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Response of hydrology to climate change in the southern
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Abstract:

Predicting long-term consequences of climate change on hydrologic processes has been limited due to the needs to accommodate the
uncertainties in hydrological measurements for calibration, and to account for the uncertainties in the models that would ingest those
calibrations and uncertainties in climate predictions as basis for hydrological predictions. We implemented a hierarchical Bayesian
(HB) analysis to coherently admit multiple data sources and uncertainties including data inputs, parameters, and model structures to
identify the potential consequences of climate change on soil moisture and streamflow at the headwatersheds ranging from low to high
elevations in the southern Appalachian region of the United States. We have considered climate change scenarios based on three
greenhouse gas emission scenarios of the Interovernmental Panel on Climate Change: A2, A1B, and B1 emission scenarios.
Full predictive distributions based on HB models are capable of providing rich information and facilitating the summarization of
prediction uncertainties.With predictive uncertainties taken into account, themost pronounced change in soil moisture and streamflow
would occur under the A2 scenario at both low and high elevations, followed by the A1B scenario and then by the B1 scenario.
Uncertainty in the change of soil moisture is less than that of streamflow for each season, especially at high elevations. A reduction of
soil moisture in summer and fall, a reduction or slight increase of streamflow in summer, and an increase of streamflow in winter are
predicted for all three scenarios at both low and high elevations.
The hydrological predictions with quantified uncertainties from a HB model could aid more-informed water resource management in
developing mitigation plans and dealing with water security under climate change. Copyright © 2012 John Wiley & Sons, Ltd.

Supporting information may be found in the online version of this article.
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INTRODUCTION

Global climate change will generally have a net negative
impact on water resources (Kundzewicz et al., 2007;
Gosling et al., 2011; Sivakumar, 2011). Temperature
increases will intensify the hydrological cycle, and extremes
(floods and droughts) are likely to increase in frequency and
magnitude (Jackson et al., 2001; Gedney et al., 2006; Oki
and Kanae, 2006; Chiew et al., 2011; Sivakumar, 2011).
Risks of extreme hydrological events depend not only on the
possible changes in climate in the future, but also on the
current status of the hydrological conditions, and they vary
by region (Groisman and Knight, 2008). In the US, a simple
reduction in total annual precipitation might increase
drought severity in the ‘annual, seasonal drought’ regions
which are dependent on dormant season precipitation and
soil recharge, but it would not have the same impact on
forests of the ‘random, occasional drought’ regions of the
eastern US (Penninckx et al., 1999; Hanson and Weltzin,
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2000). Temperate regions will likely experience summer
drying from increased evapotranspiration, lower summer
precipitation, or both (Gleick, 1987; Neilson and Marks,
1994; Jackson et al., 2001; Loukas et al., 2002; Kilsby et al.,
2007). Tropical regions may experience smaller warming-
induced changes in the hydrological cycle (IPCC, 1996;
Jackson et al., 2001). In an integrated assessment of 50-year
runoff events (Q50y) based on one climate change scenario
for some of the largest river basins in the world, the changes
were found to be heterogeneous (Kleinen and Petschel-
Held, 2007). The Q50yr was predicted to increase markedly
in the Amazon, Parana, Chang Jiang, and Mekong basins,
but decrease markedly in Mississippi, Amur, Mackenzie,
and Danube river basins (Kleinen and Petschel-Held, 2007).
The capacity to anticipate how water resources will

be affected by climate change is critical for development
of mitigation and adaption strategies that can sustain
water resources and minimize environmental, economic,
and social costs related to water shortages and floods
(Vörösmarty et al., 2000; Jackson et al., 2001;Meybeck and
Vörösmarty, 2004; Barnett et al., 2008; Palmer et al., 2008).
However, anticipating the long-term consequences of
climate change has been challenging, in part, by the dual
needs to accommodate the uncertainties in the precipitation,
temperature, soil moisture, and streamflow data used for
calibration, and to account for the uncertainties in the
models that would ingest those calibrations as basis for
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prediction (Clark et al., 2001; Schneider, 2001). In addition,
analysis requires integration of predictions derived from
climate models, most commonly assessed at regional or
global scales over seasons to decades with finer scale
(catchment runoff) and fast (hour to daily precipitation and
evapotranspiration) data. Uncertainties at regional scales
under climate change include inherent unpredictability of
precipitation, which depends on sub-grid processes in
climate models, and incomplete understanding of changes
of evapotranspiration, which is driven by processes that are
often poorly characterized in hydrologic models, such as
stomatal closure influenced by elevated CO2 concentrations
and interactions involving energy transfer with complex
surface and vegetation (Ohmura and Wild, 2002; Oki
and Kanae, 2006). The many variables that control runoff
are likewise typically crudely parameterized in hydrologic
models (Jakeman and Hornberger, 1993; Kuczera and
Mroczkowski, 1998).
Improved hydroclimate projections, with reliable

