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          10.1   Introduction 

 With well over 600 native species, the southern United States supports one of the 
richest temperate freshwater  fi sh faunas on Earth (Fig.  10.1 ). Unfortunately, an 
expert review revealed that 27% (188 taxa) of southern  fi shes are endangered, 
threatened, or vulnerable (Warren et al.  2000  )  and that 16–18% of native  fi shes are 
imperiled in 45 of 51 major southern river basins. Other groups of aquatic organ-
isms in the region also show high levels of imperilment (e.g., freshwater mussels 
and gastropods, Neves et al.  1997 ; Haag  2009 ; cray fi shes, Taylor et al.  1996,   2007 ; 
aquatic reptiles, Buhlmann and Gibbons  1997  ) . Based on national extinction rate 
projections for  fi shes (Ricciardi and Rasmussen  1999  ) , about 10% of the region’s 
 fi shes could be extinct by 2050 unless effective conservation actions aimed at main-
taining and improving the physical and biological integrity of the region’s streams 
and rivers are implemented.  

 The combination of historical and current land-use has resulted in a dramatically 
changed and changing landscape with consequences for  fi shes and linkages between 
forests, aquatic systems, and  fi shes. In that context it is useful to brie fl y review the 
basics of interactions between the terrestrial and aquatic systems. The river contin-
uum concept (RCC) (Vannote et al.  1980  )  provides a useful synthetic framework for 
conceptualizing the connectivity of undisturbed stream systems, the importance of 
stream size, and the interplay at the interface of terrestrial and aquatic environments 
(Fig.  10.2 ). The physical basis of the RCC is stream size and location along the 
gradient from the smallest headwater creek to large rivers. As a stream courses 
along this gradient it grows in size, receives tributaries, and drains an increasingly 
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large catchment area (Allan  1995  ) . As stream size changes, many associated 
biological changes are expected to occur with shifts in energy sources for primary 
production.  

 As viewed for temperate forested streams (Vannote et al.  1980  ) , small streams 
are conceived as shaded headwaters where inputs of woody material (CPOM, coarse 
particulate organic matter, e.g., leaves, stems, trees) from the riparian zone and sur-
rounding landscape (i.e., allochthonous material) provide the resource base for the 
consumer community (Fig.  10.2 ). Because of the dense shading, little sunlight 
reaches the stream channel and in-stream production (autochthonous production) is 
limited. As the stream broadens into a large creek or small river, the energy inputs 
change. As shading and woody inputs become less relative to increasing channel 
width, sunlight can penetrate to the bottom to support signi fi cant autochthonous  
production of periphyton (e.g., algae, diatoms). Macrophytes become more abun-
dant with stream size, most prominently so in lowland rivers of the southern United 
States. In the largest rivers, turbidity, higher currents, and soft or unstable substrates 
often preclude growth of macrophytes or periphyton. Here the autochthonous pro-
duction is mostly from phytoplankton, but most productivity is allochthonous being 
derived from organic matter received from upstream and lateral tributaries (   Minshall 
et al.  1985 ). 

 Processing of CPOM in upstream areas by aquatic macroinvertebrates, espe-
cially ones that shred CPOM, provides large amounts of  fi ne particulate organic 

  Fig. 10.1    Fish species richness across 51 major drainage units in the southern United States 
(Compiled from Warren et al.  2000  )        
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matter (FPOM) much of which moves downsteam. As ratios of CPOM to FPOM 
shift along the stream size gradient so do invertebrate communities (Fig.  10.2 ). 
The FPOM cascading to downstream areas serves as part of the energy source 
along with instream production of periphyton. Hence, in headwaters, shredders, 
which process CPOM, are expected to be most abundant. In moderate-sized 
streams, grazers, which consume periphyton, and collectors, which process and 
consume FPOM, will be abundant, and collectors will dominate in the largest 
systems. Finally in the largest rivers, the community becomes one dominated by 
collectors (Vannote et al.  1980 ; Allan  1995  ) . Hence, under the RCC the role that 
wood and woody material plays is readily apparent, especially that in the riparian 
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  Fig. 10.2    Depiction of the conceptual relationship between stream size (as stream order), energy 
inputs, and aquatic ecosystem community structure and function under the river continuum con-
cept as conceived by Vannote et al.  (  1980  )  (Redrawn from Allan  1995  )        
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zone, in de fi ning the energy sources and other biological characteristics of streams 
and rivers. Here I focus on aspects of wood in streams aside from its foundational 
role in biological productivity, especially some of its potential effects on  fi shes. 

