence, the

unregulated equilibrium number of entrants in regions A and B solves πki (x, y)− F = 0 and

15In addition, note that individual profits rise as demand increases (higher a) or becomes less elastic (lower
b), and fall as own production costs, c, increase.

16Regionally optimal refers to the number of firms that each regions’ regulator would induce conditional
on the number of firms that the rival regulator would induce.
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is given by the (x, y)-pair

(xU , yU) =





x = nU , y = 0 if FA < FB

(x, y) s.t. x+ y = nU if FA = FB

x = 0, y = nU if FA > FB

(4.3)

When the entry costs are symmetric across regions (i.e., FA = FB), every (x, y)-pair

that satisfies x + y = nU is a possible equilibrium. For simplicity, I focus on the symmetric

equilibrium in which xU = yU = 1
2
nU , where nU = a−c√

bF
− 1. In contrast, when entry costs

are lower in one country, all nU firms enter that region.

4.3.2 Two-Region Regulated Equilibrium

I now characterize the regionally optimal level of entry in each region. If every regulator

could choose the number of firms within its jurisdiction conditional on the number of firms

in the rival region, they would solve

max
x

WA(x, y) ≡ γCS(Q(x, y)) + x(πA(x, y)− F ) +DA(QA(x, y)) (4.4)

max
y

WB(x, y) ≡ (1− γ)CS(Q(x, y)) + y(πB(x, y)− F ) +DB(QB(x, y)) (4.5)

where total output is now defined as Q = xqA + yqB, with QA = γQ sold in region A, and

QB = (1 − γ)Q sold in region B. Production costs, c, and the external benefit of domestic

consumption, d, are assumed to coincide across countries.17 The first-order conditions of

regulator A and B equate the marginal social benefits with the marginal social costs of

17Bayındır-Upmann (2003) circumvents the complication of two regions who simultaneously use policy in
order to achieve a regionally optimal level of entry by assuming that the number of foreign firms is exogenous.
Unlike this paper, that approach neglects the response of each regulator to the others’ policy.
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Figure 10: The regulators’ best response functions in regions A and B.
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[Region A] γCSx(x, y) + πA(x, y)− F +DA
x (x, y) = xπAx (x, y) (4.6)

[Region B] (1− γ)CSy(x, y) + πB(x, y)− F +DB
y (x, y) = yπBy (x, y) (4.7)

The first-order conditions implicitly characterize the regulator’s best response functions, x(y)

and y(x), which are illustrated in figure 10.18 Region A’s best response function is decreasing

in y. The shape of the best response functions suggests that regulator A perceives entry in

region B as a strategic substitute for domestic entry. Despite the erosion of profits by firms

in region A, entry in region B provides benefits to consumers in region A. In particular, as

entry in the foreign region increases, aggregate domestic output increases, which contributes

to the marginal benefit domestically through consumer surplus and the external benefit of

reduced pollution. The best response function of region A, x(y), shifts outward as the share

of region A’s consumption, γ, increases. Intuitively, for a given number of foreign firms, the

18For consistency, I continue using parameter values: a = b = d = 1, c = 0, F = 0.2, and now assume that
each region consumes half of total production (i.e., γ = 0.5).
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regulator in region A would optimally induce a larger number of firms as γ increases. Since

both regions share the same external benefit of domestic consumption, an increase in the

external benefit of consumption, d, shifts each region’s best response function outward at

the same rate, which results in a proportional increase in the total level of entry in both

regions.

The intersection of the best response functions in figure 10 indicates the preferred level of

entry in each region under regulation. If both regulators can induce xRO and yRO using entry

policy, then the intersection becomes a candidate for the two-region regulated equilibrium.

Pecuniary Externalities of Entry

Entry in region k = {A,B} creates pecuniary externalities on region ` 6= k that arise from

the regulator in each region maximizing domestic welfare within its own jurisdiction, without

taking into account the effect that further entry in the domestic industry has on foreign firms’

profits. The pecuniary externality is defined by comparing the first-order conditions of each

regulator (in equations (4.6) and (4.7)) and a hypothetical regulator with jurisdiction over

both regions. The single-region regulator developed in section 4.2.2 provides a convenient

representation of the two-region social planner when all consumption is domestic (γ = 1),

i.e., an international coordinator of entry policies that maximizes aggregate social welfare

across both regions. The two-region regulator’s problem is19

max
x,y

W (x, y) ≡ WA(x, y) +WB(x, y) (4.8)

19Concavity of the social welfare functions WA and WB implies that the joint welfare function W ≡
WA +WB is also concave.
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where WA(x, y) and WB(x, y) are defined in equations (4.4) and (4.5), respectively. The

first-order conditions of the cross-region regulator are

[x] γCSx + (πA − FA) + xπAx +DA
x +

pecuniary externality︷ ︸︸ ︷
(1− γ)CSx +DB

x + yπBx = 0 (4.9)

[y] (1− γ)CSy + (πB − FB) + yπBy +DB
y +

pecuniary externality︷ ︸︸ ︷
γCSy +DA

y + xπAy = 0. (4.10)

The (x, y)-pair that solves (4.9) and (4.10) must also satisfy x + y = nR where nR is the

regulated number of firms defined in lemma 2 for γ = 1.

The pecuniary externality is comprised of a positive and negative component. On one

hand, a larger number of domestic firms increases domestic production, thus entailing a

larger foreign consumption of domestic products. In turn, this increases both the foreign

consumer surplus and the external benefits that the foreign economy experiences from such

additional consumption. On the other hand, however, a larger number of domestic firms

also imposes a negative pecuniary externality on the foreign country, since foreign firms now

face tougher competition.

Lemma 5 specifies the conditions under which the positive pecuniary externalities of

regulator A on regulator B dominate the negative.

Lemma 5. Entry in region A creates a positive pecuniary externality on region B if (1 −

γ)CSx +DB
x > −yπBx .

These pecuniary externalities of entry alter the external benefit cutoff d̄ defined in lemma

3. Lemma 6 defines an analogous external benefit cutoff for the two-region case.

Lemma 6. The regionally optimal level of entry exceeds the privately optimal level of entry in

region A, xRO > xU (in region B, yRO > yU), if and only if WA
x (xU , yU) > 0 (WB

y (xU , yU) >

0, respectively), or alternatively, when the external benefit is sufficiently high, i.e., dA > dA
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for region A and dB > dB for region B, where

dA ≡ b(1− γ)

γ

(
a− c−

√
Fb
)

; and dB ≡ bγ

1− γ

(
a− c−

√
Fb
)

Figure 11 depicts cutoffs dA and dB as a function of the share of domestic consumption,

as well as the social planner’s cutoff, dSO. The planner’s cutoff is constant in the share

of consumption because regional consumption is irrelevant to aggregate consumer surplus.20

Cutoffs dA and dB are inversely related through their respective shares of domestic consump-

tion (γ in region A and 1 − γ in region B) and divide the parameter space (γ, d) into four

partitions that characterize each regulators entry preferences for any share of consumption

and external benefit. Partition (1) represents the parameter space in which both regulators

would prefer to induce entry beyond the unregulated equilibrium (xRO > xU and yRO > yU),

since the external benefits of consumption are large in both regions.21 In Partition (2),

regulator A would prefer to encourage entry (xRO > xU) while regulator B would prefer to

discourage entry (yRO < yU), given that dB > d > dA. Intuitively, region A is benefiting

more from consumer surplus and external benefits than firm profits. Partition (2) is bisected

by the social planner’s parameter cutoff. In (2a), the social planner would encourage entry

in excess of the unregulated equilibrium, whereas (2b) the planner would deter entry. The

opposite is true in partition (3) where only regulator B would encourage entry (yRO > yU).

Finally, in partition (4), both regulators would prefer to discourage entry (xRO < xU and

20The planner’s external benefit cutoff, above which he would prefer to induce entry, is

dSO = d̄(γ = 1) =
(
a− c−

√
Fb
)
.

The two-region cutoffs can be restated in terms of the planner’s cutoff as dA ≡ b(1−γ)
γ dSO and dA ≡

γ
b(1−γ)d

SO. This implies that the relationship between the two-region cutoffs and the planner’s cutoff depends

on the demand elasticity and the share of domestic consumption in regions A and B. Intuitively, as demand
becomes more elastic (b decreases), more entry occurs without regulation because monopoly rents rise, which
reduces the individual regulator’s need to provide subsidies. The planner’s cutoff dSO only intersects dA and
dB at γ = 0.5 when b = 1.

