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INTRODUCTION

Invasive alien species cause significant impacts in agriculture,

forestry and the environment, with worldwide economic losses

estimated at US $ 1.4 trillion annually, or roughly 5% of the

current global economy (Pimentel et al., 2001) and likely to

increase in the near future (Perrings et al., 2005; Westphal

et al., 2008). In recent decades, quantitative models have

become increasingly popular for assessing risks associated with

invasive alien organisms (Andersen et al., 2004a; b; Foxcroft
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ABSTRACT

Aim Uncertainty has been widely recognized as one of the most critical issues in

predicting the expansion of ecological invasions. The uncertainty associated with

the introduction and spread of invasive organisms influences how pest

management decision makers respond to expanding incursions. We present a

model-based approach to map risk of ecological invasions that combines two

potentially conflicting goals: (1) estimating the likelihood of a new organism

being established at a given locale and (2) quantifying the uncertainty of that

prediction.

Location Eastern and central Canada.

Methods Our methodology focuses on the potential for long-distance, human-

assisted spread of invasive organisms. First, we used a spatial simulation model to

generate distributions of plausible invasion outcomes over a target geographical

region. We then used second-degree stochastic dominance (SSD) criteria to rank

all geographical locations in the target region based on these distributions. We

applied the approach to analyze pathways of human-assisted spread (i.e., with

commercially transported goods) of the emerald ash borer (EAB) (Agrilus

planipennis Fairmaire), a major pest of ash trees in North America.

Results The projected potential of the pest to establish at remote locations is

significantly shaped by the amount of epistemic uncertainty in the model-based

forecasts. The estimates based on the SSD ranking identified major ‘crossroads’

through which the movement of the EAB with commercial transport is most likely

to occur. The system of major expressways in Ontario and Quebec was confirmed

as the primary gateway of the pest’s expansion throughout the Canadian

landscape.

Main conclusions Overall, the new approach generates more realistic predictions

of long-distance introductions than models that do not account for severe

uncertainties and thus can help design more effective pest surveillance

programmes. The modelling technique is generic and can be applied to assess

other environmental phenomena when the level of epistemic uncertainty is high.

Keywords

Agrilus planipennis, epistemic uncertainty, human-assisted spread, invasive

species, pathway model, stochastic dominance.
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et al., 2007; Venette et al., 2010). Prioritization of geographical

locations facing the threat of possible invasion by a non-native

organism is often called ‘risk mapping’ (Koch et al., 2009;

Yemshanov et al., 2009; Venette et al., 2010; Magarey et al.,

2011). The entire geographical area of concern is usually

divided into a set of small sub-units so each individual unit can

be ranked by the potential for the invasive organism of interest

to become established and cause a measurable impact. Taken

together, these individual units constitute a ‘risk map’ that is

the spatial realization of an underlying model of the pest’s

anticipated expansion in a new landscape.

Unfortunately, public calls for action when an invasive

organism is newly detected in a given region seldom allow

enough time to acquire the data necessary to characterize the

regional risk well. As a result, quantitative models used to

assess risk are rarely precise, and outputs are usually limited to

a coarse characterization of establishment and/or impact

potential (Andersen et al., 2004b; Baker et al., 2005; Simberl-

off, 2005). Perhaps more importantly, such pest risk assess-

ments include considerable uncertainty that is rarely quantified

(Andrews et al., 2004; Koch et al., 2009). This is particularly

true for geographically explicit risk estimates like pest risk

maps (e.g., US Department of Agriculture, Forest Health

Technology Enterprise Team (FHTET), 2007a,b; Pitt et al.,

2009; Venette et al., 2010).

The omission of uncertainty has serious implications when

risk maps are used to support decision making. Uncertainty

inevitably changes the interpretation of risk estimates because

most decision makers in pest management and regulation are

fundamentally risk averse. If uncertainty is not addressed in a

risk map then a decision maker is forced to rely on his or her

subjective perceptions of the uncertainty. This is problematic:

Behavioural research indicates that humans, including experts,

tend to underestimate uncertainty by a considerable margin

(Kahneman et al., 1982). Thus, when uncertainty is assessed

subjectively, the consequences for risk assessments can be as

substantial as when uncertainty is omitted (Morgan &

Henrion, 1990; Gigerenzer, 2002), especially if knowledge

about the invasive organism in question is poor.