 Forest landscape restoration is among the most signi fi cant conservation actions 
that could positively affect the region’s  fi shes and other aquatic fauna, particularly if 
used in concert with other management options (e.g., Wissmar and Bisson  2003  ) . 
In this context, I view forest landscape restoration broadly to include management 
actions which increase and maintain forest coverage in watersheds and restore riparian 
forests, especially late successional ones. Although I do not cover speci fi c management 
actions in detail, they might involve approaches such as restoring continuous forest 
to riparian buffer corridors along stream and river systems in agriculture and urban 
watersheds (Bentrup  2008 ; Bentrup et al.     2012  )  which are otherwise largely deforested. 
Even more broadly, opportunities for forest landscape restoration may involve 
entire watersheds on public (e.g., national forest, wildlife refuge) or private lands 
(e.g., industrial forests, smallholder forests, agroforests), or urban areas (community 
reforestation). These may be driven, not directly by bene fi t to  fi shes or other aquatic 
organisms, but by improving water quality,  increasing wildlife habitat along stream 
systems, decreasing effects of extreme events (i.e.,  fl oods, droughts), mitigating 
impervious surface run-off, or other ecological or aesthetic motivations. Even so, 
forest restoration can also potentially bene fi t the ecological health and function of 
aquatic ecosystems and the  fi shes they support. 

 Here, I focus on three objectives. First, I brie fl y describe the aquatic setting of the 
region. Second, I review some of the major historical and on-going impacts to 
aquatic habitats particularly as related directly or indirectly to forests. My third 
objective is to present and illustrate selected examples of the bene fi ts of forest land-
scape restoration for  fi shes in the southern United States. I selected  fi ve important 
and interdependent, but by no means all-inclusive, bene fi ts to  fi shes that could 
emerge from restoration of forest landscapes including: (1) instream wood as habi-
tat and cover; (2) instream wood as a substrate for food production; (3) instream 
wood as a spawning substrate; (4) moderation of water temperature by trees in 
streamside forests; and (5) increased access to  fl oodplain forests for foraging and 
reproduction. Finally, I updated and expanded a previously compiled list of  fi shes 
(Dolloff and Warren  2003  )  to include species that are associated with  fl ooded forests, 
instream wood (e.g., detritus, leaf packs, debris dams, sticks, and logs), or riparian 
vegetation (e.g., root wads, root  fi bers, overhanging limbs). The purpose of the list 
is to document the  fi shes which are obligately or facultatively dependent on wood 
and to inform the forestry community of the high diversity of  fi shes that might be 
affected positively by forest landscape restoration activities. I recognize the impor-
tance of forest landscape restoration to water quality (sediment, pesticide, and nutri-
ent reduction,  sensu  Waters  1995  )  and quantity and hence to  fi shes but do not address 
those bene fi ts here. I believe that the bene fi ts and examples outlined provide heuristic 
if understated insights into the complex nature of  fi sh, instream wood, riparian, and 
watershed interactions (Veery et al.  2000 ; Gregory et al.  2003 ; Brown    et al.  2005  b ; 
Hughes et al.  2006  ) .  
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    10.2   Aquatic Setting in the Southern United States 

 River systems of the southern United States are highly variable in terms of physiog-
raphy, geomorphology, hydrology, chemistry, and biology. Here I provide a brief, 
oversimpli fi ed description of the streams and rivers in the region but detailed 
accounts of the region’s rivers are available (see Benke and Cushing  2005  ) . The area 
encompasses 12 entire states and parts of 4 others, at least 10 major physiographic 
provinces (Benke and Cushing  2005  )  and 51 major drainage units (encompassing 
about 78 medium to large river systems; Warren et al.  2000  )  (Fig.  10.1 ). The area 
can be divided into four major hydrologic regions: Southern Atlantic Slope (roughly 
Virginia to eastern Florida), East Gulf Slope (western Florida to Mississippi River), 
West Gulf Slope (Mississippi River to southwestern Texas), and southeastern Ohio 
and Lower Mississippi river basins. The Eastern Continental Divide, formed by the 
northeast-southwest trending Blue Ridge Mountains, is the major relief feature in 
the region (maximum 1,700 m asl), sending waters east toward the Atlantic Slope or 
west and south toward the Ohio and lower Mississippi Rivers and Gulf of Mexico. 
Rivers lying just east and west of the divide begin as steep-gradient, cool, low pro-
ductivity, rocky streams traversing rugged, mountainous terrain. 

    10.2.1   Southern Atlantic Slope 

 Rivers  fl owing to the Atlantic Ocean transition from the Blue Ridge Mountains to 
the rolling hills of the Piedmont (about 150–160 m relief) where streams are warmer 
and may be rocky, sandy, or silty and then drop off an escarpment (the Fall Line) to 
the gently rolling to nearly  fl at Coastal Plain. On the Coastal Plain, streams and rivers 
generally are warm and often highly productive with low gradients, silty to sandy 
substrates, and darkly stained water (i.e., high in organic carbon) (Smock et al. 
 2005  ) . Permanent and perennial oxbows, lakes, and wetlands are often associated 
with Coastal Plain stream systems. Much of the Blue Ridge Mountain area has 
>80% forest cover; somewhat less and more variable forest cover is present on the 
Piedmont and Coastal Plain areas, but over most of the region forest cover is between 
21 and 60% (Wear  2002  ) .  