21Recall that because there are no transportation costs, the unregulated equilibrium (xU , yU ) is indepen-
dent of γ.
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Figure 11: Cutoffs for parameters dA and dB, above which a regulator would encourage entry.
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yRO < yU), since the external benefits of consumption are relatively low in both regions.

4.3.3 Policies in Two-Region Economy

Until now I have taken the regulators ability to induce the regionally optimal level of entry

as a given. I now analyze whether (xRO, yRO) is an attainable equilibrium under a price-

based entry policy (i.e., entry tax or subsidy) and a quantity-based policy (i.e., entry permits,

licenses, quotas). It will be instructive to superimpose the single-region regulated equilibrium

curves, i.e., cutoffs d̄A and d̄B, onto figure 11, which divides the parameter space into nine

partitions.22

Assumption 1. The distance between d̄k and dk for k = {A,B} depends on the slope of the

demand function b. I assume that b < 2−γ
1−γ to ensure that d̄k lies above dk for k = {A,B}.

The single-region cutoff denoted d̄A(γ) in figure 12 is identical to the curve, d̄(γ), depicted

in figure 9b. Since regions A and B are symmetric, the cutoff d̄B(γ) is the reflection of d̄A(γ)

22Assumption 1 ensures that partitions (1), (5), and (7) exist.
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Figure 12: Partitions characterizing the two-region regulated equilibrium.
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over γ = 0.5. Partitions (1)-(4) carry the same interpretations in figure 12 as they do in 11.

Partitions (5) and (6) represent the parameter space for which regulator A would subsidize

entry regardless of regulator B’s strategy. Intuitively, the external benefits are high enough

in partitions (5) and (6) that despite exporting output to region B, the benefits of entry in

region A are larger than the negative net profits incurred by subsidizing entry beyond the

unregulated equilibrium level of entry (nR > nU).23 By symmetry, the same results hold in

partitions (7) and (8), but the regulator’s roles are reversed. In partition (9), the external

benefit lies above both d̄B(γ) and d̄A(γ), which implies that both regulators would be willing

to subsidize entry regardless of its rivals policy choice.

Price-Based Entry Policy

I first consider the case where both regulators attempt to induce the regionally optimal level

of entry with a price-based entry policy.

23In partition (6), regulator B would prefer to restrict entry because the relative welfare gains from
additional profit are larger than those from external benefit and consumer surplus. In partition (5), regulator
B would subsidize entry to induce the regionally optimal output yRO, but would not bear the cost of
subsidizing all entrants, since yRO < nR in region B.
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Figure 13: Parameter space in which subsidy equilibrium exists.
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Proposition 4. Under a price-based entry policy: both regulators set a tax zA = zB = 0

and induce the unregulated equilibrium level of entry (xU , yU) if d < min
{
d̄A, d̄B

}
; and

only regulator A (B) sets a subsidy zA(zB) < 0 to induce nR entrants in region A (B) if

d ≥ min
{
d̄A, d̄B

}
and γ > 0.5 (γ < 0.5).

Proof. Although both regulators would prefer to impose a tax on entry in partition (4),

there exists an incentive to steal entry from the rival. As with firms that compete in a

Bertrand duopoly, regulator k = {A,B} can undercut the entry price in region ` 6= k and

“steal” the entrants and associated rents. This incentive to steal the entire share of entrants

undermines the regulators efforts to achieve the regionally optimal level of entry. Therefore,

both regulators set an entry fee zA = zB = 0 and the unregulated equilibrium (xU , yU)

results.24

Partitions (1), (2), and (3) in figure 12 all represent situations in which at least one

regulator has the incentive to subsidize entry. However, the welfare gains of subsidization

depend on the rival regulator inducing their share of the regionally optimal level of entry.

24Note that when zA = zB = 0, the price of entry is equal to the marginal cost of entry, F , as in a Bertrand
duopoly.
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In partitions (2) and (3), one regulator has the incentive to subsidize while the opposing

regulator has the incentive to restrict entry. Since all firms choose to locate in the low-cost

region, all entry occurs in the subsidizing region. All entry in one region must necessarily

reduce welfare since d ≤ min
{
d̄A, d̄B

}
implies that the single-region regulated equilibrium

is below the unregulated equilibrium (nR < nU). In partition (1), both regulators prefer

to subsidize entry, but a strong incentive to free-ride prevents the regionally optimal entry

outcome. Since one regulator bears the cost of subsidizing entry (negative firm profits),

the opposing regulator benefits from the additional output at no welfare cost. Hence, nei-

ther regulator subsidizes or taxes entry in partitions (1), (2), and (3) and the unregulated

equilibrium results, (xU , yU).25

In partitions (5)-(9), the single-region regulated equilibrium exceeds the unregulated level

of entry (i.e., nR > nU). This case differs from the previously discussed case in that one

of the two regulators finds it optimal to subsidize entry. In partitions (5), (6), and (9)

(γ > 0.5), depicted by the darker shaded region in figure 13, regulator A would subsidize

entry regardless of regulator B’s policy. In partition (6), regulator B prefers to restrict

entry, but all firms would enter into the subsidized region, and any entry tax would be

immaterial. In partition (9), both regulators have incentive to simultaneously subsidize entry

up to the single-region regulated equilibrium and free ride off of the rival regulator policy.

The regulator with the larger share of domestic consumption has slightly more incentive to

subsidize entry. By symmetry, regulator B subsidizes entry in the lighter shaded region of

figure 13. Therefore, the single region regulated equilibrium, nR persists in partitions (5)-(9)

and the region with the larger share of consumption subsidizes all of the entrants.

25Espinola-Arredondo and Munoz-Garcia (2011) show that countries abstain from international environ-
mental agreements when there exists a strong incentive to free-ride.
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Quantity-Based Entry Policy

I now consider the case in which both regulators are limited to a quantity-based entry policy

such as permit restrictions.26

Proposition 5. Under a quantity-based entry policy: both regulators limit the number of

entrants and induce the regionally optimal level of entry, (xRO, yRO), if d ≤ min
{

dA, dB
}

;

and do not limit the number of entrants yielding the unregulated level of entry, (xU , yU), if

d > min
{

dA, dB
}

.

Proof. A permit policy is limited to restricting entry and provides firms no additional incen-

tive to enter when external benefits are high. Another important feature of the permit policy

is the lack of entry stealing effect. An increase in the number of permits offered by region

A does not induce the firms in region B to relocate where as an increase in a subsidy does.

This eliminates discontinuities in the strategy space and results in a structure of competition

analogous to a Cournot duopoly.

In partition (4), depicted by the shaded area in figure 14, both regulators preferred to

restrict entry, because the relative weight on firm profits is larger than on external benefits.

Since (xRO, yRO) maximizes regional welfare, both regulators restrict entry with permit limits

and neither regulator has incentive to deviate toward a no permit strategy.

In all partitions other than (4), at least one regulator prefers to encourage entry. However,

a quantity-based entry policy is only effective if the constraint on entry is binding. Since

setting a permit level above the unregulated equilibrium level of entry will not attract entry,

a permit regime is inconsequential when xRO + yRO ≥ nU . Furthermore, when xRO +

yRO ≥ nU , the share of firms in either region is irrelevant because πi − F = 0. Hence,

the number of entrants is equal to the unregulated equilibrium level of entry (xU , yU) when

d > min
{

dA, dB
}

.

26Since I have treated the number of firms as a continuous variable thus far, I assume that the number of
permits is also a continuous variable.
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Figure 14: Parameter space in which permit equilibrium exists.
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4.4 Welfare

This section compares the welfare outcomes of the price- and quantity-based entry policies

from the two-region regulated equilibrium, described in propositions 4 and 5, with those of

the social planner. Low Benefit represents the case where regulators prefer to discourage

entry relative to the unregulated equilibrium (partition (4) in figure 12). Medium Benefit

represents the case where the regionally optimal entry exceeds the unregulated equilibrium

but neither regulator is willing to subsidize all entry (partitions (1) - (3) in figure 12). High

Benefit represent the case where a single regulator subsidizes all entry despite the free riding

rival regulator (partitions (5) - (9) in figure 12).