Systematic characterization of uncertainty is complicated by

the fact that there are different definitions of the types as well as

the potential sources of uncertainty (Elith et al., 2002; Regan

et al., 2002; Walker et al., 2003; Baudrit et al., 2007; Refsgaard

et al., 2007). In general terms, uncertainty may be categorized as

stochastic (associated with natural variability) or epistemic

(derived from incomplete knowledge about the organism of

interest). Stochastic uncertainty is irreducible but may be

represented in a formal manner, while epistemic uncertainty can

in theory be reduced through additional research or data (Elith

et al., 2002; Refsgaard et al., 2007). While several techniques

have been proposed to quantify uncertainty, such as sensitivity

analysis (Swartzman & Kaluzny, 1987; Henderson-Sellers &

Henderson-Sellers, 1996), ensemble prediction systems (Worner

& Gevrey, 2006; Demeritt et al., 2007) and multiple model

comparisons (Hartley et al., 2006), directly incorporating

uncertainty into risk maps remains a challenging task.

Aggregating risk and uncertainty

For this study, we consider a risk assessment of ecological

invasion performed in a geographical domain using a

stochastic model that is based on uncertain knowledge about

an invasive organism of interest. A small number of previous

pest risk mapping efforts (e.g., Rafoss, 2003; Cook et al., 2007;

Pitt et al., 2009; Yemshanov et al., 2009) have used stochastic

simulations to predict the pattern of expansion of an invasive

organism across a particular region of concern. A key feature of

this approach is that the results from repeated simulations may

be presented as a distribution of plausible invasion outcomes

for each geographical location in the region of interest. In turn,

the locations may be comparatively evaluated based on two

aspects of their outcome distributions: the central tendency

(defined in this case by the mean), which serves as an estimate

of the invasion ‘risk’, and the variation (i.e., the variance) in

the distribution, which serves as a basic measure of the

uncertainty in the risk estimate. While a stochastic simulation

approach thus quantifies uncertainty, it does not directly

incorporate this uncertainty into the risk estimate. One way to

resolve this is to plot all of the individual locations as a point

cloud in a two-dimensional space of their expected risk (i.e.,

distribution mean) and uncertainty (i.e., variance) values. The

points, and corresponding geographical locations, in the

outermost layer of this cloud (i.e., a mean-variance frontier)

have the worst possible combinations of risk and uncertainty.

This approach has been used widely in economic literature

(Markowitz, 1952; Arrow, 1971) but can only be applied to

normally distributed data and therefore has limited practical

use (as data sets often fail the test for normality).

METHODS

Risk mapping as a portfolio valuation problem

The concepts of risk and uncertainty, as outlined earlier in the

ecological invasion context, can be thought of as analogous to

the concepts of ‘return’ and ‘volatility’ of financial assets in

economic literature (Arrow, 1971). In recent years, these

concepts have been used widely to address uncertainty in

investment decision making (Levy & Markowitz, 1979; Levy,

1998; Götze et al., 2008) and other disciplines, such as

evaluation of farm community programmes (Kramer & Pope,

1981), crop production choices (Lee et al., 1987), best

irrigation practices (Harris & Mapp, 1986) and testing for risk

aversion (Levy & Levy, 2001).

In this article, we adapt classical return-volatility criteria for

portfolio valuation to map the risk of invasion by a species

under uncertain conditions, such as might result from limited

knowledge about the behaviour of an invader. We interpret the

probability (or risk) of invasion as analogous to the term ‘net

return’ in financial literature, and the variation in this

probability as analogous to ‘volatility’. Essentially, the process

of mapping invasion risk can be envisioned as akin to finding

an optimal investment strategy (see Sharpe, 1964; Elton &

D. Yemshanov et al.
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Gruber, 1995) that yields the highest possible returns while

incorporating the tradeoffs between net return and volatility.

The problem of allocating high- and low-risk locations in a

geographical setting can thus be treated as equivalent to a

financial portfolio allocation problem that is solved by finding

the most efficient set (from an investor’s perspective) of

portfolio segments in the total investment pool based on their

expected net returns of financial assets and their volatilities.

Our analysis adopts this ‘most efficient set’ concept and

proceeds as follows. We first use a stochastic model of invasion

to estimate distributions of plausible invasion outcomes for

each geographical location of interest, i (i 2 1,…, N), in our

study area. We then treat these N locations as individual

‘portfolios’. Similarly to the task of allocating the investment-

efficient set of portfolios with the best tradeoffs between the net

returns and their volatility, we find a subset N of ‘portfolios’

among N locations in the map that has the greatest risks in

terms of both projected invasion risk and its uncertainty. We

apply stochastic dominance criteria to find this ‘efficient’

subset N.