    10.2.2   Eastern Gulf Slope 

 Along the Eastern Gulf slope, most streams head as rocky, often gravel dominated, 
streams of relatively moderate-gradient in uplands of the hilly upper Coastal Plain, 
the Piedmont, Appalachian Plateaus, and Valley and Ridge physiographic provinces 
and transition below the Fall Line to productive, slow  fl owing, sand and  silt-dominated 
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systems of the Eastern Gulf Coastal Plain (<150 m relief); near the Gulf Coast, 
streams are often darkly stained (Ward et al.  2005  ) . Much of this region, except 
along the coast is densely forested, including most of Alabama and southeastern 
Mississippi with forest cover estimated as 61–100% (Wear  2002  )  over most 
 non-urban or  non-agricultural areas.  

    10.2.3   Western Gulf Slope 

 Streams of the Western Gulf Slope lie along an east–west moisture gradient such 
that the east (western Louisiana and eastern Texas) is well-watered and the west 
extremely arid. Streams of the Western Gulf Slope in western Louisiana and eastern 
Texas lie entirely on the Coastal Plain (relief <200 m) and generally are dominated 
by sand and silt throughout their lengths and display other characteristics typical of 
Coastal Plain streams (Dahm et al.  2005  ) . Streams of the Western Gulf Slope of 
central and western Texas head on uplands (i.e., Edwards Plateau of southern Great 
Plains physiographic province) (relief 700–1,200 m) and ultimately enter the 
Western Gulf Coastal Plain. Dense forest in this region is primarily con fi ned to 
eastern Texas and west and central Louisiana where forest cover in most counties is 
21–40% or even higher (61–80%) in extreme eastern Texas (Wear  2002  ) .  

    10.2.4   Southeastern Ohio and Lower Mississippi River Basins 

 The southeastern Ohio and lower Mississippi River basin region has two major 
upland areas which profoundly affected river drainages and much of the biology of 
the region. East of the Mississippi River lies the Eastern Highlands (Blue Ridge, 
Valley and Ridge, Appalachian Plateaus, and Interior Low Plateaus physiographic 
provinces) (max relief 1,700 m) through which drain several major rivers including 
the Tennessee River, Cumberland River, and southeastern Ohio river tributaries 
(Tennessee, Kentucky, and northern Alabama). To the west across the Mississippi 
Alluvial Valley lies the Interior Highlands (Ouachita and Ozark Plateaus) (maxi-
mum relief 826 m) which also drain major rivers such as southern tributaries to the 
Missouri River and the White, Arkansas, and Red river systems (southern Missouri, 
Arkansas, eastern Oklahoma, northern Louisiana) (Brown et al.  2005a   ; Matthews 
et al.  2005  ) . In the Highlands, streams are of moderate to high gradient and vary 
from boulder-strewn to gravel-dominated. Rivers transition from the Highlands to 
lower gradients of the Mississippi Alluvial Valley, which is dominated by sandy, 
silty Coastal Plain-like systems. In the Valley,  fl oodplains of streams and rivers 
characteristically have permanent and perennial wetlands, ponds, and oxbows. The 
densest forest is scattered within the region. A region of high forest cover is along 
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the Cumberland Plateau of eastern Tennessee and eastern Kentucky with cover 
ranging mostly from about 41–80%. Other areas of similarly high forest cover 
include most of central Arkansas and northern Louisiana. Lowest forest cover is in 
the Mississippi River Alluvial Valley (about 0–20%).   

    10.3   Factors Affecting Forest Linkages to Fishes 

 Large-scale declines of aquatic biota are signals of a pervasive degradation of 
southern U.S. waters and of the failure of humans to recognize the interactive nature 
of land and water ecosystems and management (Angermeier  1995 ; Burkhead et al. 
 1997 ; Warren et al.  1997  ) . Historically, three major overlapping periods of land-use 
occurred in the southern United States, all of which affected and continue to affect 
water quality, water quantity, and  fi sh habitat: (1) the era of agricultural and timber 
exploitation; (2) the era of dam building and channel modi fi cation; and (3) the era 
of population growth, industrialization, and urbanization (Abell et al.  2000 ; Wear 
and Greis  2002 ; Haag  2009  ) . Unfortunately, precise information is generally lack-
ing or fragmentary on the  fi sh fauna for most of these eras (1700-early 1900s) and 
explicit documentation of impacts is not always possible. However, the direct and 
indirect causes of land-use associated  fi sh and other aquatic community impacts are 
well documented (Scott and Helfman  2001 ; Allan  2004 ; Hughes et al.  2006 ; Peacock 
et al.  2005 ; Helfman  2007  ) . 

    10.3.1   Era of Agricultural and Timber Exploitation 

 Agricultural exploitation with removal of forests of the southern United States 
started in the seventeenth century but reached a peak in the late nineteenth century, 
and timber exploitation in mountainous and wetland environments peaked in the 
early twentieth century. The area of forested land in the south declined by 40% from 
1890 to 1919 (Williams  1989  ) . Timber exploitation during this period resulted in 
the removal of mature riparian vegetation along most stream and river courses. Few 
riparian areas have had time (or have been permitted) to produce the large, late-
successional trees that are not only the source of instream wood but are also critical 
in forming complex, long-lasting habitat con fi gurations important to aquatic 
 organisms and other critical functions (see subsequent; Dolloff and Webster  2000 ; 
Dolloff and Warren  2003  ) . The loss of old or late-successional riparian forests dras-
tically reduced recruitment of large wood into  fl owing waters and coupled with 
 natural processes of decay and downstream transport, resulted in unnaturally low 
 accumulations of large wood in streams across entire landscapes. Without instream 
wood, many streams and rivers in the region have undoubtedly become more homo-
geneous with reduced habitat complexity, stream productivity,  fi sh abundance and 
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diversity, and accompanying dramatic shifts in  fi sh assemblage composition (Jones 
et al.  1999 ; Scott and Helfman  2001 ; Benke and Wallace  2003 ; Dolloff and Warren 
 2003 ; Warren et al.  2009  ) . 