probabilistic quantification of uncertainties, would lead
to more-informed water resource management decisions
(Chiew et al., 2011; Sivakumar, 2011). However, many
hydrologic models do not readily permit coherent
assimilation of the multiple sources data and uncertainties
needed to generate probabilistic predictions. In many
models, inputs, intermediates, and outputs are deterministic
transformations of one another, thus precluding
model uncertainty. Most do not accommodate unknowns
and poorly quantified variables. Complexity and
limited understanding of processes that control hydrologic
cycles suggest that models should be stochastic at the
‘process level’ (Wikle, 2003; Clark et al., 2011). This
allows conditional independence at the ‘data’ stage, taking
up the relationships among state variables at the ‘process’
stage, still tractable when decomposed into a hierarchical
structure (Wu et al., 2010). Hierarchical Bayes represents
such a hierarchical modeling structure that can deal with
the complexity and uncertainty at multiple stages and
multiple data sources (Clark, 2005). Therefore, it shows a
promising tool in hydrology (e.g. Krzysztofowicz, 1999;
Vrugt and Robinson, 2007; Ajami et al., 2007). Implemen-
tation of hierarchical Bayesian (HB) model and more
generally Bayesian inference in hydrological studies has
been made feasible by recent advances in computation,
i.e. Metropolis or Metropolis–Hasting algorithm in Markov
chain Monte Carlo (MCMC) simulation (Kuczera
and Parent, 1998; Campbell et al., 1999; Bates and
Campbell, 2001), differential evolution Markov Chain with
snooker updater (ter Braak and Vrugt, 2008), adaptive
Metropolis–Hasting steps (Haario et al., 2001; Marshall
et al., 2004; Wu et al., 2010), sequential Monte Carlo
sampling such as ensemble Kalman filter (Vrugt et al.,
2005), and particleMCMC algorithmwhich combines the
strengths of sequential data assimilation and MCMC
simulation (Vrugt et al., 2012).
In this study, we predict the potential consequences for

hydrology under climate change by the end of the century,
with a coherent assimilation of hydrological models and
multiple data sources using a HB analysis, at forested
Copyright © 2012 John Wiley & Sons, Ltd.
headwater streams in the Little Tennessee River of northeast
Georgia and western North Carolina.
METHODS

Site description and data

Our study areas are Watersheds 18 and 27 (Figure S1),
reference watersheds at the USDA Forest Service, Coweeta
Hydrologic Laboratory located in the Nantahala Mountain
Range of western North Carolina within the Blue Ridge
Physiographic Province (35º03’N, 83º25’W). The Coweeta
Basin (1626 ha) has been a center of forest hydrological
research in the mountains-piedmont of Georgia, South
Carolina, North Carolina, and Virginia since 1934, and
it has been a National Science Foundation Long-Term
Ecological Research Site since 1980 (Swank and Crossley,
1988). Climate at Coweeta Basin ismarine humid temperate
and characterized by cool summers, mild winters, and
abundant rainfall in all seasons (Swift et al., 1988). Average
annual precipitation varies from 1700mm at low elevations
(680m) to 2500mm on upper slopes (>1400m). It is
dominated by rain events with less than 5%being snow. The
underlying bedrock is the Coweeta group (Hatcher, 1979),
which consists of quartz diorite gneiss, metasandstone and
peltic schist, and quartzose metasandstone (Hatcher, 1988).
The regolith of the Coweeta basin is deeply weathered and
averages about 7m in depth.
Watershed 18 (WS18 12.5 ha) and watershed 27 (WS27

38.8 ha) have been unmanaged since selective logging in the
early 1900s. The vegetation in both watersheds is mixed
hardwoods. The elevation of Watershed 18 (referred as
low-elevation watershed) ranges from 726 to 993m.a.s.l
with an average slope of 52 and aspect of north-east.
Watershed 27 (referred as high-elevation watershed) has
elevation from 1061 to 1454m.a.s.l with an average slope of
55 and aspect of north-north-east. It was partially defoliated
by fall crankerworm infestation from 1975 to 1979.
The data used in the study include precipitation,

temperature, soil moisture, and streamflow at a daily time
step. Daily precipitation and temperature data came from
rain gauges and climate stations located within or near the
watersheds. Daily soil moisture data came from long-term
monitoring data at representative plots at terrestrial gradient
sites within WS18 and WS27. Streamflow data came from
the stream gauges at the outlets of WS18 and WS27.