Tables 4, 5, and 6 contain the number of firms, aggregate welfare (WA+WB), equilibrium

price (P (Q)), aggregate output (Q), total net profits (
∑n

i πi − F ), and aggregate external

benefit (dγQ) for a series of simulations.27

27I continue using the same base set of parameters that I have used throughout the paper: a = b = 1, c =
0, F = .2, and γ = 0.5 unless otherwise specified. The share of consumption, γ = 0.5, is chosen for simplicity
because the cutoffs in regions A and B coincide, dA = dB = d = 0.55 and d̄A = d̄B = d̄ = 1.65. However,
these comparisons hold for all (γ, d)-pairs with the defined partitions and can be provided by the authors
upon request.
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Table 4: Welfare comparisons of the unregulated equilibrium (nU), single-region optimum
(nR(γ = 0.5)), two-region optimum (xRO, yRO), and social optimum (nR(γ = 1)) when
external benefits are low (d = 0).

Unreg. Eq.p Single-Region Two-Regionq Social Optimal

Firms 1.23 0.54 0.95 0.71
Aggregate Welfare 0.15 0.18 0.18 0.19
Price 0.45 0.65 0.51 0.58
Aggregate Output 0.55 0.35 0.49 0.42
Aggregate Profit 0.00 0.12 0.06 0.10
External Benefit 0.00 0.00 0.00 0.00
pdenotes the price-based entry policy two-region regulated equilibrium.
qdenotes the quantity-based entry policy two-region regulated equilibrium.

The low benefit case, depicted in figure 4, assumes no external benefit, which coincides

with the model in Mankiw and Whinston (1986). When regulators use an entry tax, the

entry-stealing effect leads to the unregulated equilibrium, nU . Since firms enter until net

profits equal zero and the external benefit of consumption is zero, aggregate welfare consists

of consumer surplus (0.15). When both regulators use permits, output is restricted to the

regionally optimal number of firms (xRO, yRO) resulting in an aggregate welfare (WA +WB)

of 0.18 which is greater than the 0.15 obtained from the unregulated equilibrium. The

increase in welfare comes from the additional profits obtained by operating firms protected

from competition by the permit restriction. However, the socially optimal outcomes require

that the total number of permit issued in regions A and B be set even lower (0.71) than the

regional optimum (0.95). By further restricting entry, aggregate welfare increases to (0.19)

due to even higher aggregate firm profits (0.10).

Although not an equilibrium, the single-region level of entry (0.54) represents the pref-

erence of a single regulator when half of the output is exported. Since a smaller share of

output is consumed domestically, the weight on firm profits is larger than in any other case,

so the regulator restricts entry beyond the level of the social planner.
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Table 5: Welfare comparisons of the unregulated equilibrium (nU), single-region optimum
(nR(γ = 0.5)), two-region optimum (xRO, yRO), and social optimum (nR(γ = 1)) when
external benefits are medium (d = 1).

Unreg. Eq.pq Single-Region Two-Region Social Optimal

Firms 1.23 0.96 1.45 1.63
Aggregate Welfare 0.71 0.67 0.72 0.72
Price 0.45 0.51 0.41 0.38
Aggregate Output 0.55 0.49 0.59 0.62
Aggregate Profit 0.00 0.06 -0.05 -0.09
External Benefit 0.55 0.25 0.30 0.62
pdenotes the price-based entry policy two-region regulated equilibrium.
qdenotes the quantity-based entry policy two-region regulated equilibrium.

In the medium benefit case (figure 5), the unregulated equilibrium emerges because nei-

ther regulator chooses to augment the unregulated equilibrium with either a price or quantity

entry policy. The unregulated equilibrium outcomes are equal to the low benefit case with

the exception of external benefit, and subsequently aggregate welfare. The socially optimal

entry (1.63) exceed the unregulated entry (1.23), but does not result in significant welfare

gains. Since the social planner fully internalizes the positive pecuniary externality of pro-

duction, it is willing to subsidize the entry despite the negative profits of each additional

firm. In contrast, the single-region regulator would prefer to restrict entry since only half of

consumer surplus and external benefits accrue domestically. Interestingly, the unregulated

equilibrium results in a joint welfare larger than the single-region case. This result implies

that for relatively low external benefits, the existence of a rival regulator entails a welfare

improvement.

In the high benefit case (figure 6), the use of permits results in the unregulated equilib-

rium, and the use of subsidies results in the single-region regulated equilibrium nR. The in-

tuition for price equilibrium result is clear when comparing welfare a single regulator obtains

by subsidizing entry (1.29) with the unregulated equilibrium (1.26). Net welfare increases

by the difference in the external benefit gains (1.16-1.10=0.06) and profit loss (-0.3-0=-0.3)
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Table 6: Welfare comparisons of the unregulated equilibrium (nU), single-region optimum
(nR(γ = 0.5)), two-region optimum (xRO, yRO), and social optimum (nR(γ = 1)) when
external benefits are high (d=2).

Unreg. Eq.q Single-Regionp Two-Region Social Optimal

Firms 1.23 1.38 1.89 2.39
Aggregate Welfare 1.26 1.29 1.37 1.39
Price 0.45 0.42 0.35 0.30
Aggregate Output 0.55 0.58 0.65 0.70
Aggregate Profit 0.00 -0.03 -0.15 -0.27
External Benefit 1.10 1.16 1.31 1.41
pdenotes the price-based entry policy two-region regulated equilibrium.
qdenotes the quantity-based entry policy two-region regulated equilibrium.

between the price equilibrium and the unregulated equilibrium. As a region moves toward

autarky (γ → 1, or conversely γ → 0, the welfare outcomes of the price equilibrium converge

to the socially optimal outcomes.

4.5 Conclusion

This model applies to governments that regulate a set of imperfectly competitive firms who

choose to locate in one of two regions and produce identical goods with positive consumption

externalities. Entry policies are used to influence market outcomes when political or legisla-

tive barriers impede the use of direct price and quantity policies. The existence of a rival

regulator competing for firm location in a two-region economy creates pecuniary externalities

that distort the incentives of a domestic regulator and influence optimal entry policy.

The preference for price- and quantity-based entry policies in the two-region case depends

on the external benefit. When the external benefit is sufficiently low (d ≤ min
{

dA, dB
}

),

a permit limit can induce the regionally optimal level of entry, whereas Bertrand-like com-

petition drive entry taxes to zero. When the external benefit is high (d > min
{

dA, dB
}

),

positive pecuniary externalities create strong incentives to free ride off of the rival regulator’s
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entry subsidy. There exists a range of d ( min
{
d̄A, d̄B

}
> d > min

{
dA, dB

}
) in which the

incentive to free ride discourages either regulator from providing any entry subsidy resulting

in the unregulated equilibrium. For sufficiently high external benefit (d > min
{
d̄A, d̄B

}
), a

domestic regulator provides an entry subsidy despite the free riding action of the rival regu-

lator. Because subsidizing entry is costly, the welfare gains in the region with no production

are greater than they would be if they subsidized entry as well.

These results have important implications about the use of entry policy in global markets.

Regulators may have a strong incentive to free ride off of the policy in other regions when

support for an industry is costly. Furthermore, the competition between regulators precludes

the socially optimal number of entrants and suggests another role of international agreements.

Regions may agree on an entry policy that coincides with that of the single-region planner

who’s jurisdiction spans both regions. However, it is important to note that both regulators

would have the incentive to deviate from the agreement.
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Chapter 5

Conclusion

This collection of essays illustrates the importance of understanding the incentives of eco-

nomic agents when designing and analyzing natural resource and environmental policy. In

chapter 2, I develop a model of wildfire response to show that residential structure damage is

a top priority of wildfire management throughout the course of a fire. In chapter 3, I extend

this model to account for the interaction between an individual fire manager and a regional

command unit that allocates resources to potentially many fires. The model shows that a

focus on structure damage may lead wildfire managers to shift response resources from sup-

pression activity toward protection activity, which allows the wildfire to grow larger, burn

longer, and ultimately cost more to suppress.

I empirically investigate the model predictions of wildfire duration, cost, size, and struc-

ture damage with several empirical specifications. In chapter 2, I develop a trivariate shared

frailty hazard model that jointly estimates a set of cumulative outcomes and captures cor-

relation between equations through a trivariate latent variable. I estimate wildfire duration,

cost, and size with this joint hazard model and find that threatened homes and the potential

for evacuation were significant indicators of wildfire duration, cost, and size. However, the

model was reduced form and I could not distinguish between direct and indirect impacts of

covariates on wildfire outcomes. In chapter 3, I estimate a dynamic panel model of theoreti-

cally consistent response resource allocation equations. This model provides information on

the factors that influence resource allocation amongst several concurrent wildfire, and is used

to generate instruments for committed resources in hazard regressions of wildfire cost and
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size as well as a negative binomial regressions structure damage. The results provide fur-

ther, and more direct, evidence that threatened residential structures influence fire manager

behavior throughout the course of a response effort.