 A second impact during the era of agricultural and timber exploitation was a 
dramatic increase in sediment in streams, rivers, and wetlands as agricultural and 
logging activities intensi fi ed and covered large areas of watersheds. Early explorers 
and naturalists to the southern United States repeatedly characterized streams in the 
region as clear and dark as opposed to the brown or red color that now dominates 
many southern U.S. streams (Burr and Warren  1986 ; West  2002  ) . For example, soil 
loss in the North Carolina Piedmont was estimated at 0.25 cm 1,000 year −1  prior to 
European settlement. Current rates from clean cultivated land are 20–762 cm 
1,000 year −1  (West  2002  ) ; earlier historical losses from denuded agricultural lands 
combined with logged slopes likely were even higher. Similarly, in the upper Coastal 
Plain of Mississippi, valley bottoms were covered by up to several meters of sedi-
ments as watersheds were deforested and hill-top agriculture increased in the early 
to late 1830s (Shields et al.  1995a  and references therein). As a result of soil tillage 
and loss of forest cover, high loads of sediment  fi lled southern U.S. streams and riv-
ers. Sediment can adversely affect  fi sh food production, ability of  fi shes to forage, 
and development of  fi sh eggs and larvae, most dramatically so in upland stream 
systems (Helfman  2007  ) . 

 During this era, wetlands also  fi lled with sediment or were logged, drained, and 
often put into agricultural production, all of which directly affected habitat for many 
wetland dependent and riverine  fi shes. About 50% of all wetlands and 65% of for-
ested wetlands in the United States occur in the south. Over the conterminous United 
States, 47% of all wetlands were lost between 1780 and 1980. Between 1950 and 
1970, 16% of southern forested wetlands were lost (Ainslie  2002  ) . In the Lower 
Mississippi River Valley alone, 80% of 10 million ha of wetlands were lost to agri-
culture by the 1970s.  

    10.3.2   Era of Dam Building and Channel Modi fi cation 

 The era of dam building and stream channel modi fi cation imposed a second major 
impact on  fi shes and aquatic systems of the southern United States. The period from 
about 1920–1985 marked a frenzy of dam building and stream channelization in 
the southern United States for the ostensible purposes of  fl ood control ( fl ooding 
being exacerbated in part by sediment-clogged waterways), hydroelectric power 
generation, navigation, water storage, and recreation. The frenzy of dam building 
eliminated most free- fl owing large rivers and many small- and medium-size 
streams in much of the United States including the south (Benke  1990 ; Dynesius 
and Nilsson  1994  )  with a resulting biotic impoverishment of these systems 
(Burr and Warren  1986 ; Pringle et al.  2000 ; Bednarik and Hart  2005 ; Haag  2009  ) . 
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Many riverine and stream  fi shes are dependent on the heterogeneity of free- fl owing 
systems with log-jams, woody snags, brush piles, gravelly shoals, sand bars, and 
pools, which occurred naturally from headwater streams to even the largest rivers 
in the region. Many  fi shes are also dependent on seasonal late winter and spring 
 fl oods which send streams and rivers over their banks into adjacent forests and 
wetlands. As reviewed in part here, the river- fl oodplain interaction gives  fi shes 
access to shallow low-velocity spawning sites and supplemental food resources 
as well as provides nursery areas for larvae and juveniles. Impoundments created 
by dams completely eliminated all such habitats, and the dams themselves 
created barriers to migratory  fi shes, isolated and fragmented stream and riverine 
 fi sh populations, and eliminated or caused declines in many  fi sh species (e.g., 
Etnier et al.  1979 ; Burr and Warren  1986 ; Robison and Buchanan  1988 ; 
Angermeier  1995 ; Winston et al.  1991 ; Burkhead et al.  1997  ) . For example,  fi sh 
diversity in the Clinch River (upper Tennessee River drainage) before impoundment 
of Norris Reservoir consisted of 17 families and 65 species; post-impoundment, 
four families were lost and species diversity decreased to about 30 species (Neves 
and Angermeier  1990  ) . 

 Stretches of river not impounded directly but located downstream of dams 
(referred to as tailwaters) often were changed dramatically by dam releases. Because 
of dam releases, tailwaters often are subjected to highly altered, unnatural  fl ow 
regimes (precluding natural winter-spring  fl ood cycles), unnaturally cold tempera-
tures (affecting  fi sh growth, reproduction, and food production), low dissolved oxy-
gen concentrations (often eliminating all  fi shes) or some combination of these 
impacts (Krenkel et al.  1979 ; Layzer et al.  1993 ; Travnicheck et al.  1995 ; Tippit 
et al.  1997 ; Bednarik and Hart  2005  ) . For example, the tailwater releases on the 
South Fork Holston and Watauga rivers (upper Tennessee River drainage) decreased 
 fi sh diversity from 43 to 17 and 32 to 13 species, respectively. Similar and often 
greater decreases in diversity occurred in association with most dams (Neves and 
Angermeier  1990  ) . 