Baseline and climate change scenarios

For the baseline scenario, we use climate data from 1984
to 2004 at low elevations and from 1992 to 2004 at high
elevations. Due to the large uncertainties in climate change
predictions, we considered three greenhouse gas emission
scenarios of Intergovernmental Panel on Climate Change
(IPCC): a continual increasing rate of emission over the 21st

century (A2), a mid-21st century leveling-off of emission
(A1B), and a global curbing of emissions over the 21st

century (B1) (Nakiénovic et al., 2000; Girvetz et al., 2009).
These scenarios differ in the predictions of population,
world gross domestic production, per capita income ratio
Hydrol. Process. (2012)
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(developed countries and economic in transition to
developing countries), technology innovation rates, etc.
(Nakiénovic et al., 2000). We obtained the World Climate
Research Programme’s (WCRP’s) Coupled Model Inter-
comparison Project Phase 3 (CMIP3) multi-model dataset
for the three emission scenarios (available at www.
climatewizard.org, accessed on April 6, 2012). We used
the quantiles and mean of ensemble predictions of changes
in seasonal temperature and precipitation for 2070–2099 in
reference to 1961–1990 downscaled (horizontal spatial
resolution: 12 km) from 16 global circulation models
(Table I). The quantiles include ensemble minimum, 20%,
40%, 60%, 80% quantiles, and maximum. We fitted
Gaussian distributions by moment matching with mean
and variance (Equation 1):

m̂ ¼
X

q

pqTq =X
q

pq

v̂ ¼
X

q

pqT
2
q

=X
q

pq � m̂2
(1)

for temperature Tq and percentage pq at quantile q. The same
method was used for precipitation. Then, we randomly
sampled from the normal distribution truncated at minimum
and maximum values to derive changes in temperature and
precipitation in each season under the climate change
scenarios using msm (multi-state Markov and hidden
Markov models in continuous time) package (Jackson,
2011) in R (R Development Core Team, 2008).

Process model

We applied a parsimonious daily lumped rainfall-runoff
model with quick and slow flow components ‘GR4J’
Table I. The ensemble quantiles of changes in tem

Variables Scenario Season Minimum 20%

Air A2 Spring 3.71 5.3
Temperature Summer 4.09 6.0
(unit: �F) Fall 4.50 6.0

Winter 2.92 4.8
A1B Spring 3.11 5.1

Summer 4.36 5.2
Fall 4.17 5.5
Winter 2.23 4.4

B1 Spring 1.76 3.3
Summer 2.23 3.2
Fall 2.52 3.0
Winter 1.19 2.6

Precipitation A2 Spring �20.20 �2.6
(%) Summer �36.37 �9.8

Fall �18.08 �7.3
Winter �28.51 �6.6

A1B Spring �18.73 0.1
Summer �27.88 �10.9
Fall �14.15 �2.6
Winter �15.06 �7.3

B1 Spring �10.61 �2.8
Summer �14.49 �7.1
Fall �11.52 �2.8
Winter �22.07 �6.3

Copyright © 2012 John Wiley & Sons, Ltd.
(Modele du Genie Rural a 4 parametres Journalier) (Perrin
et al., 2003; Wu et al., 2010), but allowed for error at this
process level (Wu et al., 2010). The parsimoniousmodel has
four parameters: the maximum capacity of soil moisture
storage (k1), a ground water exchange coefficient (k2), the
maximum capacity of routing storage (k3), and a time base
of a unit hydrograph (k4) (i.e. time of concentration of a
watershed, defined as time required for water to travel
from the most hydraulically remote point in the basin to
the basin outlet). The model can be divided into four
submodels: a soil moisture submodel, an effective
precipitation (the proportion of precipitation that could
contribute to streamflow) submodel, a non-linear routing
slow streamflow submodel, and a non-routing quick
streamflow submodel. Stochaosity in processes was
accommodated in the soil moisture submodel and the
combined non-routing and routing submodels.
HB model