These results suggest that continued expansion of the WUI will further distort wildfire

management incentives and lead to longer, larger, more destructive, and more expensive

wildfires. Policies that force homeowners in the wildland urban interface to internalize the

cost of their actions may slow the expansion of the WUI, and subsequently reduce future

fire size and cost.

In chapter 4, I investigate the role of entry subsidies as an indirect policy instrument for

promoting the consumption of goods with external benefits. I develop a two-region model

in which regulators choose an entry policy to maximize domestic welfare. I use this model

to show that there exists a range of parameters in which the socially optimal level of entry

is precluded by a strong incentive to free ride off of a rivals policy. These results suggest

an expanded role for international environmental agreements in coordinating entry policy

across regions.
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Appendix A

A.1 Comparative Dynamic Results

In this section, I derive the result dsf/dν1 < 0 and dsd/dν1 > 0 from the system of first

order conditions of the recursive Bellman equation (2.6). Because I have data on threatened

properties, which represent a subset of all threatened assets, I present this result in the

context of an increase in ν1 ∈ ν. I begin by restating equation (2.6) and dropping the time

notation for ease of exposition

V (f) = min
sd,sf≥0

{
` [c(sf , sd), d(sd)] +

∫ ∞

0

V
′
g(f

′ | f, sf ,x) df
′
}

where c(·) and d(·) are defined by (2.2) and (2.3), respectively. Assuming that g(·) is a

continuous, but not necessarily stationary, distribution, the optimal feedback rules must

satisfy the following first-order conditions,

∂` [c(sf , sd), d(sd)]

∂c
(wf + wof ) +

∫ ∞

0

V
′ ∂g(f

′ | f, sf ,x)

∂sf
df

′
= 0

∂` [c(sf , sd), d(sd)]

∂c
(wd + wod)−

∂` [c(sf , sd), d(sd)]

∂d

y1

s2
d

ν1a(x, f) = 0

Then the FOCs can be totally differentiated and rearranged into the form Ax = b. For

simplicity, I assume that the loss function is separable in costs and damages (i.e., ∂2`/∂c∂d =

0). This assumption is equivalent to equal weights on costs and damage in the loss function.
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Alternative assumptions complicate the derivation but do not change the results.




∂2`
∂c2

(
wf + wof

)2
+
∫∞

0
V

′ ∂2g
∂s2f

∂2`
∂c2

(wd + wod)
(
wf + wof

)

∂2`
∂c2

(wd + wod)
(
wf + wof

)
∂2`
∂c2

(wd + wod)
2 + ∂2`

∂d2

(
y1ν1a
s2d

)2

+ ∂`
∂d

y1
s3d
ν1a






dsa

dsd




= −




0

− ∂2`
∂d2

y1
s3d

(ν1a)2 − ∂`
∂d

1
s2d
ν1a


 dy1

The equation can now be solved for dsf/dy1 and dsd/dy1. I assume the following properties

• The loss function, ` [c(sf , sd), d(sd)], is increasing in both arguments at an increasing

rate

• The expectation of energy stock, Et{∂V
′
/∂sf} =

∫∞
0
V

′ ∂g(f
′ | f,sf ,x)

∂sf
df

′
, conditional on

suppression, is decreasing in suppression activity at a decreasing rate.

These properties are summarized in the following table.

∂`(c,d)
∂i

> 0 ∂2`(c,d)
∂i2

> 0 i = c, d

∂g
(
f
′ |sf

)
∂sf

< 0
∂g

(
f
′ |sf

)
∂sf

≥ 0

The determinant of A in the equation Ax = b is positive definite, which implies

|A| =




+︷ ︸︸ ︷
∂2`

∂c2

(
wf + wof

)2
+

+︷ ︸︸ ︷∫ ∞

0

V
′ ∂2g

∂s2
f

df
′







+︷ ︸︸ ︷(
∂2`

∂c2
(wd + wod)

2

)
+

+︷ ︸︸ ︷
∂2`

∂d2

(
y1νa

sd

)2

+

+︷ ︸︸ ︷
∂`

∂d

y1νa

s3
d




−

+︷ ︸︸ ︷(
∂2`

∂c2
(wd + wod)

(
wf + wof

))2

> 0
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Then by Cramer’s rule,

dsf
dy1

=

(
− ∂2`
∂d2

y1
s3d

(ν1a)2 − ∂`
∂d

y1
s2d
ν1a
)
∂2`
∂c2

(wd + wod)
(
wf + wof

)

|A|
< 0

dsd
dy1

=

(
∂2`
∂c2

(
wf + wof

)2
+
∫∞

0
V

′ ∂2g
∂s2f

)(
−
(
− ∂2`
∂d2

y1
s3d

(ν1a)2 − ∂`
∂d

y1
s2d
ν1a
))

|A|
> 0

whereby each derivative is signed by the assumed properties of the comprising functions. I

have shown that under fairly general assumptions, the sudden increase of threatened assets

causes the wildfire management to increase protection while decreasing suppression effort.

This result is due to the temporal effect of suppression. The moment an asset (e.g., home)

becomes threatened, the management finds protection the most effective technique for re-

ducing losses.
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A.2 Tables

Interpretation of Hazard Model Parameter Estimates in Table 10

The coefficient estimates in a proportional hazard model represent a proportional shift of

the baseline hazard function over the domain of the function (duration, cost, or area). The

wildfire characterized by the baseline hazard function is described in Table 11. A negative

sign on a covariate coefficient indicates that an increase in the associated variable leads to a

downward shift in the hazard function. A downward shift in the hazard function implies a

lower conditional probability of fire termination at any point in time (cost, or area). A lower

probability of event occurrence leads to a longer expected fire duration (higher final costs,

or larger final fire size). For example, an increase in the distance between a fire’s point of

ignition and the nearest town (ln(Distance)) leads to a reduction (-0.135) in the baseline

area hazard function. This lower hazard function, representing the probability that the fire

is contained, implies that the expected fire size is larger.
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Table 7: Description of variables used throughout the paper.

Variable Description

sd(t) protection effort at time t
sf (t) suppression effort at time t
l(c(t), d(t), t) loss function
a(t) instantaneous flow of area burning at time t
A(t) cumulative burned area at time t
c(t) instantaneous flow of management expenditure
C(t) cumulative costs accrued until time t
d(t) instantaneous flow of losses at time t
wf wage per unit of suppression fixed over duration of fire
wof (t) opportunity cost of suppression resources
wd wage per unit of protection fixed over duration of fire
wod(t) opportunity cost of protection resources
y(t) vector of asset densities
z(t) a vector of exogenous environmental and geographic characteristics at

time t
ν(t) a vector of threatened asset values at time t
f(t) the fire’s energy stock at time t measured in kilowatts
g(f

′
) probability density function of the fire stock in the next instant of time

where f
′
= lim

∆t→0
f(t+ ∆t)

G(f
′
) cumulative distribution function (transition function) of the fire stock

in the next instant of time
k index of fire outcomes duration (t), cost (c), size (a)
φk(k | x(k)) PDF describing the probability of the fire termination in the next unit

of duration, cost, or size
Φk(k | x(k)) CDF along dimension k
Ψk(k | x(k)) survival function along dimension k (Ψk(k | x(k)) = 1− Φk(k | x(t)))
hk(k | x(k)) hazard function along dimension k (= φk/Ψk)
φ(t, c, a | x(k)) unconditional joint density
γ(x(k)) exponential proportionality factor
εk unobserved heterogeneity in equation k
ε jointly distributed unobserved heterogeneity
Ω covariance matrix of unobserved heterogeneity ε
βk vector of covariate coefficients in equation k
δ censoring indicator
ςk shape parameter in regression equation k
λk scale parameter in regression equation k (subsumed into γ(·) for esti-

mation)
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Table 8: Variable labels used in this analysis, descriptions, and source information

Variable name Brief description and source

Duration (t) Duration is calculated as the difference measured in days between the
report date:time (ICS box 1,2) and the discovery date:time (NIFMID)
or start date:time (ICS box 7).