Stochastic dominance

The stochastic dominance concept (SD henceforth) is a form

of stochastic ordering that refers to a set of relations between a

pair of distributions. The concept has been widely used to

compare distributions of portfolio returns and to differentiate

efficient and inefficient sets of investments in financial

economics (Hadar & Russel, 1969; Hanoch & Levy, 1969;

Rothschild & Stiglitz, 1970; Whitemore, 1970). SD shares many

similarities with majorization theory in statistics, which deals

with partial ordering of vectors (Levy, 1992). Fundamentally,

any rational decision maker will prefer a hypothetical portfolio

x1 to an alternative portfolio x2 whenever x1 has stochastic

dominance over x2 (Fishburn & Vickson, 1978; Levy, 1998).

Notably, stochastic dominance is perceived to be superior to

the aforementioned mean-variance frontier approach for

investment selection, in particular because it uses the entire

cumulative distribution of expected returns rather than just the

first two moments of the distribution (Gandhi & Saunders,

1981).

The SD rule compares two distributions in terms of their

cumulative distribution functions, or cumulative distribution

functions (CDFs) (Levy, 1998). For a given variable x, the

value of its CDF at y is the probability that x should be no

greater than y. In our pest risk mapping context, we compare

two geographical locations, f and g. At each location, the

multitude of plausible outcomes of invasion (in our case, the

results from all individual runs of the stochastic invasion

model) is described by the distribution, f(x) or g(x), of a

variable x over an interval [a;b] (Fig. 1a). In our study, x

denotes the annual rate of the introduction of an invasive

organism estimated for a given location in each model run,

which varies from 0 to 1 (i.e., the /i value; see equation S5 in

Appendix S1).

To test for stochastic dominance, we represent the distri-

butions of x at f and g by their respective CDFs,

FðxÞ ¼
R x

a f ðxÞdx and GðxÞ ¼
R x

a gðxÞdx. Formally, location f

dominates g by the first-degree stochastic dominance rule

(FSD) if

1

0

F(x)G(x)g(x)f(x)

0

f(x)g(x) 1

0

1

0

G(x)
F(x)

FSD

FSD SSD

x

0
x

First-degree stochastic dominance:

Second-degree stochastic dominance:

F(x)dx
x

a∫
G(x)dx

x

a∫

(a) (b)

(c) (d) (e)

F(x), G(x)

F(x), G(x)

G(x)dxF(x)dx,
x

a

x

a ∫∫
Figure 1 Comparing two distributions using the first-degree and second-degree stochastic dominance rules: (a) example distributions, f (x)

and g(x), of invasion outcomes at two corresponding map locations, f and g; (b) the CDFs, F(x) and G(x), of f(x) and g(x) in Fig. 1(a). ‘First-

degree stochastic dominance rule (FSD)’ indicates the first-degree stochastic dominance conditions are satisfied (i.e., G(x) and F(x) do not

cross each other); (c) two additional example distributions of invasion outcomes at f and g. In this case, f(x) and g(x) have similar mean

values; (d) the CDFs, F(x) and G(x), of f(x) and g(x) in Fig. 1(c). The crossed ‘FSD’ sign denotes that first-degree stochastic dominance

conditions fail (i.e., F(x) and G(x) cross each other); (e) the integrals,
R x

a F ðxÞdx and
R x

a GðxÞdx , of the CDFs in Fig. 1(d). ‘SSD’ indicates the

second-degree stochastic dominance conditions are met (i.e.,
R x

a F ðxÞdx and
R x

a GðxÞdx do not cross each other).
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G xð Þ � F xð Þ � 0 for all x; and

G xð Þ � F xð Þ> 0 for at least one x:
ð1Þ

In short, the FSD rule implies that the CDFs of f and g do

not cross each other (Fig. 1b) and f has a higher probability of

reaching a given value of x than g does at any percentile point.

The test for FSD also supposes that a decision maker will

always prefer the ‘higher-value’ choice (Levy, 1998) at any

realization of x (i.e., will place greater management priority on

a location with higher likelihood of pest invasion than a

location with lower likelihood).