Our hierarchicalmodel structurewas designed to estimate
the components of streamflow generation, including the
parameters, latent states of soil moisture and streamflow,
and uncertainties of the inputs, parameters, and model
structures (Wu et al., 2010). We assumed the major
uncertainties of the model include simulations in soil
moisture and streamflow (termed ‘model misspecification’
or ‘process error’). Thus, the submodels for soil moisture,
slowflow, and quickflowwere stochastic, while the submodel
of effective precipitation was treated deterministically. We
also considered the effects of sampling or observation errors
for the measurements of precipitation, soil moisture, and
streamflow. We used priors that were conjugate with the
perature and precipitation from CMIP3 dataset

40% Mean 60% 80% Maximum

5 7.20 7.27 7.53 7.64 9.36
0 7.35 7.47 7.88 10.90 11.49
4 7.50 7.56 7.77 8.50 10.81
0 5.11 5.34 5.59 6.33 8.68
2 5.86 6.20 6.23 7.18 7.84
1 6.37 6.75 7.25 8.05 9.41
0 6.26 6.37 6.85 7.58 9.40
0 4.60 4.69 4.73 6.94 7.97
4 3.94 4.26 4.49 5.18 5.62
1 4.15 4.52 5.09 5.31 6.73
2 4.39 4.74 4.93 5.26 5.83
9 3.48 3.58 3.76 4.61 6.06
3 �0.142 3.22 5.39 15.71 21.63
0 �0.445 3.41 5.02 19.98 49.28
7 �0.466 6.68 10.22 16.69 32.95
8 1.26 4.42 8.30 16.67 35.22
59 5.50 6.47 7.31 12.21 28.24
6 �3.30 3.30 11.21 24.35 43.67
1 2.98 5.73 6.89 14.33 19.07
7 �1.26 1.69 8.35 19.01 30.73
3 1.07 3.87 5.16 13.19 21.80
6 2.26 4.41 5.49 14.97 31.61
6 2.23 3.18 4.21 11.70 27.67
1 �0.642 4.20 8.52 13.93 17.60
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likelihood (Calder et al., 2003), so that prior and posterior
distribution had the same form, thus facilitating mixing of
Markov chains.
Combining the data, process, and parameter models,

we have the joint posterior (Equation 2, Wu et al., 2010,
Figure S2):

pðk1; k2; k3; k4; s; q; s21; s22; t21; t22; t2p jpo; temp; y; z; priorsÞ

/
YT

t¼1

Nðyt jqt; t21Þ
YT

t¼1

Nðztjst; t22Þ
YT

t¼1

Nðqtj f1 st; k2; k3; k4ð Þ; s21Þ
YT

t¼2

Nðstj f2ðst�1; pt; tempt; k1Þ; s22Þ
YT

t¼1

Nð logðpot Þj logðptÞ; t2pÞ

Nð logðk1; k2; k3; k4Þj logðBÞ; diagnoalðVBÞÞ

IGðs21jas21 ; bs21Þ

IGðs22jas22 ; bs22Þ

IGðt21jat21 ; bt21Þ

IGðt22jat22 ; bt22Þ

IGðt2pjat2p ; bt2pÞ

(2)

where N is the normal distribution, log represents natural
logarithm, IG is the inverse gamma distribution, k1–k4
are the four parameters in the GR4J model: k1 denotes
the maximum capacity of soil moisture storage, k2 denotes
a ground water exchange coefficient, k3 denotes the
maximum capacity of routing storage, and k4 denotes a
time base of a unit hydrograph, s denotes true soil moisture
content, q denotes true log streamflow, p denotes true
precipitation, s1

2 denotes lognormal variance in combined
slow flow and quick flow submodels, s2

2 denotes normal
variance in soil moisture submodel, t1

2 denotes lognormal
observation variance for streamflow measurements, t2

2

denotes normal observation variance for soil moisture
measurements, tp

2 denotes lognormal observation
varaince for precipitation measurements, po denotes
observed precipitation, temp denotes temperature,
y denotes observed log streamflow, z denotes observed
soil moisture content, t denotes time. B is the mean of the
priors of (k1,k2,k3,k4) = (350mm,0.0001,90mm,1.7 days),
with prior covariance matrix VB= diag(0.4,2.0,0.1,0.2).
a and b with subscripts are the parameters for the inverse
gamma distributions, the priors for the observation and
process variances.
We implemented MCMC in R (R Development Core