Cost (c) Cost is the suppression cost to date (ICS box 19) in thousands of dollars.
Area (a) Fire size is the total area burned to date (ICS box 15) in thousands of

acres.
Threatened Xτ Thousands of structures threatened lagged one period for

X=(Residential, Commercial, Outbuildings)(ICS box 24).
Injuriesτ Number of reported injuries lagged one period (ICS box 22).
Fatalitiesτ Number of reported fatalities lagged one period (ICS box 23).
Potential

Evacuationτ

Binary; equals 1 if evacuations were reported imminent (ICS box 25)
and 0 if no evacuation necessary. The variable is lagged one period.

Windτ Wind speed, mph/100 (ICS box 27).
Temperatureτ Temperature, degrees Fahrenheit/100 (ICS box 27).
Relative

Humidityτ

Relative humidity on scale of 0 – 1 (ICS box 27).

Resource

Scarcityτ

The sum of the growth of all other wildfires within a Forest Service
region within five days of the report less the monthly average growth
of fires in the region. Fire growth is calculated as the difference in
acres burned between any two reports of a given fire (at− at−1); in 100
thousands of acres

Latitude Latitude of fire start location, degrees/100 (ICS box 13).
Day of Year Calculated by converting the report date into radians and applying sin

and cos transformations.
Cause Lightning Binary; equals 1 if cause of the wildfire is lightning (baseline=human)

(ICS box 8).
Cause Unknown Binary; equals 1 if cause is unknown or under investigation (base-

line=human) (ICS box 8).
Year Binary; equals 1 for fires that began in year i = 2001, . . . , 2008 (baseline

is 2001)
FS Region i
(name)

Binary; equals 1 for fires that began in Forest Service region i =
1, . . . , 10, respectively (baseline is region 8 (south))

Distance The natural logarithm of the distance in miles between the ignition of
a fire and the centroid of the nearest Census Designated Place (CDP);
calculation based on the latitude and longitude from ICS box 13 and
the 2010 Census.

Value20 The total housing value of any CDP with a centroid located 20 miles
or less from the fire’s point of ignition; in billions of dollars.
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Table 9: Summary statistics of variables used in hazard model.

Obs. Mean Std. Dev. Min Max
Duration 3,829 15.19 15.88 0.25 178.68
Cost 3,829 4,408.20 10,574.00 0.00 152,660.00
Area 3,829 23.81 77.17 0.00 1,322.90
Threatened Commercial 10,321 0.01 0.05 0.00 3.00
Threatened OutBuildings 10,321 0.04 0.24 0.00 5.00
Threatened Residential 10,321 0.11 0.57 0.00 24.00
Injuries 10,321 0.17 0.65 0.00 18.00
Fatalities 10,321 0.03 0.41 0.00 14.00
Potential Evacuation 10,321 0.31 0.46 0.00 1.00
Wind 10,321 0.07 0.06 0.00 0.90
Temperature 10,321 0.76 0.14 0.00 1.26
Relative Humidity 10,321 0.30 0.19 0.00 1.00
Resource Scarcity 10,321 0.00 1.22 -5.88 21.07
Latitude 3,829 0.41 0.07 0.25 0.67
Day of Year (Sin) 3,829 -0.20 0.52 -1.00 1.00
Day of Year (Cos) 3,829 -0.73 0.39 -1.00 1.00
Cause Lightning 3,829 0.65 0.48 0.00 1.00
Cause Unknown 3,829 0.16 0.37 0.00 1.00
Year 3,829 4.14 2.16 0.00 7.00
FS Region 6 (Pacific Northwest) 3,829 0.13 0.34 0.00 1.00
FS Region 5 (Pacific Southwest) 3,829 0.25 0.43 0.00 1.00
FS Region 1 (North) 3,829 0.18 0.38 0.00 1.00
FS Region 2 (Rocky Mountain) 3,829 0.04 0.20 0.00 1.00
FS Region 4 (Intermountain) 3,829 0.13 0.34 0.00 1.00
FS Region 9 (Eastern) 3,829 0.03 0.16 0.00 1.00
FS Region 3 (Southwest) 3,829 0.11 0.31 0.00 1.00
FS Region 10 (Alaska) 3,829 0.03 0.18 0.00 1.00
ln(Distance) 3,829 2.39 0.85 -1.75 4.33
Value20 3,829 3.31 17.83 0.00 283.98
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Table 10: Parameter estimates of jointly estimated trivariate hazard model.

Duration Cost Area
βt S.E. βc S.E. βa S.E.

Threatened Commercial 3.418∗∗∗(0.979) 1.743 (1.703) -1.361 (3.966)
Threatened OutBuildings -0.312 (0.541) -1.542∗∗ (0.761) -3.003∗∗∗(0.997)
Threatened Residential -0.822∗∗ (0.319) -2.007∗∗∗(0.385) -2.312∗∗∗(0.460)
Injuries 0.098∗∗∗(0.038) -0.137∗∗∗(0.051) -0.034 (0.045)
Fatalities -0.237∗∗∗(0.068) -0.298∗∗∗(0.069) -0.263∗∗∗(0.076)
Potential Evacuation -0.792∗∗∗(0.079) -1.460∗∗∗(0.071) -1.613∗∗∗(0.087)
Wind 0.294 (0.290) -0.115 (0.345) -1.739∗∗∗(0.369)
Temperature 2.065∗∗∗(0.234) 0.837∗∗∗(0.161) 0.106 (0.334)
Relative Humidity 0.806∗∗∗(0.113) 1.151∗∗∗(0.121) 1.343∗∗∗(0.160)
Resource Scarcity -0.255 (0.359) -0.374∗ (0.208) -1.259∗∗∗(0.331)
Latitude 1.043 (0.904) -2.187 (1.457) -0.932∗ (0.492)
Day of Year (Sin) 0.073∗ (0.039) 0.138∗∗∗(0.048) -0.018 (0.039)
Day of Year (Cos) 0.440∗∗∗(0.068) 0.481∗∗∗(0.058) 0.044 (0.064)
Cause Lightning -0.740∗∗∗(0.055) -0.206∗∗∗(0.057) -0.496∗∗∗(0.053)
Cause Unknown 0.063 (0.055) -0.025 (0.059) 0.034 (0.059)
Year -0.042∗∗∗(0.010) -0.028∗∗∗(0.009) -0.024∗∗ (0.010)
FS Region 6 (Pacific Northwest) 0.114 (0.138) -0.741∗∗∗(0.153) -0.155 (0.117)
FS Region 5 (Pacific Southwest) 0.691∗∗∗(0.089) -0.824∗∗∗(0.090) 0.093 (0.092)
FS Region 1 (North) -0.004 (0.139) -0.431∗∗∗(0.155) -0.113 (0.111)
FS Region 2 (Rocky Mountain) 0.522∗∗∗(0.134) -0.449∗∗∗(0.123) -0.058 (0.128)
FS Region 4 (Intermountain) 0.559∗∗∗(0.104) -0.236∗∗ (0.106) -0.183∗ (0.099)
FS Region 9 (Eastern) 0.449∗∗∗(0.118) 0.044 (0.148) 0.224∗∗ (0.112)
FS Region 3 (Southwest) 0.400∗∗∗(0.090) -0.461∗∗∗(0.094) -0.317∗∗∗(0.097)
FS Region 10 (Alaska) -0.024 (0.244) -0.395 (0.528) -1.238∗∗∗(0.241)
ln(Distance) -0.100∗∗∗(0.026) 0.038 (0.024) -0.135∗∗∗(0.025)
Value20 0.000 (0.001) -0.001 (0.001) 0.001 (0.001)

Ancillary Parameters
ς (shape) 1.263∗∗∗(0.017) 0.527∗∗∗(0.007) 0.624∗∗∗(0.008)
β0 = ςk log(λk) -4.925∗∗∗(0.428) -2.433∗∗∗(0.574) 0.378 (0.446)

Elements of the Cholesky Triangle
Duration 0.825∗∗∗(0.038) 0 0
Cost 0.790∗∗∗(0.048) -0.063 (0.081) 0
Area 0.931∗∗∗(0.049) -0.082 (0.093) 0.009 (0.058)

Observations = 10,321; Number of Wildfires (n) = 3,829; Completed Fires = 3,398
lnL = −43, 546 ; Likelihood Ratio Statistic = 5,214 ∼ χ2

84

* p < 0.1, **p < 0.05, ***p < 0.001
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Table 11: Baseline and Median covariate values.