 During the dam-building period, river systems supporting the most diverse tem-
perate, riverine  fi sh fauna in the world (e.g., Tennessee, Cumberland, Ohio, Alabama, 
Coosa, and Tombigbee rivers) were transformed into a series of reservoirs and regu-
lated reaches with little free- fl owing main-channel native  fi sh habitat remaining 
(Etnier and Starnes  1993 ; Boschung and Mayden  2003  ) . Most of the large tributaries 
in these systems also were dammed. In the Tennessee River alone, there are 53 
major dams (>40 ha): nine on the main channel and the remainder on tributaries 
(Etnier and Starnes  1993  ) . The amount of natural  fi sh habitat lost is astounding. As 
one example, 11 major dams on the Clinch, Holston, and French Broad rivers (upper 
Tennessee River) eliminated 1,100 of 2,800 km of river habitat for resident native 
 fi shes (Neves and Angermeier  1990  ) . 

 In conjunction with dam-building, many small- to medium-size streams and 
rivers were channelized completely from headwaters to mouth ostensibly to 
reduce  fl ooding. In the process of stream channelization, riparian areas are 
cleared of forest and vegetation, and by dredging, the channel is straightened and 
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deepened (Fig.  10.3 ). Many channelized streams are subjected to periodic main-
tenance activities such as re-clearing of riparian zones, re-dredging of the channel, 
or removal of instream wood (“snagging and dragging”) (Jackson and Jackson 
 1988 ; Shields and Smith  1992 ; Shields et al.  2000  ) . Even if no maintenance is 
performed, it may require 65 years after channelization for small lowland rivers 
and their riparian forests to show some semblance of recovery (e.g., sinuosity, 
in-channel heterogeneity, large riparian trees) (Hupp  1992  ) . Channelization and 
associated maintenance activities result in streams with exacerbated, unnaturally 
 fl ashy storm  fl ows, homogeneous  fl ow conditions especially at base  fl ow, 
decreased  fl ow permanence, no interaction with the  fl oodplain, increased water 
temperatures from decreased riparian shading, little to no wood or other organic 
matter, and little to no recruitment of wood into the stream. Relative to undis-
turbed streams, the  fi sh assemblages in these streams are less diverse, subject to 
large temporal variations in composition and abundance, and tend to be dominated 
by one or few species of small-bodied  fi shes tolerant of the extreme conditions 
caused by channelization (Shields et al.  1994,   1995b ; Adams et al.  2004 ; Haag 
et al.  2007 ; Warren et al.  2009  ) . The full payment of the extinction debt for 
aquatic organisms caused by dams and channelization likely is yet to be realized 
(Haag  2009  ) .   

  Fig. 10.3    Typical channelized stream, the Little Tallahatchie River canal, in the southern United 
States. The Little Tallahatchie River, Lafayette County, Mississippi, was channelized in about 
1960 (photo by M.L. Warren, Jr.)       
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    10.3.3   Era of Population Growth, Industrialization, 
and Urbanization 

 The next era, one of population growth, industrialization, and urbanization, although 
primarily a post-World War II phenomenon, began on a slow, but steadily increasing, 
pace as soon as Europeans settled the region. In 1890, the population across 13 south-
ern states stood at almost 3 million people (12 persons km −2 ) (Fig.  10.4 ). By 2010 the 
population stood at about 105.4 million people (79.8 persons km −2 ). Growth was not 
uniform across the region. Between 1950 and the present most population growth 
was concentrated in the Appalachian Plateau, Valley and Ridge, the upper Piedmont, 
and along the Gulf and Atlantic coasts (Wear  2002  ) . Since 1980, the population in 
the region grew at a higher rate than the rest of the United States (Tarrant et al.  2002 ; 
Wear  2002  )  and by 2010 the region’s share of the U.S. population reached 34%. With 
increased population came increased urbanization. In 1945 urbanized land comprised 
only about 2.1% (about 2.8 million ha) of the land area in 11 southern states. By 
1992, land converted to transportation or urban use roughly tripled to 6.6% of land 
area and is projected to increase to 16% by 2020 and 23% by 2040 (Wear  2002  ) .  

 Although total areal coverage of forest in the region (about 56% in 1992, excluding 
Texas and Oklahoma) has changed little since the beginning of rapid population growth 
in 1945, the region now is largely characterized as a fragmented, edge-dominated 
mosaic of second (or third)-growth forests within a matrix of farmland, old  fi elds, 
and urbanized areas (Wear  2002  ) . Planted pine ( Pinus  spp.) forests, occurring 
predominantly in the Piedmont and Coastal Plain and covering smaller areas within 
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  Fig. 10.4    Population growth and density from 1890 to 2010 in the southern United States. Data 
compiled from censuses for Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, 
North Carolina, Oklahoma, South Carolina, Tennessee, Texas, and Virginia       
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the Eastern and Interior Highlands, constitute about 20% of the total forest coverage. 
Area in natural pine, mixed pine-hardwood, upland hardwood, and lowland hard-
wood forests is projected to decline by about 15% by 2040. Plantation expansion is 
projected to increase from 8.9 million ha in 1992 to 21.8 million ha in 2040 
(Prestmon and Abt  2002  ) . 