Team, 2008) to simulate the joint posterior. The initial
values for the water levels of the two storage components
(soil moisture storage and routing storage) were estimated
Copyright © 2012 John Wiley & Sons, Ltd.
based on Edijatno et al. (1999). The MCMC algorithms
included Gibbs sampling (Gelfand et al., 1990) and
adaptive Metropolis–Hastings steps (Haario et al., 2001;
Marshall et al., 2004) to draw samples alternatively from
the conditional posteriors for each of the unknowns,
including the latent variables, parameters, and variances
(Clark and Bjønstad, 2004). The adaptive algorithm is
characterized by a proposal distribution based on the
estimated posterior covariance matrix of the parameters,
which is updated automatically. The posterior covariance
matrix is calculated based on past iterations.
Predictive distributions of soil moisture and stream

flow were constructed based on the climate scenarios, by
marginalizing over the posterior distribution. We randomly
selected 3000 sets from MCMC chains and evaluated both
variables, including variances. The changes in temperature
and precipitation were randomly sampled from the fitted
density distributions based on the ensemble quantiles of the
CMIP3 dataset. This approach integrates over uncertainties
in parameters, model, and data.
The more detailed description of the process and

hierarchical model above, and how the joint posterior was
derived can also be found in Wu et al. (2010).
RESULTS AND DISCUSSION

Predictions of streamflow under the baseline climate scenario

The model predicts streamflow between 1985 and 2004
at low elevations and between 1993 and 2004 at high
elevations well (Figure 1). The Nash–Sutcliffe efficiency
values (ranging from -1 to 1, the closer the efficiency to 1,
the more accurate the model is) based on the daily medians
of the predicted streamflow from the model and the
observed daily streamflow is 0.70 for low elevations, and
0.82 for high elevations, showing that predictedmedians are
in good agreement with field measurements. Meanwhile the
predicted posterior of streamflow captures the variability of
measured streamflow well with the exception of extreme
streamflow events (Figure 1 and Figure S3). Few Bayesian
applications in hydrological models can simulate extreme
flows well (Li et al., 2012). A Bayesian modularization
method has been proposed to reduce the extremeflow’s effect
on the streamflow uncertainty assessment of hydrological
models (Li et al., 2012), but we did not employ this method
in the current study.

Predictions under the three climate change scenarios

From predictive distributions of daily soil moisture and
streamflow, we calculated the percent difference between
the three climate change scenarios and the baseline climate
scenario for each season (i.e. spring, summer, fall, winter) at
both low and high elevations. Then, we summarized the
quantiles and mean of the daily difference.

Soil moisture. Based on the mean of daily change, soil
moisture tends to decline in summer, fall, and spring under
the three climate scenarios at both low and high elevations
Hydrol. Process. (2012)
DOI: 10.1002/hyp



S
tr

ea
m

fl
o

w
 (

m
m

/d
ay

)

Julian Days

1994 1996 1998 2002

2002199819901989A

B

Figure 1. Observed daily streamflow (red lines) and 95% predictive intervals (grey area) from the hiearchical Bayesian models for selected years at low
elevations (A) and high elevations (B). An extended comparison between observations and predictions for each year is shown in Figure S3

Table II. Quantiles and mean of percent change of soil moisture under the three climate scenarios compared to the baseline climate
scenario at low and high elevations

Climate
change
scenarios Seasons

Change of soil moisture (%)

Low elevations High elevations

2.5% quantile mean 97.5% quantile 2.5% quantile mean 97.5% quantile

A2 Spring �15.8 �5.53 0.803 �8.57 �2.33 1.42
Summer �23.6 �12.8 �1.19 �10.6 �3.23 0.199
Fall �23.4 �7.83 1.01 �7.26 �1.50 0.982
Winter �8.18 �1.96 1.73 �0.87 0.659 2.95

A1B Spring �15.1 �4.69 1.13 �6.08 �1.22 1.64
Summer �23.7 �12.1 �0.512 �8.41 �2.45 0.284
Fall �20.1 �7.74 0.93 �6.55 �1.46 0.715
Winter �8.40 �2.12 1.60 �0.944 0.564 2.61