In many practical situations, differences between the distri-

butions of f and g can be subtle. For example, they may have

very close mean values (as shown in Fig. 1c) such that G(x)

and F(x) cross each other (Fig. 1d) and the FSD conditions are

not met. Second-degree stochastic dominance (SSD) provides

more selective delineation by comparing the integrals of the

CDFs F(x) and G(x):
Z x

a

FðxÞdx and

Z x

a

GðxÞdx:

Location f dominates the alternative g by SSD if
Z x

a

½GðxÞ � FðxÞ�dx � 0 for all x; and

Z x

a

½GðxÞ � FðxÞ�dx > 0 for at least one x:

ð2Þ

Similarly to FSD, the SSD condition implies that the

integrals of the CDFs F(x) and G(x) do not cross (Fig. 1e). For

both FSD and SSD, because G(x) and F(x) represent the entire

distributions of the introduction rates of an invasive organism

at locations f and g, uncertainty in the predicted invasion

outcomes at these sites is incorporated into the comparison

process. Furthermore, SSD also adds the assumption that the

decision maker is risk averse (i.e., given two choices with the

same expected mean level of outcome, the more certain choice

is always preferred, see Levy (1998) for discussion). For this

reason, we applied the SSD rule for this study. Higher-order

stochastic dominance criteria have also been developed

(Whitemore, 1970; Ng, 2000), but their interpretation from a

decision-making perspective is less straightforward.

The test for stochastic dominance is a pairwise comparison

with three possible outcomes: f dominates g, g dominates f, and

g and f are ‘non-dominant’ to each other (i.e., the test for

dominance fails in both directions). Like most financial

applications of the SD concept (Porter et al., 1973; Porter,

1978; Post, 2003), our risk mapping study analyzed a large set

of elements (a map consisting of N locations in our case) and

hence required undertaking multiple pairwise SSD tests. The

objective of the multiple pairwise comparisons was to delineate

a subset N1 from the total set N where each of its elements

dominates (according to the SSD rule; see equation 2) any

element in the rest of the set, N)N1. Conversely, no element in

N1 could be dominated by an element in N)N1 based on the

SSD rule. Also, within that subset N1, all elements were ‘non-

dominant’ to each other, such that the dominance conditions

(equation 2) could not be satisfied between any pair of them.

The subset N1 is often called a ‘non-dominated’ or ‘efficient’

set in asset allocation literature (Porter et al., 1973; Fishburn &

Vickson, 1978; Porter, 1978; Post & Versijp, 2007).

Once the first non-dominated subset N1 was found, it was

assigned the highest rank 1 and removed from set N tempo-

rarily. Next, a second non-dominated subset, N2, was deter-

mined from the rest of the map, N)N1, assigned a rank of 2, and

temporarily removed, and so forth (Fig. 2). The process was

repeated until no non-dominated set was found, or in other

words, when every location in the map had been assigned a rank

based on the SSD rule. Essentially, this technique followed

Goldberg’s (1989) ranking algorithm for finding nested non-

dominated sets. The method is conceptually similar to the

ranking algorithm described in Yemshanov et al. (2010).

Operationally, the algorithm was implemented in three

steps. Prior to ranking, each map location was assigned a

unique identifier (Fig. 2). Next, we calculated the CDF

integrals for each location based on its distribution of

projected invasion rates, generated through multiple realiza-

tions of an invasion model (described later). After the ranking

was complete, the final ranks were then referenced back to the

original geographical locations and plotted as a map of risk

ranks defined by the SSD rule (Fig. 2). To compare different

scenarios, we inverted and rescaled the ordinal risk ranks 1,…,

Z to a 0–1 range, so the highest-risk ranks were close to 1 and

the lowest risks were close to 0.

Species of interest

We applied an approach based on stochastic dominance to

assess the expansion of the emerald ash borer (EAB), Agrilus

planipennis Fairmaire (Coleoptera: Buprestidae), a forest insect

native to Asia but discovered near Detroit, Michigan and

Windsor, Ontario in 2002. It has since spread to 14 additional

US states and another Canadian province (Fig. 3). The EAB is

a major threat to North American ash trees (Fraxinus spp.), as

all are susceptible to EAB attack. The pest has already caused

significant damage in eastern North America, particularly in

urban forests (Poland & McCullough, 2006; Kovacs et al.,

2010). The natural spread capability of EAB (i.e., the typical

flight distance of mated females, who are the strongest fliers) is

�3 km (Taylor et al., 2010); the majority of longer-distance

introductions of new populations have been caused by human

transport (Haack et al., 2002; Kovacs et al., 2010), with

commercial and passenger vehicles moving materials infested

with EAB (such as logs, firewood, nursery stock or related

material). The existing capacity to detect EAB is still relatively

poor, such that new detections usually indicate the presence of

already established populations (de Groot et al., 2008). Despite

significant investment in EAB management efforts – $32 mil-

lion by USDA-APHIS alone in 2008 (Kovacs et al., 2010) –

timely detection of outlying EAB infestations remains

extremely difficult.