 In aggregate, these three eras of land-use dramatically changed the landscape across 
the southern United States. As integrators of watershed land-use, aquatic systems in the 
region were also dramatically affected. Perhaps not surprisingly given the land-use 
legacy, expert-based appraisal of present conditions of aquatic systems revealed high 
and widespread levels of catchment alteration, surface water degradation, and aquatic 
habitat fragmentation (Fig.  10.5 ). Forest landscape restoration could contribute to the 
improvement of conditions of aquatic systems in the region both within stream and 
river channels and in the riparian systems that bound their channels.    

    10.4   Instream Wood as Habitat and Cover 

 Cobble and gravel substrates are rare or absent in many lowland streams where 
instream wood is often the only element contributing to channel roughness and 
hence to the formation of complex rif fl e and pool habitats (Smock and Gilinsky 

  Fig. 10.5    Alteration and degradation of surface waters in the southern United States: ( a ) percent-
age of catchment (landcover) alteration, ( b ) percentage of surface water alteration, ( c ) percentage 
of water quality degradation, and ( d ) percentage of aquatic habitat fragmentation across the south-
ern United States (Compiled from Abell et al.  2000  )        
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 1992  ) . Relatively modest quantities of instream wood can shift  fi sh assemblage 
attributes from colonizing to intermediate or stable stages (Warren et al.  2002  ) , 
primarily by in fl uencing habitat development and providing cover. The colonizing 
stage of  fi sh assemblages is typical of shallow, uniform habitats with little instream 
wood,  fl ashy hydrology, and propensity for drying. Colonizing  fi sh assemblages are 
dominated by small-bodied species, particularly minnows (e.g.,  Notropis  spp., 
 Cyprinella  spp.) (Schlosser  1987 ; Shields et al.  1998 ; Adams et al.  2004  ) . 
Intermediate assemblages typify streams with some increase in pool volume and 
begin to be comprised of larger-bodied  fi shes (e.g., cat fi shes, spotted bass, longear 
sun fi sh). As pool depth and volume increase further, stable assemblages develop 
with fewer, but larger, top predator  fi shes. Abundance of small-bodied, invertivo-
rous  fi shes decreases, particularly minnows, as predation and resulting competition 
for refugia among prey species increases. At the stable stage, shallow rif fl e areas 
between pools provide important habitat (e.g., refuge from predators) for bottom-
dwelling invertivorous  fi shes. Wood-formed rif fl e-run-pool complexes support a 
signi fi cant proportion of the stream  fi sh diversity in Coastal Plain streams and are 
likely critical to the persistence of many darters ( Etheostoma  spp.,  Percina  spp.), 
madtom cat fi shes ( Noturus  spp.), and many other  fi sh species (Monzyk et al.  1997 ; 
Chan and Parsons  2000 ; Warren et al.  2002 ; Shields et al.  2006  ) . Even relatively 
small-diameter pieces of wood, in shallow sandy  fl owing areas, can create heteroge-
neous zones of variable velocities and depths (Fig.  10.6 ). Experimental microhabi-
tat units (brush bundles, leaf packs, and faux rootlets) placed in wood-starved upper 
Coastal Plain streams in Mississippi (Fig.  10.7 ) were used extensively by cray fi shes 
and a diversity of stream  fi shes, particularly small-bodied individuals and juveniles 
of large species. During winter and late spring sample periods, 89% of the micro-
habitat units were occupied by  fi shes, cray fi shes, or both (Fig.  10.8 ), and catch rates 

  Fig. 10.6    Fishes bene fi t from ( a ) small woody debris piles ( limbs and leafs ) and ( b ) large log jams 
which help form heterogeneous stream habitats, afford stable substrate for invertebrate colonization, 
provide cover and velocity refuges at high  fl ow, and refuge from predators at low  fl ow (Photos by 
M.L. Warren, Jr.)       
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of  fi shes after 14 and 44-day exposures ranged from 1.7 to 12.2 individual  fi sh per unit. 
The microhabitats were used by 32 species of  fi shes, constituting greater than 
two-thirds of the known  fi sh fauna within the study streams (Warren et al.  2009  ) .    

 Instream wood and debris piles provide cover and  fl ow refugia for southern US 
 fi shes. For many  fi sh species, association with large wood is facultative, particularly 
in streams where rocky substrates or other elements provide alternative cover within 

  Fig. 10.7    Constructed microhabitat bundles (cane,  left , faux rootlets,  middle , leaf pack,  right ) 
experimentally placed in wood-starved streams in northern Mississippi, U.S.A. (rule at  bottom  = 1 m) 
(Photo by M.L. Warren, Jr.)       