B1 Spring �1.10 �0.0929 0.710 �4.85 �0.822 1.34
Summer �1.65 �0.791 0.0675 �5.59 �1.21 0.673
Fall �1.14 �0.356 0.129 �4.60 �0.969 0.538
Winter �0.0807 0.234 1.72 �0.699 0.498 1.91

RESPONSE OF HYDROLOGY TO CLIMATE CHANGE
(Table II). The most pronounced decline occurs in summer
followed by fall. Declines are greatest under the A2 scenario
followed by the A1B scenario. Average declines are
generally less than 10% except in summer under the A2
and A1B scenarios at low elevations. With uncertainties
taken into consideration, soil moisture tends to decline in
summer and fall under the three climate change scenarios at
both low and high elevations. Under the B1 scenario, the
95% predictive intervals of the change for all the seasons are
smaller and closer to 0 compared to the other two climate
change scenarios, indicating the change of soil moisture and
its variability is smaller. Under the A1 and A1B scenarios,
the absolute mean change and the uncertainty are larger at
low elevations than at high elevations.
Copyright © 2012 John Wiley & Sons, Ltd.
Based on the medians of daily change, soil moisture in
summer and fall is lower than baseline on more than 75% of
all days at both low and high elevations (Figure 2). Inwinter,
it tends to increase, especially at high elevations and under
the B1 scenario. Overall, the most severe drying trend
occurs in summer under the A2 scenario. High evapotrans-
piration, especially during the growing season, due to
increased temperature, reduces soil moisture. Predicted
increased precipitation contributes to increased soil mois-
ture in winter under the B1 scenario. The changes of soil
moisture are more refined under the B1 scenario compared
to the A2 and A1B scenarios, largely due to the less
variability in predictions of temperature and precipitation
under the B1 scenario.
Hydrol. Process. (2012)
DOI: 10.1002/hyp
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Figure 2. The probability distributions of median percent change of soil moisture between the three greenhouse gas emission scenarios and the baseline
climate scenario for spring (black line), summer (dotted line), fall (dashed line), and winter (thick black line) at low (A) and high (B) elevations

W. WU, J. S. CLARK AND J. M. VOSE
Soil moisture provides a connection between physical
processes at the catchment scale and biological processes
at finer scales (Wu et al., 2010). It will not only affect
subsurface streamflow (Kienzler and Naef, 2007)
and saturation excess overland flow (van Meerveld
and McDonnell, 2005), but also primary productivity, soil
biogeochemical processes, and energy exchange between
land and atmosphere (Hanson andWeltzin, 2000). Table III
and Figure 3 show the 95% predictive intervals and
probability distributions of days soil moisture levels are
near the wilting point at both low (11% of volume, from soil
survey geographic database SSURGOof Natural Resources
Conservation Service, available at http://soils.usda.gov/
survey/geography/ssurgo/, last accessed on April 6, 2012)
Copyright © 2012 John Wiley & Sons, Ltd.
and high elevations (9% of volume, from SSURGO). Days
near the wilting point increase at both low and high
elevations under changing climate. The drying trend is most
pronounced under the A2 scenario.

Streamflow. Based on the means of daily change,
streamflow at low elevations tends to decline in summer
and fall under the A2 and A1B scenarios, with largest
declines in summer under theA2 scenario (Table IV). At high
elevations, streamflow tends to decline in summer under the
A2 and A1B scenarios with the larger decline under the A2
scenario. The increase trend can be found in winter under all
the climate change scenarios. Except for winter under the A2
and A1B scenarios at high elevations, the mean changes are
Hydrol. Process. (2012)
DOI: 10.1002/hyp
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Table III. Quantiles of percent days soil moisture levels are near wilting point under different climate change scenarios at both low and
high elevations

Climate change scenarios

Low elevations (% of days) High elevations (% of days)

2.5% quantile Median 97.5% quantile 2.5% quantile Median 97.5% quantile

Baseline climate scenario 24.5 25.9 27.5 8.97 0.183 10.1
A2 emission scenario 28.0 29.5 30.9 12.1 0.593 13.1
A1B emission scenario 27.2 28.3 30.0 11.2 0.499 12.3
B1 emission scenario 25.6 27.0 28.6 10.3 0.267 11.3