Continuous Covariates Baseline Median

Threatened Residential 0 0
Threatened Commercial 0 0
Threatened Outbuildings 0 0
Injuries 0 0
Fatalities 0 0
Wind (mph) 0 5
Temperature (◦F) 0 79
Relative Humidity 0 0
Resource Scarcity 0 0
Latitude (0 = equator) 0 41◦

Day of Year (Sin) 0 -.26
Day of Year (Cos) 0 -.89
Year 0 (2001) 5 (2006)
Distance 0 2.48
Value20 0 < 0.0001

Categorical Covariates

Cause Human
Forest Service Region 8 (South)
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Appendix B

B.1 Data Definitions

Table 12: Variable labels used in this analysis, descriptions, and source information.

Variable name Brief description and source

Cost Cost is the suppression cost to date (ICS box 19) in dollars.
Area Fire size is the total area burned to date (ICS box 15) in

acres.
Damaged/Destroyed Resi-
dential Structures

Number of residential structures damaged and destroyed
(ICS box 24).

Type 1 Crew Number of type 1 crew firefighters (strike teams × 20) (ICS
box 43)

Type 2 Crew Number of type 2 crew firefighters (strike teams × 20) (ICS
box 43)

Helicopter Number of type 1, 2, and 3 helicopters (ICS box 43)
Dozer Number of bulldozers and tractor plows (strike teams × 2)

(ICS box 43)
Engine Number of engines and water tenders (strike teams × 5)

(ICS box 43)
Threatened Residential
Structures

Number (in hundreds) of residential structures threatened
(ICS box 24).

WUI Interface Acres of land (in thousands) with > 6 homes/km2 and ≤
50% vegetation within 2.4 km of land with > 75% vegetation
(Radeloff et al., 2005).

WUI Intermix Acres of land (in thousands) with > 6 homes/km2 and >
50% vegetation (Radeloff et al., 2005).

Log(Median Home Value) County-level median home value in which the fire began
(Census, 2012).

Potential Evacuation Binary; equals 1 if there exist a potential for evacuation (ICS
box 25) and 0 otherwise.

Injuries Number of reported injuries (ICS box 21).
Windspeed Average reported windspeed in mph over current operational

period (ICS box 30).
Temperature Average reported temperature in degrees Fahrenheit over

current operational period (ICS box 30).

continued



109

continued
Variable name Brief description and source

Relative Humidity Average reported relative humidity on scale of 0− 100 over
current operational period (ICS box 30).

Forecasted Windspeed Forecasted windspeed in mph over next operational period
(ICS box 34).

Forecasted Temperature Forecasted temperature in degrees Fahrenheit over next op-
erational period (ICS box 34).

Forecasted Relative Humid-
ity

Forecasted relative humidity on scale of 0 − 100 over next
operational period (ICS box 34).

Uncontrolled Perimeter Approximation of wildfire perimeter not yet contained (in
miles) (ICS).

Day of Year Report date (ICS box 1) converted into radians and trans-
formed with cosine function.

Human Caused Binary; equals 1 if wildfire was caused by human activity
(baseline=lightning) (ICS box 8).

County Roads Miles of major collector road in county divided by county
size (sq. miles) (USDOT, 2005).

Timber Fuel Models = {H, R, E, P, U, G } (NIFMID).
Slope Percent grade of slope at point of ignition (NIFMID).
Elevation Elevation in thousands of feet at point of ignition (NIFMID).
Private Management Binary; equals 1 if management agency=private (base-

line=federal)
State Management Binary; equals 1 if management agency=state (base-

line=federal) (Census, 2012).

B.2 Dataset Merging Algorithm

The ICS-209 and NIFMID are datasets managed by two different organizations that do not

use a common identifier. Therefore, I develop an algorithm to merge the two datasets based

on variables common to both datasets. I use only the final observation from the ICS-209

dataset because the NIFMID data contain only one observation per fire representing the

final ex-post report. The algorithm is outlined as follows:

1. Let i = 1, ..., n denote observations in the ICS-209 dataset and j = 1, , J denote

observations from the NIFMID dataset. Calculate the following variables between an

observation i and all fires j = 1, , J : number of word matches, euclidean distance
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(based on latitude and longitude), difference in start date, % difference in cost, and

the % difference in size. These measures of deviation will be used to construct an index

of best fit.

• Each dataset contains a variable for the wildfire name. The name variable in each

dataset is broken up into individual words with a each word in a separate variable

(e.g., Bear Lake Fire would span name1=Bear, name2=Lake, and name3=Fire).

The longest name contained six words so name1-name6 are created. Then for

each i and j pair, 36 name match variables are created which take the value 1 if

a name variable from the ICS-209 data match a name variable from the NIFMID

data. These 36 variables are then summed and divided by the number of words

in the wildfire for which a match is sought. This number is subtracted from 1

so that a perfect match gets a score of zero. In keeping with the Bear Lake Fire

example, if a fire in the NIFMID data was named Bear Lake, two of the three

words would match and the score would be 1− 2
3

= 1
3
.

• Distance is based on the latitude and longitude coordinates in each dataset. The

pythagorean theorem is an approximation of the true distance because it does not

take into account the curvature of the globe. I do not perceive this as a problem

because of the relatively short distance between coordinates representing a match.

• The ICS-209 data reports an incident start date which is the approximate date

of ignition. The NIFMID data reports a discovery date, ignition date, and first

action date. The difference in days between ICS-209 start date and each of the

three measure from the NIFMID is calculated and the minimum is used. The

difference in days is divided by 10 to reduce the weight in the index of best fit.

• The percent difference in cost is the absolute value of the difference in the fi-

nal suppression cost reported in the ICS-209 and NIFMID data divided by the
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maximum of the cost figures reported in each dataset.

• The percent difference in the area is calculated analogously to the percent differ-

ence in cost

2. Potential matches are then screened for large deviations. NIFMID fires only qualify as

a match if the ignition, discovery, or first action date is within 30 days of the ICS-209

start date. An additional qualification is that a potential NIFMID match must be in

the same state and lie within approximately 60 miles of the ICS-209 fire.

3. Each of the five components is summed to generate a weighted measure of fit for each

i (ICS-209) and j (NIFMID) combination. The qualifying NIFMID observation with

the minimum index of best fit is chosen as the most likely match.

4. The matched data are then “scrubbed” for erroneous matches. The name match vari-

able is recalculated after scrubbing the names for common words that often do not

uniquely identify a fire. An online word counter (http://www.wordcounter.com/) rec-

ognizes the most commonly used words in the name variables (e.g., Fire, Creek, Road,

etc.) and a simple loop deletes those entries if they are part of the fire name. The

recalculated name match variable provides additional support for the quality of the

match.

The Stata code is available on request.

B.3 Response Resource Conditions on Fires −i

I utilize the information in the ICS-209 dataset to locate and calculate a number of statistics

representing conditions on other wildfires within the Geographic Area Coordination Cen-

ter (GACC) region. Not all resources are necessarily allocated by the GACC, but during

large fires or intervals with many fires, this assumption is not as strong. Since situation
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reports will be filed almost daily during an active response effort, I search back 48 hours

for fires burning within the region. I collect data on fires −i for variables j = {Type 1

Crew, Type 2 Crew, Helicopter, Dozer, Engine, Forecasted Temperature, Forecasted Wind-

speed, Forecasted Humidity,l Threatened Residential Structures, Potential Evacuation, and

Uncontrolled Perimeter}. The algorithm for collecting the data is outlined as follows:

• The data is sorted by the date and time of the submitted ICS-209 report.

• All wildfires that were documented with ICS-209 reports within a given region over

the prior two days receive an indicator.

• ICS-209 reports may be filed multiple times in one day depending on the behavior and

risks associated with a particular fire. In order to avoid counting resources multiple

times, I take the maximum value of a variable, by fire, over the past 48 hours. The

maximum value of the variable from each fire is then summed over all fires.

nt∑

i=1

maxij(x1ij, x2ij, x3ij, . . . , xZiij) ∀ j = 1, . . . , J

where xziij is the zi observation of variable j associated with fire i, Zi is the number

of ICS-209 reports filed within 48 hours of the observation in question, and nt is the

number of fires burning at any time t.