Fish only Fish and 
Crayfish

Crayfish only Unoccupied

M
ic

ro
ha

bi
ta

ts
 o

cc
up

ie
d 

(%
)

0
5

10
15

20
25
30

35
40

45
50

  Fig. 10.8    Average percentage occupancy by  fi sh and cray fi sh of constructed woody microhabitat 
units experimentally placed in wood-starved Coastal Plain streams in north Mississippi, USA 
(Redrawn from Warren et al.  2009  )        

 

 



23510 Forest Landscape Restoration: Linkages with Stream Fishes...

well-developed rif fl es, runs, and pools (Table  10.1 ). Nevertheless, species such as 
the shadow bass ( Ambloplites cavifrons ) and smallmouth bass ( Micropterus dolomieu ) 
show extensive use of and spatial partitioning among woody habitats even in upland, 
rocky streams with strong rif fl e-pool development on the Ozarkian Plateau 
(Fig.  10.9 ). Fish in streams of the Coastal Plain where streambed materials tend to 
be  fi ne-grained and highly mobile (Felley  1992 ; Smock and Gilinsky  1992  )  bene fi t 
from pool and rif fl e formation caused by instream wood (Montgomery et al.  2003 ; 
Mutz  2003  )  but also often use and are highly dependent on wood for cover 
(Table  10.1 ). For  fi shes in these and other streams, wood provides overhead cover 
and shade, visual and physical isolation, and velocity refuges (Fausch  1993  ) . 
Overhead cover provides protection from aerial predators (e.g., wading birds, 
king fi shers) as well as contributing to the camou fl aging bene fi t of shade (Helfman 
 1981 ; Power  1984  ) . Visual and physical isolation from other  fi shes decreases predator-
prey interactions and agonistic interactions between conspeci fi cs (individuals of the 
same species) (Dolloff and Reeves  1990 ; Crook and Robertson  1999  ) . Occupying 
positions behind logs, root wads, or other woody cover in  fl owing water also minimizes 
energy expenditures, which can be particularly important at extreme cold or warm 
water temperatures (Fausch  1984 ; Ross et al.  1992 ; Warren et al.  2009  ) . For exam-
ple, two nocturnally active  fi shes, the brown madtom ( Noturus phaeus ) and the pirate 
perch ( Aphredoderus sayanus ), are associated strongly during daylight hours with 
complex woody habitats in small coastal plain streams where all three functions 
(overhead cover, visual-physical isolation, and velocity refuge) likely play a role 
(Monzyk et al.  1997 ; Chan and Parsons  2000  ) . Structural complexity of the woody 
microhabitat refuges (measured as a function of number and length of woody com-
ponents) was a signi fi cant predictor of the occurrence of the pirate perch (Monzyk 
et al.  1997  ) . The bayou darter,  Etheostoma rubrum , a threatened species, responds 
to the cold, high-velocity  fl ows of winter by seeking refuge behind logs and other 
instream wood, which likely have a signi fi cant impact on overwintering survival 
and ultimately the population size of the species (Ross et al.  1992  ) . Similarly, sam-
pling in January (water temperature 2–5 °C) of small woody microhabitat units 
(about 0.3 m 2  per unit) experimentally placed in shifting sand-bottomed streams 
yielded up to 70 individual minnows (Cyprinidae) per unit offering further evidence 
that winter refuges are critical for many  fi shes (Warren et al.  2009  ) .   

 Although  fi shes clearly use instream wood when available as habitat, the restora-
tion strategy of placing wood in streams alone may provide short-term bene fi ts but 
not be of long-lasting bene fi t. This is particularly relevant in systems rendered 
unstable by past and present watershed land-use and resultant erosion, incision, and 
instability of the sand-bed stream channel. For example, large woody structures 
were added to and bank vegetation established along such a stream in north 
Mississippi to assess changes in aquatic assemblages and their habitat (Shields et al. 
 1998,   2008  ) . Prior to restoration, the stream supported a colonizing  fi sh assemblage. 
Post-restoration base- fl ow water depths increased (i.e., indicative of pool forma-
tion), aquatic invertebrate assemblages became more diverse, and the number of  fi sh 
species increased. Notably, the  fi sh assemblage acquired more, larger predators as it 
shifted from a colonizing to an intermediate  fi sh assemblage. Even so, the structures 
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were short-lived (about 4 year) and failed because the underlying geomorphic and 
watershed problems causing instability of the channel were not addressed. 
Restoration efforts in other streams showed similar results (Shields et al.  2007  ) .  