A B

D
en

si
ty

Figure 3. The probability distributions of percent days soil moisture is near wilting point under the baseline climate scenario (light black) and the three
emission scenarios (dotted: A2; dashed: A1B; dark black: B1) at low (A) and high (B) elevations

Table IV. Quantiles and mean of percent change of streamflow under the three climate scenarios compared to the baseline climate
scenario at low and high elevations

Climate
change
scenarios Seasons

Change of streamflow (%)

Low elevations High elevations

2.5% quantile mean 97.5% quantile 2.5% quantile mean 97.5% quantile

A2 Spring �6.08 2.06 13.5 �14.3 �1.58 26.1
Summer �23.0 �7.49 1.78 �20.4 �6.99 0.115
Fall �24.2 �4.18 9.30 �12.5 1.16 12.5
Winter �2.46 8.07 22.45 �1.17 12.8 52.6

A1B Spring �1.56 5.73 15.7 �8.15 3.05 28.2
Summer �13.8 �1.62 7.36 �15.8 �3.55 3.89
Fall �17.46 �2.41 8.18 �11.5 0.296 9.47
Winter �1.60 6.85 21.46 �1.44 11.4 46.0

B1 Spring 0.419 4.04 10.6 �7.47 2.13 20.7
Summer �3.25 1.17 5.99 �9.41 0.112 6.47
Fall �4.48 0.738 4.94 �7.28 0.908 7.63
Winter 1.69 5.17 14.4 �0.283 9.20 34.0

RESPONSE OF HYDROLOGY TO CLIMATE CHANGE
less than 10%. With uncertainties accounted for, streamflow
in spring at low elevations and winter at both elevations
shows significant increase under the B1 scenario, as its
predictive intervals of the change are or very close to positive.
Streamflow in summer, however, shows significant decrease
under the A2 scenario at both low and high elevations, as its
predictive intervals of the change are close to negative.
Uncertainty of the percent change of streamflow (95%
credible interval) is more than that of soil moisture for each
season, especially at high elevations.
From the analysis on the medians of daily change,

streamflow declines under the A2 and A1B scenarios on
Copyright © 2012 John Wiley & Sons, Ltd.
more than 60% of days in summer (Figure 4). Streamflow
tends to increase under the B1 scenario with the largest
increase being in winter and spring. The most severe
drought trend would occur in summer under the A2
scenario at both low and high elevations. Streamflow
increases on more than 90% of days across the three
climate change scenarios in winter at both low and high
elevations. More days show increases in streamflow in
winter under the B1 emission scenario than under the
other two climate change scenarios.
In summary, A2 emission scenario and A1B emission

scenario show drier summers with less streamflow at both
Hydrol. Process. (2012)
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Figure 4. The probability distributions of median percent change of streamflow between the three greenhouse gas emission scenarios and the baseline
climate scenario for spring (black line), summer (dotted line), fall (dashed line), and winter (thick black line) at low (A) and high (B) elevations
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low and high elevations. Under those two emission
scenarios, dying soils in spring are followed by even drier
soil moisture and reduced streamflow in summer. Under the
B1 scenario, streamflow in summer shows slightly increase.
Streamflow tends to increase in winter across all the climate
changes scenarios at both low and high elevations.

The effect of temperature versus precipitation on
streamflow. To understand the relative contributions of
changes in precipitation versus temperature on streamflow,
we compared streamflow for scenarios with changes in
temperature or precipitation alone to the baseline climate
scenario. Precipitation and temperature changes were found
to have similar impact on median changes of streamflow
Copyright © 2012 John Wiley & Sons, Ltd.
(Table V), with a slightly larger impact from precipitation at
low elevations and a slightly larger impact from temperature
at high elevations in general. With precipitation change
alone, streamflow shows an overall increase, and it
contributes to high extremes in streamflow. With tempera-
ture change alone, streamflow shows an overall decrease,
and it contributes to low extremes in streamflow.
Whether streamflow is more sensitive to precipitation

or to temperature depends on soils, vegetation, and
most importantly, the climatic regime of the region. In cool
regions, increased temperature may have a large impact. For
example, streamflow could be substantially more sensitive
to temperature than to precipitation in Hudson Bay in
Canada (Waggoner, 1991). However streamflow is expected
Hydrol. Process. (2012)
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Table V. Quantiles of percent change of streamflow with temperature change only or precipitation change only under the three climate
change scenarios compared to the baseline climate scenario