Recent analyses of EAB control options have demonstrated

the value in forecasting the long-distance spread of EAB as a

D. Yemshanov et al.
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way to promote time-critical detections beyond the main

invasion front (Kovacs et al., 2010). Although long-distance

dispersal has been recognized as a key contributor to the rates

at which invasions expand, this aspect remains the most

uncertain and difficult characteristic of invasions to estimate

adequately (Neubert & Caswell, 2000; Koch et al., 2009;

Melbourne & Hastings, 2009). This study quantifies, in a

spatially explicit fashion, the long-distance spread of EAB via

commercial transportation corridors. The geographical

domain of our analysis was primarily defined by the native

range of ash species in eastern North America (Little, 1971)

(Fig. 3). (As explained in the next section, we only report the

Finding the non-dominant subset 
via pairwise tests for SSD

Simulation model of 
ecological invasion

Multiple stochastic

Assign a non-dominant subset, ℵ an ordinal 
rank z. Remove ℵ from the set, repeat ranking

realizations of the 
invasion spread

Map ordinal SSD-based ranks 
back to geographic space

Integrated risk map
Figure 2 Mapping invasion risks with the

SSD rule.

Ontario

USA

Quebec

- Positive EAB finds in the U.S.
- Likely infested/regulated areas
- Ash distribution range

. Saskatoon

. Regina

. Edmonton

. Calgary
. Winnipeg

Ottawa
Montreal

Toronto
Halifax

. Fredericton

Figure 3 Geographical distribution of the emerald ash borer (as per February 2011). The map is centered on Canadian locations and does

not show positive detections of the pest in the USA, south of Illinois–West Virginia.
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results for Canada, so the US ash range is not shown in Fig. 3.)

Ash species have also been commonly planted as ornamental

trees in urban and rural municipalities (Poland & McCullough,

2006); therefore, we included in the study major municipalities

in Saskatchewan and Alberta that fall west of the primary ash

distribution range.

Model of human-assisted EAB spread via freight

transport

Many geographical dispersal models have relatively poor

capacity to predict long-distance spread (Andow et al., 1990;

Buchan & Padilla, 1999; Neubert & Caswell, 2000); therefore, a

pathway-based, vector model type was chosen for this study.

Recent models by Muirhead et al. (2006) and Prasad et al.

(2010) combined both short-range natural dispersal and

human-assisted long-range dispersal of EAB, while another

model of EAB spread (BenDor et al., 2006) only dealt with the

former mode. Our study focuses exclusively on long-distance

movement of EAB populations with commercial freight

transportation and does not address aspects of EAB’s biological

(i.e., local) spread.

We developed a pathway-based model of EAB spread by

commercial freight transport through an extensive (i.e.,

national-scale) road network. Our primary data were a

roadside survey database maintained by Transport Canada

(TC). The database stores summaries of individual freight

routes collected during a 2005–2007 roadside survey at truck

weigh stations across Canada. A full description of the database

and the pathway model can be found in Appendix S1; here, we

provide a brief summary.

The movement of commodities and cargoes commonly

associated with forest invasive pests has been recognized as a

viable predictor of the human-mediated spread of invasive

organisms (Koch et al., 2011). We used the tonnages of forest-

pest-associated commodities reported in the roadside survey

database to build a pathway matrix where each element defined

the probability of the pest being moved with commercial

transports from a given location i to another location j

(equations S1–S4, Appendix S1). The pathway matrix stored

the probabilities of EAB transmission, pij, for each pair of

locations i, j in the transportation network and included

�5000 major municipalities and rural settlements in Canada

and the USA.

We then used the pathway matrix to simulate movements of

the pest through the transportation network with commercial

freight transports from previously infested areas (i.e., from

network locations proximal to known EAB populations) to all

other locations in the transportation network. The model was

initialized with the distribution of known EAB populations in

Canada and the USA (US Department of Agriculture, Animal

and Plant Health Inspection Service (APHIS), 2011a) as of

February 2011. We first identified all potential nodes in the

pathway matrix that were near sites infested with EAB. A forest

stand can progress from all healthy trees to all dead ash trees in

about six years (Knight et al., 2010). However, lightly infested

trees can remain asymptomatic for several years (Cappaert

et al., 2005). Consequently, many infestations establish and

expand for several years prior to their detection. Thus, we

assumed that a viable EAB population would exist at nodes

within 10 km of sites with positive EAB finds (which roughly

corresponds to 3–4 years of biological spread).