• The forecasted weather variables are then divided by nt to obtain an average rather

than a sum.

The Stata code is available on request.
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B.4 Summary Statistics

This section contains the summary statistics of the datasets used to estimate each model.

Table 13 contains the summary statistics of the covariates used to estimate the resource

allocation equations. Tables 14, 15, 16 contained the summary statistics on the subset of

data used to estimate the wildfire cost, size, and damage to structures equations.

Table 13: Summary statistics of covariates used in first-stage Arellano-Bond estimation.

Obs. Mean Std. Dev. Min Max
Type 1 Crew 6,826 37.28 101.74 0 1,009
Type 1 Crew −i 6,826 9.19 85.60 0 1,504
Type 2 Crew 6,826 10.49 15.25 0 308
Type 2 Crew −i 6,826 7.67 49.89 0 634
Helicopter 6,826 5.28 4.63 0 96
Helicopter −i 6,826 1.18 7.38 0 112
Dozer 6,826 6.07 8.35 0 83
Dozer −i 6,826 2.86 19.03 0 233
Engine 6,826 32.22 32.78 0 262
Engine −i 6,826 52.92 183.18 0 1,258
Forecasted Temperature 6,355 79.85 12.37 0 116
Forecasted Temperature −i 6,427 80.32 12.02 0 116
Forecasted Windspeed 6,326 9.68 5.33 0 86
Forecasted Windspeed −i 6,406 9.95 5.10 0 76
Forecasted Humidity 6,344 25.49 14.16 0 100
Forecasted Humidity −i 6,421 26.08 13.98 0 100
Threatened Structures 6,178 197.39 448.93 0 4,300
Threatened Structures −i 6,826 0.81 17.22 0 1,026
Potential Evacuation 6,823 0.54 0.50 0 1
Potential Evacuation −i 6,826 5.51 5.65 0 24
Uncontrolled Perimeter 6,707 9.38 12.65 0 155
Uncontrolled Perimeter −i 6,826 24.60 55.06 0 468
Day of Year 6,826 -0.70 0.32 -1 1
Injuriesa 5,577 0.32 0.88 0 13
Injuriesa −i 6,826 0.46 1.93 0 21
aOnly included as instruments in Arellano-Bond regressions.
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Table 14: Summary statistics of covariates used in second-stage wildfire cost model.

Obs. Mean Std. Dev. Min Max

Cost ($) 249 8.5 M 15 M 85000 147 M
Type 1 Crew 1874 34.43 88.19 -6.21 786.55
Type 2 Crew 1874 9.44 9.40 -1.03 176.11
Helicopter 1874 5.20 3.16 0.51 29.21
Dozer 1874 5.52 6.33 -1.07 43.89
Engine 1874 31.23 25.51 -13.37 138.68
Thr. Residential 1874 174.00 439.42 0.00 4000.00
Log(Median Home Value) 1874 12.12 0.54 10.58 13.38
WUI Interface (ac) 1874 27.18 34.12 0.00 178.37
WUI Intermix (ac) 1874 60.64 69.51 0.00 323.20
Windspeed (mph) 1874 9.44 6.70 0.00 55.00
Temperature (F) 1874 76.98 12.32 29.00 113.00
Humidity 1874 26.33 16.26 2.00 100.00
Day of Year (Cos) 1874 -0.70 0.30 -1.00 0.75
Elevation (1000ft) 1874 5.18 2.35 0.16 10.16
Slope 1874 45.05 24.45 0.00 100.00
Timber 1874 0.61 0.49 0.00 1.00
Private Management 1874 0.00 0.07 0.00 1.00
State Management 1874 0.13 0.34 0.00 1.00
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Table 15: Summary statistics of covariates used in second-stage wildfire size model.

Obs. Mean Std. Dev. Min Max

Fire Size (ac) 216 21976.96 46979.67 83.00 499570.00
Type 1 Crew 1228 50.41 102.67 -3.69 684.73
Type 2 Crew 1228 10.33 10.79 -1.03 176.11
Helicopter 1228 5.71 3.59 0.51 29.21
Dozer 1228 6.64 7.21 -0.64 43.89
Engine 1228 35.40 27.52 -24.37 138.68
Thr. Residential 1228 266.24 588.62 0.00 4000.00
Log(Median Home Value) 1228 12.20 0.56 10.58 13.38
WUI Interface (ac) 1228 31.96 36.61 0.00 178.37
WUI Intermix (ac) 1228 73.46 76.88 0.00 323.20
Windspeed (mph) 1228 9.98 7.40 0.00 86.00
Temperature (F) 1228 78.51 12.63 9.00 113.00
Humidity 1228 24.52 15.26 3.00 100.00
Day of Year (Cos) 1228 -0.72 0.30 -1.00 0.47
Elevation (1000ft) 1228 4.82 2.35 0.16 9.85
Slope 1228 46.64 24.52 0.00 100.00
Timber 1228 0.60 0.49 0.00 1.00
Private Management 1228 0.00 0.05 0.00 1.00
State Management 1228 0.12 0.33 0.00 1.00
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Table 16: Summary statistics of covariates used in second-stage wildfire structure damage
model.

Obs. Mean Std. Dev. Min Max

Dam./Des. Residential 746 0.23 2.92 0.00 58.00
Type 1 Crew 746 38.93 91.99 -6.21 509.75
Type 2 Crew 746 9.39 8.40 0.18 94.16
Helicopter 746 5.33 3.34 0.04 16.50
Dozer 746 5.47 6.19 -1.29 32.64
Engine 746 33.88 27.94 -13.37 132.79
Thr. Residential 689 302.14 587.33 0.00 3400.00
Log(Median Home Value) 746 12.23 0.55 10.94 13.29
WUI Interface (ac) 746 21.62 27.56 0.00 158.54
WUI Intermix (ac) 746 57.56 59.21 0.00 323.20
Windspeed (mph) 746 8.65 5.74 0.00 35.00
Temperature (F) 746 76.62 13.09 38.00 114.00
Humidity 746 27.94 16.99 2.00 100.00
Day of Year (Cos) 746 -0.70 0.30 -1.00 0.51
Elevation (1000ft) 746 4.83 2.04 1.30 10.16
Slope 746 48.37 26.72 0.00 100.00
Timber 746 0.69 0.46 0.00 1.00
Private Management 746 0.00 0.00 0.00 0.00
State Management 746 0.12 0.33 0.00 1.00
Human Caused 746 0.27 0.44 0.00 1.00
Country Roads 746 0.07 0.06 0.01 0.62
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B.5 Long-Run Marginal Effects
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B.6 Response Resource Allocation Equations

All response resource equations utilize 6,826 observations on 642 wildfires. Each equation

contains a lagged dependent variable and the same set of explanatory covariates, some of

which are endogenous. The endogenous covariates (including the lagged dependent variable)

are instrumented in each model by a set of lags of covariates, both exogenous and endogenous.

All weather covariates are considered strictly exogenous and instrument themselves and the

endogenous covariates. The choice of instruments in the difference equation is allowed to

differ from the instruments chosen for the level equation. This section of the appendix

details the construction of the instrument matrix based on Arellano-Bond first-difference

autocorrelation tests (from now on AB test) and Hansen test of overidentification. Table 18

contains p-values of the AB test for 15 lags.

An AR(1) process is always expected because the dependent variable ∆yt = yt−yt−1 and

the lagged dependent variable ∆yt−1 = yt−1 − yt−2 both contain yt−1 in the first difference

equation. Therefore, results from the AB test indicate that first-order autocorrelation does

in fact exist. As detailed in Arellano and Bond (1991), a test of autocorrelation in the levels

equation is not informative because the fixed component of the error structure is shared by

all observations within a panel.

With large unbalanced panels, instruments from lags are abundant. However, overiden-

tification becomes problematic when all possible lags are used as instruments. I collapse the

instrument matrix, as described in Roodman (2006), and restrict the number of lags because

the largest panel contains 143 observations (the mean is 10.4 observations).

Type 1 Crew.

Difference equation instruments from lags: 2, 5-6, 9-10, and 13-15

Level equation instruments from lags: 3-6

Total instruments: 128
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Table 18: P-values of Arellano-Bond test of first-difference autocorrelation.