Climate
change
Scenarios Quantiles

Low elevations (%) High elevations (%)

Precipitation
change only

Temperature
change only

Precipitation
change only

Temperature
change only

A2 scenario 2.5% quantile 0.625 �29.8 0.623 �22.8
Median 8.65 �8.45 4.45 �5.93

97.5% quantile 24.35 6.68 15.18 5.42
A1B scenario 2.5% quantile 3.14 �24.1 1.04 �19.9

Median 9.98 �6.69 5.53 �4.97
97.5% quantile 21.9 6.52 14.0 6.68

B1 scenario 2.5% quantile 3.31 �13.4 �0.201 �6.54
Median 6.95 �4.08 0.460 �0.88

97.5% quantile 13.0 4.60 2.82 1.23

RESPONSE OF HYDROLOGY TO CLIMATE CHANGE
to be more sensitive to precipitation than temperature in some
dry areas in Australia, China, and Japan (Chiew et al., 1995;
Guo et al., 2002; Tanakamaru and Kadoya, 1993). In a
temperate humid climate like Coweeta basin where neither
temperature nor precipitation is low, streamflow is likely to
respond to changes in precipitation and temperature at a
similar magnitude.

Implications for management and additional uncertainty.
The Little Tennessee Basin (1797 mi2), into which our
study areas drain, has experienced significant population
growth and increased demand of freshwater resources
for municipal – industrial – recreational – agricultural
uses. Changes in streamflow generation in headwater
catchments could have important implications downstream.
The prediction of dry soils and reduced summer streamflow
suggests that water resource managers will be challenged
to meet the demands of a rapidly growing population
for drinking water when water resources are needed the
most. The potential for wetter winters may also challenge
management for flood protection.
Additional uncertainty could be introduced when we

applied the calibrated models based on the data from the
baseline scenarios to the future scenarios of climate change,
since the parameters may shift when conditions change
(Merz et al., 2011). At Coweeta Basin, dry summers andwet
autumns have become more frequent since the 1980s,
consistent with the trend across the southeast US [Laseter
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Figure 5. Medians of simulated daily streamflow vs. daily observations at l
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et al., 2012; Angert et al., 2005; Groisman et al., 2004). Our
HBmodel predicted reduced summertime soil moisture and
streamflow by the end of the century, consistent with the
observed trend. In addition, ourmodel simulated streamflow
well from 1940s to 2000s during which time some of
the recent extreme climatic conditions have been observed.
The Nash–Sutcliffe efficiency values based on the daily
medians of the predicted streamflow from the model, and
the observed daily streamflow is 0.73 for low elevation
(1945–2004), and 0.80 for high elevation (1960–2004),
showing that predicted medians are in good agreement with
field measurements (Figure 5). 95% of predictive intervals
from the model simulations generally intercepted the 1:1
line in the figure of model simulations versus observations
(predictive intervals not shown here for clarity of the figure),
indicating that the simulated streamflow captured the
variability of observed streamflow at a daily base. These
indicate that our model may be robust to the shift of climate
and applicable to future climate scenarios. However,
addressing the parameter shift under changing climate and
hydrological regimes would potentially improve the model.
CONCLUSION

We have applied a parsimonious hydrological model in the
HB framework to evaluate the potential impact of changing
climate on soil moisture and streamflow at headwaters in the
southern Appalachian Mountains. Although the model is
B
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coarsely parameterized, we are able to account for the major
uncertainties from different sources. The most pronounced
change in soil moisture and streamflow would occur under
theA2 scenario at both low and high elevations, followed by
the A1B scenario and then by the B1 scenario. Uncertainty
of the change of soil moisture is less than that of streamflow
for each season, especially at high elevations. A reduction of
soil moisture in summer and fall, a reduction or a marginal
increase of streamflow in summer, and an increase of
streamflow in winter have been generally derived across the
three climate change scenarios compared to the baseline
climate scenario at both low and high elevations.
Informed decisions about managing water resources

will require accurate and reliable predictions of future
conditions. HB models integrating multiple long-term data
sets with scenarios of future change provide full predictive
distributions with the major uncertainties from different
sources accounted for. Compared to deterministic point
estimates, the richer information from full distributions
in addition to mean and median estimates, can be reliable
basis for a more informed sustainable water resource
management, helping resource managers anticipate
hydrological change under climate change and adapt more
effectively to climate change to ensure water security.
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