Based on the stochastic simulations, each location (a

network node i) outside of likely infested or regulated areas

(see Fig. 3) was characterized by a distribution, Gi(/i), of the

potential rates of EAB transmission to that location. We then

used the SSD rule to rank the CDFs of the Gi(/i) through

pairwise comparisons (see Stochastic Dominance section) and

thus characterize the relative risk levels of all of these locations

from the perspective of a risk-averse decision maker.

RESULTS

EAB transmission rates

Figure 4 shows the EAB transmission rates (/i) calculated for

particular geographical locations outside the likely infested/

regulated areas of Canada. The data generally emphasize one of

Canada’s major transportation arteries as a key pathway of

EAB transmission: the Highway 401 corridor, which runs from

the Detroit (MI)–Windsor (ON) area to the Montreal (QC)

area (Highway 401 becomes Autoroute 20 in Quebec). One

location, Niagara Falls (ON), has a transmission rate above

0.1 year)1, with the vast majority exhibiting low annual rates of

EAB transmission (/i < 0.01 year)1). Most of the EAB infes-

tation potential is allocated to locations in eastern Canada

(Fig. 4a). Correspondingly, western Canada (Fig. 4b) displays

extremely low potential for EAB to be introduced (and

subsequently established) by commercial truck transport of

pest-associated freight. This is unsurprising, because very low

probabilities are typical for rare long-distance spread events

(Nathan et al., 2003); more importantly, most of the trans-

mission rates show a considerable degree of variation that

exceeds their estimated values by an order of magnitude. In

Fig. 5, the geographical distribution of the locations exhibiting

high variance in their transmission rate values closely follows

two major transportation arteries in Ontario and Quebec: the

aforementioned Highway 401 corridor between Toronto and

Montreal, and Highways 400-17 and 11 running north from

Toronto to Parry Sound (ON) and North Bay (ON) (Fig. 5a).

Four locations in western Canada (Fig. 5b) show a relatively

high variance, including the cities of Calgary (AB) and

Winnipeg (MB) as well as two USA–Canada border crossings

in Manitoba and Saskatchewan (where the introduction of

EAB from US locations is predicted to be more likely than

elsewhere in these provinces).

Assessing risks of human-assisted EAB introductions

with the SSD rule

Figure 6 shows the map of EAB risk rankings calculated for

individual locations using the SSD rule. Generally, the

D. Yemshanov et al.
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geographical pattern of risk ranks follows the map of the

variance of /i (Fig. 5), although there are some notable

differences; for example, a continuous line of locations with

moderately high (0.75–0.95) risk rankings can be seen along

Highway 11 between Toronto and North Bay (ON) (Fig. 6a).

Despite general similarities to the geographical pattern of

variance presented in Fig. 6, the highest-risk (> 0.95) locations

based on the SSD rule delineate the critical EAB transmission

corridors more precisely: Highway 400 north of Toronto and

Highway 401 between Toronto and Montreal. Most locations

in the top 5% of risk ranks are along the Highway 401 corridor

between Toronto and Montreal. Other high-risk locations are

found along the Trans-Canada Highway near Barrie (ON) and

Parry Sound (ON).

With respect to western Canada, most locations have risk

ranks below 0.5, although a few municipalities, such as

Edmonton (AB) and Saskatoon (SK), have moderate (0.5–

0.75) rankings. The handful of locations with moderately high

(0.75–0.95) risk ranks in western Canada are the same as those

emphasized in the map of the variance of /i (Fig. 6b): the cities

of Calgary (AB) and Winnipeg (MB), plus the two major

Canada–USA border crossings in Manitoba and Saskatchewan.

Notably, the SSD ranks track the variance so closely because, as

a defining characteristic of each location’s CDF, the variance

figured prominently in the overall assignment of risk during

this analysis.