AB Test Crew1 Crew2 Helicopter Tractor Engine

AR(1) 0.0001 0.0201 0.0723 0.0001 0.0001
AR(2) 0.9090 0.7873 0.3907 0.0556 0.1820
AR(3) 0.5548 0.8779 0.4632 0.9664 0.2753
AR(4) 0.7832 0.1295 0.1035 0.2152 0.3891
AR(5) 0.5740 0.3341 0.1233 0.9417 0.6958
AR(6) 0.2006 0.1938 0.6596 0.7328 0.6297
AR(7) 0.2011 0.1834 0.9305 0.3975 0.2490
AR(8) 0.2781 0.6778 0.5658 0.4624 0.5472
AR(9) 0.3609 0.6046 0.9550 0.8754 0.9463
AR(10) 0.3272 0.3322 0.1600 0.8864 0.7813
AR(11) 0.1007 0.1260 0.3086 0.5689 0.3373
AR(12) 0.1227 0.5050 0.5589 0.4677 0.8707
AR(13) 0.6448 0.1442 0.7823 0.7324 0.1768
AR(14) 0.6805 0.7035 0.8946 0.7178 0.1292
AR(15) 0.9033 0.4772 0.8826 0.3167 0.0581

H0 = autocorrelation does not exist in the first difference errors

In addition to lags of the estimated covariates, injuries on fire i, and injuries that occur

on all other fires −i at time t are included as external instruments to capture the reaction

of fire managers to firefighter injury. I do not include these additional covariates in the

Helicopter, Dozer, or Engine models because I do not expect that these covariates would

impact the allocation of capital resources.

Type 2 Crew.

Difference equation instruments from lags: 2-3, 8-10, and 14

Level equation instruments from lags: 2-3, and 14

Total instruments: 98

Helicopter.

Difference equation instruments from lags: 2-3, 6-9, and 12-15

Level equation instruments from lags: 6

Total instruments: 96

Dozer.
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Difference equation instruments from lags: 2-3, 6-9, and 12-15

Level equation instruments from lags:

Total instruments: 32

Engine.

Difference equation instruments from lags: 9-10

Level equation instruments from lags: 5-7, and 11

Total instruments: 56

B.7 Arellano-Bond Specification Test

Roodman (2006) and Bond (2002) suggest that the researcher may check the estimates of

the Arellano-Bond systems estimator by comparing the estimate of the lagged dependent

variable to the estimates of the lagged dependent variable in a fixed effects and pooled OLS

regression. An estimate near the pooled OLS estimate (upper bound) implies that unmodeled

shocks may be inflating the lagged dependent variable estimate by attributing some fixed

effect to the lagged dependent variable. An estimate near the fixed-effect estimate (lower

bound) implies that the dynamic panel bias caused by the transformation of the within-

group estimator (and subsequent negative correlation between yt−1 and − 1
T−1

vt−1) deflates

the estimate of the lagged dependent variable. I present the 95% confidence intervals of the

lagged dependent variable estimates for the fixed effect, Arellano-Bond, and pooled OLS

models.

The lagged dependent variable estimate in the Type 1 Crew model is not statistically dif-

ferent from that in the pooled OLS model (upper bound). This result implies that important

omitted covariates may be causing the model to attribute fixed effects to the lagged depen-

dent variable. The lagged dependent variable estimates in the Type 2 Crew, Helicopter,

Dozer, and Engine models all lie well within the reasonable range.



122

Table 19: Upper (pooled OLS) and lower (fixed effects) bounds on lagged dependent variable
in Arellano-Bond models.

Equation Fixed-Effect Arellano-Bond Pooled OLS

Type 1 Crew [0.740, 0.769] [0.928, 1.005] [0.948, 0.964]
Type 2 Crew [0.528, 0.567] [0.384, 0.715] [0.695, 0.727]
Helicopter [0.627, 0.664] [0.531, 0.852] [0.844, 0.869]
Dozer [0.746, 0.775] [0.578, 0.954] [0.931, 0.949]
Engine [0.781, 0.806] [0.867, 0.942] [0.936, 0.952]
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Appendix C

C.1 Proof of Lemma 1

The equilibrium profit function of each firm is decreasing in the number of entrants. In

particular,

∂πi(n)

∂n
= −2(a− c)2

b(n+ 1)3

where a > c by assumption. Since, in addition it is profitable for at least one firm to enter

(i.e., F < Fmax ≡ (a−c)2
b4

), the equilibrium is guaranteed to exist and be unique.

C.2 Proof of Lemma 2

The number of entrants nR maximizes W (n) if it solves W ′(n) = 0 and W ′′(n) < 0. The

second derivative of the welfare function is

W ′′(n) = −(a− c)2(2n− 1)γ

b(n+ 1)4
+

6n(a− c)2

b(n+ 1)4
− 4(a− c)2

b(n+ 1)3
− 2(a− c)dγ

b(n+ 1)3

where the first and last terms are consumer surplus and the external benefit and are both

concave in n > 1. The middle terms come from producer surplus and are only concave when

n < 2. The sum of multiple concave functions is itself concave. If n > 2, the concavity of

consumer surplus and external benefits must outweigh the convexity of producer surplus.

This occurs when

γ <
2(a− c)(n− 2)

2d(1 + n) + (a− c)(2n− 1)
.
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These conditions are satisfied for all parameters used to generate figures and simulations.

C.3 Proof of Lemma 3

Suppose that nR > nU when γCSn(nU) +Dn(nU) < nπn(nU). Then it must be the case that

at nU , a marginal increase in the number of entrants yields more welfare. However, we know

that the social marginal cost of entry is nπn(nU), and the social marginal benefit of entry

is γCSn(nU) + πi(n
U) − F + Dn(nU). By definition, πi(n

U) − F = 0, which implies that

the social marginal benefit of entry at the unregulated equilibrium is γCSn(nU) + Dn(nU).

If a marginal increase in the number of entrant was welfare improving, the social marginal

benefit of entry would exceed the social marginal cost: γCSn(nU)+Dn(nU) > nπn(nU). This

contradicts the original statement. Therefore γCSn(nU) +Dn(nU) < nπn(nU).

The result of lemma 3 may be expressed as a threshold in terms of the external benefit,

d. Rearranging the first-order conditions of the regulator’s welfare maximization problem

we obtain and isolating the parameter d,

nUγ
(a− c)2

b(1 + nU)3
+ dγ

a− c
b(nU + 1)2

= 2nU
(a− c)2

b(1 + nU)3

and solving for the parameter d, we have

d =

(
(2− γ)(a− c)

γ

)(
nU

nU + 1

)

which, evaluated at nu = a−c√
Fb
− 1 yields

d̄ ≡
(

2

γ
− 1

)(
a− c−

√
Fb
)
.
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C.4 Proof of Lemma 6

Proof of lemma 6 follows the same logic as the single-region counterpart in lemma 3. Since

any (x, y)-pair that satisfies x+y = nU is a single-region unregulated equilibrium as specified

in lemma 4, assume that xU = yU = 1
2
nU and nU denotes the aggregate number of entrants

when convenient. Suppose that (xRO, yRO) >> (xU , yU) when both

WA
x (nU) ≡ γCSx(n

U) + πAi (nU)− F +DA
x (nU)− xπAix(nU) < 0

WB
y (nU) ≡ (1− γ)CSy(n

U) + πBi (nU)− F +DB
y (nU)− yπBix(nU) < 0

where πki (nU)−F = 0 by definition. If regulator A could increase welfare by inducing xRO >

xU , marginal welfare at xU would be positive, which contradicts the original statement. An

analogous argument holds for regulator B. Therefore (xRO, yRO) >> (xU , yU) if and only if

WA
x (nU) > 0 and WB

y (nU) > 0.

These inequalities can then be used to derive a cutoff in terms of the external benefit, d.

The regionally optimal and privately optimal level of entry coincide in region A when

γ
nU(a− c)2

b(1 + nU)3
+ dAγ

a− c
b(b(1 + nU)2

=
nU(a− c)2

b(1 + nU)3

and solving for dA, we have

dA ≡
[

nU

1 + nU
a− c
b

]
1− γ
γ

which, evaluated at nu = a−c√
Fb
− 1 is

dA ≡ b(1− γ)

γ

(
a− c−

√
Fb
)
.

Since the region B welfare function is distinguished from region A by the inverse share of

domestic consumption (1− γ), the cutoff in region B is obtained by substituting (1− γ) for
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γ in dA.

dB ≡ bγ

1− γ

(
a− c−

√
Fb
)
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