Table 1 lists the locations with the highest (> 0.9) SSD-

based risk rankings, together with their associated transmission

rates, /i. Given somewhat limited capacity to validate the

pathway model (in our case by calibrating the model by recent

records of EAB spread along Highway 401, the main vector of

EAB expansion in Ontario), the /i values should be considered

as approximate estimates. Notably, the transmission rates for

the highest-risk locations show a higher degree of variation

(i.e., between 0.01 and 0.14) than is observable in their SSD-

based risk ranks. Indeed, many locations from this list of top

risk ranks have relatively low transmission rates. Compared

with the SSD-based ranks (Fig. 6), the transmission probability

values alone (Fig. 4) were not sufficient to identify sets of

locations comprising key EAB transmission corridors. In short,

because the SSD-based risk ranking incorporates uncertainties

via explicit consideration of each location’s entire distribution

of risks (in the form of CDF integrals), a considerably

larger number of points are ranked as high risk despite

having moderate /i values. The SSD-based ranks also better

agree with recent field experience regarding the potential

pattern of EAB spread in southern Ontario and Quebec,

with frequent detections along the Highway 401 corridor

(a)

(b)

Figure 4 Estimated EAB transmission rates for major Canadian municipalities.
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(E. Bullas-Appleton, CFIA, pers. comm.). Furthermore, a

delineation of generally higher risk ranks for a geographically

broader set of locations agrees well with the principle of

extensive geographical coverage of detection surveys that has

been adopted by the USDA EAB monitoring programme for

the USA (US Department of Agriculture, Animal and Plant

Health Inspection Service (APHIS), 2011b).

DISCUSSION

Decisions about the management of invasive species frequently

occur under circumstances of limited knowledge about an

invader and its likely impact in its new environment. When

risk estimates are based on poor knowledge, a risk analyst may

be unable to provide accurate probabilistic estimates and often

ends up, at best, with model-based summaries based on simple

distribution moments (such as the mean establishment rate

and possibly the variance). The stochastic dominance rule is

theoretically superior to methods based on distribution

moments because it considers the entire distribution of

invasion outcomes (in a CDF form) and is based on minimally

restrictive assumptions regarding a decision maker’s risk

perceptions (Porter et al., 1973; Meyer et al., 2005). SD is

effectively nonparametric and does not need the specification

of a decision maker’s utility function (i.e., defining a numerical

‘utility’ value for every possible outcome a decision maker may

face) or the probability distribution functional form (Kuos-

manen, 2001). Caulfield (1988) compared the stochastic

dominance and mean-variance approaches for forestry appli-

cations and concluded that the SD concept is more useful as a

screening technique for making decisions under risk. Hilde-

brandt & Knoke (2011) similarly concluded that SD should be

seen as a method to separate high-risk alternatives.

The stochastic dominance approach also helps address the

issue of uncertainties in model-based forecasts by directly

linking these uncertainties with a decision maker’s preferences.

For example, a higher level of variation in the underlying G(x)

[and F(x)] distributions may increase the size of each non-

dominant set (N) extracted iteratively from the full set of

geographical locations (N) and therefore coarsen the ranking

classification based on the SSD rule (equation 2). In practical

terms, when the uncertainty of an underlying distribution

[Gi(/i) in this study] is higher, more elements will be assigned

a higher SSD rank than might be expected given their mean

values. We believe that this tendency of the SSD rule to

delineate larger subsets when the level of variation increases

positively demonstrates the sensitivity of the risk rankings to

the extent of uncertainty in the underlying risk model outputs,

thus representing another advantage over methods based on

the distribution moments alone.

(a)

(b)

Figure 5 Variance of EAB transmission rates for major Canadian municipalities.
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The capacity of the SSD concept to account for uncer-

tainty (via explicit comparison of the CDF integrals) also

improves the utility of stochastic invasion models as decision

support tools. In our study, the approach provided better

stratification of the long-distance spread pathways of the

EAB. The risk ranking based on the SSD rule was sufficient

to delineate the system of primary expressways in Ontario

and Quebec as a principal means of EAB spread through

these provinces. More importantly, the incorporation of

uncertainty in the SSD risk rankings of individual locations

emphasized places that would be relatively low risk if looking

only at the average transmission rates. This aspect is critical;

because it highlights distant population nuclei that would

likely not be predicted if uncertainty was omitted, the SSD

approach better facilitates timely and targeted detections of a

pest beyond the main invasion front, thus helping to reduce

surveillance costs and, potentially, slowing the spread of the

pest over long distances.

Given the complexity of the pathway model and associated

SSD ranking algorithm, a couple of performance aspects

warrant further investigation. The first aspect is how well the

probabilistic pathway model recreates the information stored

in the pathway matrix and underlying roadside survey data.

An analysis of their correspondence (Fig. S1, Appendix S1)

shows reasonably good fit (R2 = 0.92). This is not surprising

given that the underlying transportation data were repre-

sented by relatively simple and short routes. The prediction

accuracy of the pathway model would likely be lower if the

individual pathway routes were more complex and included

topological features not well captured by our first-order

pathway matrix (such as branches and loops); fortunately,

this was not the case.

The second issue is how changes in the transportation

network’s topology might affect the risk rankings based on the

SSD rule. For example, removing a portion of the network’s

nodes would change the flows of commodities through the

remaining nodes. Changes in the transportation network’s

topology could also affect the redistribution of the variance of

the transmission rates throughout the remaining nodes (which

would cause subsequent changes in the SSD rankings). Because

the configuration of the transportation network is based on

geographical features and the locations of major settlements in

North America, these changes cannot be predicted analytically

but instead would require further numeric tests under a set of

realistic scenarios (i.e., a sort of customized sensitivity/

uncertainty analysis). This will be a focus of future work.

(a)

(b)

Figure 6 Risk of EAB long-distance spread, via commercial freight transportation, for major Canadian municipalities based on the SSD

rule.
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Technical considerations

The SD ranking technique is generic and can be applied in

conjunction with many other types of stochastic ecological

models and model ensembles when the level of epistemic

uncertainty is high. For example, the approach can be applied

to various spatial dispersal models that generate a distribution

of maps of an organism’s invasion or colonization potential.

While this study demonstrates the SD technique using a point-

based dataset (i.e., the nodes of the transportation network), the

algorithm can just as easily be applied to a collection of raster

maps (where the individual map cells are ranked according to

the SSD rules). Operationally, the model accepts raster spatial

datasets that are generated by common GIS systems.

The SD approach does have shortcomings. The algorithm

requires undertaking pairwise tests for stochastic dominance

and has a computational complexity on the order of ZN(N)1)/

2 (where Z is the total number of ranks and N is the number of

geographical locations). This limits the application of the

method to relatively moderate-resolution maps. As a practical

matter, it also precludes the use of SD criteria that are higher

than second-order (Porter et al., 1973). Higher-order SD

criteria, such as 3rd and 4th-degree SD (Leshno & Levy, 2002;

Post, 2003; Post & Versijp, 2007), provide means for gener-

ating more selective risk rankings; however, interpreting their

restrictive assumptions about decision makers’ preferences is

quite difficult (and the analyses would require even more

computing power).

In some cases, the SD criteria may not be strict enough to

outline a sufficiently small subset. We believe that this is not an

issue when mapping risks of invasive alien species, because in

this context, a decision maker is typically focused on outlining

relatively broad planning regions for determining how and

where to respond to an outbreak. Furthermore, the ordinal

nature of non-dominant risk ranks delineated by the SSD rule

also makes them a useful prioritization metric.

Porter (1978) found that the size of the efficient set

delineated by the SD rule is an increasing function of the

number of data points used to estimate the cumulative

probability function. This issue can be addressed by applying

a percentile approach (Levy, 1998) that uses a fixed number of

percentile points to build the CDF when testing for stochastic

dominance. Another critical point is that SD rules can only be

used for pairwise comparison and hence provide only a partial

ranking of a given global set. If one were interested in

comparing alternative risk rankings, this would require an

extra step of remapping the final ranks to a common scale. The

simplest direct approach to derive a common ranking scale for

multiple datasets is to combine data points from all sets into a

single superset that includes representative samples from all

alternative scenarios and then assign the ranks with respect to

all possible distributions that can be found in the alternative

scenarios. We believe this addresses a major criticism of

methods based on partial ranking: an inability to generate a

common ranking space.

CONCLUSIONS

In this study, we have demonstrated an application of the

stochastic dominance concept to assess and map risks associ-

ated with ecological invasions. We believe that the approach is

a major step forward in model-based assessments of ecological

risks and distributions of invasive organisms because it

provides a simple way to incorporate uncertainty into the final

risk estimates and communicate both risk and uncertainty in a

single decision support product. In our study of assessing the

human-assisted spread of EAB in Canada, the approach helped

to confirm major expressway corridors as a major vector of

human-mediated spread in Ontario and Quebec. The SSD rule

appears to be sufficient to delineate major geographical areas of

concern and has good potential for prioritizing risks of invasive

species introductions under severe uncertainty.
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