    10.5   Instream Wood and Food Production 

 Wood deposited in streams from the riparian zone plays an important role in aquatic 
invertebrate production and hence, availability of food to other invertebrates,  fi shes, 
and other vertebrates (Angermeier and Karr  1984 ; Smock and Gilinsky  1992 ; Benke 
and Wallace  2003  ) . Production in streams is categorized as primary production 
(biomass or energy from photosynthesis, e.g., algae) and secondary production 
(biomass or energy from organic carbon sources, e.g., microcrustaceans, aquatic 
insects). Nearly all  fi shes in southern U.S. waters depend entirely on invertebrates 
(secondary producers) for food during one or more life stages (i.e., larval, juvenile, 
adult) albeit a few are strict herbivores, scraping algae from hard substrates. For 
example, all the important warmwater sport fi shes, such as largemouth bass 
( Micropterus salmoides ) and bluegill ( Lepomis macrochirus ), feed heavily on 
microcrustaceans (e.g., water  fl eas) as young  fi sh, then switch to larger aquatic 
insects (e.g., midge pupae and larvae, dragon fl y larvae, aquatic beetles) as juveniles. 
Even as adults, largemouth bass and many other top-predator  fi shes feed extensively 
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  Fig. 10.9    Habitat partitioning of logs, root wads, and four other cover types by two co-occurring 
 top -predator  fi shes in a rocky, upland river in Missouri (Compiled from Probst et al.  1984  )        
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on large aquatic invertebrates such as cray fi sh and terrestrial insects (Warren  2009  ) . 
Similarly, one of the most species-rich group of  fi shes in southern waters, the darters 
(e.g.,  Etheostoma  spp.,  Nothonotus  spp.,  Percina  spp.) feed extensively and at times 
almost exclusively on the aquatic larvae and pupae of  fl ies and midges living on and 
around hard substrates (e.g., logs, sticks, rocks) in streams. Species in another large 
family, the minnows (family Cyprinidae), exploit aquatic insects on hard surfaces as 
well as those drifting in the water column and on the surface. 

 The riparian zone contributes large instream wood in the form of trees or parts of 
trees to stream and river channels, providing substrate for aquatic organisms (e.g., 
bacteria, fungi, and invertebrates) to colonize and foraging habitat for  fi shes (Nilsen 
and Larimore  1973 ; Benke et al.  1984,   1985 ; Lehtinen et al.  1997  )  (Fig.  10.6 ). 
Instream wood can collect other organic material (e.g., leaves, twigs) to form organic 
debris dams, which also are colonized by aquatic organisms that decompose wood, 
shred organic matter, and  fi lter small organic particles from the water column. 
Establishment of these communities ultimately results in diverse, highly productive, 
and complex wood-associated food webs (e.g., Anderson et al.  1978 ; Harmon et al. 
 1986 ; Wallace et al.  1992 ; Benke et al.  2001 ; Benke and Wallace  2003  ) . 

 Wood is especially important to invertebrates in habitats with  fi ne, mobile bot-
tom substrates and few other streambed geomorphic controls (Angermeier and Karr 
 1984 ; Benke et al.  1984,   1985 ; Benke and Wallace  2003  ) , a common feature of 
lowland southern U.S. streams. In sand-bed streams and rivers, wood surfaces and 
debris dams often support the highest densities and diversity of invertebrate species 
and contribute the greatest amount of secondary production (e.g., Smock et al.  1989 ; 
Drury and Kelso  2000 ; Johnson et al.  2003  ) . Wood surfaces in southern US Coastal 
Plain streams support 9,000–98,000 invertebrates m −2  (Fig.  10.10 ). Snags in 
Georgia’s Savannah River supported densities of net-spinning caddis fl y larvae that 
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  Fig. 10.10    Aquatic invertebrate density on instream wood surfaces in selected southern U.S. 
Coastal Plain streams and rivers (Compiled from Benke and Wallace  2003  )        
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ranged from 6,000 to 22,000 individuals m −2  (Cudney and Wallace  1980  ) . Sampling 
of the immersed surfaces of snags in the well-studied Ogeechee River system of 
Georgia yielded 108 invertebrate species but only 70 species occurred exclusively 
in the sandy stream bed (Benke and Wallace  2003  ) . Similarly, 11 of 12 samples 
yielded greater percentages of invertebrates from gravel and wood than from sand 
substrate in six streams on Louisiana’s coastal plain, where gravel is scarce and 
wood likely supports the greatest secondary production (Drury and Kelso  2000  ) .  

 Annual production estimates of aquatic invertebrates in sand-dominated systems 
range from 72 g m −2  on snags in large rivers to 36 g m −2  in debris dams in headwater 
streams, which usually represents >20% of the total invertebrate numbers and >30% 
of invertebrate biomass in these systems (Smock and Gilinsky  1992 ; Benke and 
Wallace  2003  ) . About 60% of in-channel invertebrate biomass is associated with 
snags in Georgia’s Satilla River where four of eight large-bodied  fi sh species 
obtained at least 60% of their prey biomass during non- fl ood conditions from snag-
dwelling invertebrates in the river (Benke et al.  1985  ) . The ‘snag fauna-sun fi sh’ 
food chain represented an essentially completely separate trophic pathway from the 
‘bottom fauna-small  fi sh-piscivore’ food chain (Benke et al.  1985 ; Benke and 
Wallace  2003  ) . Other work similarly indicates stream and riverine  fi shes often show 
higher abundances, higher foraging success, and increased growth in association 
with the invertebrate fauna supported by instream wood (Angermeier and Karr 
 1984 ; Angermeier  1985 ; Lehtinen et al.  1997 ; Crook and Robertson  1999 ; Quist 
and Guy  2001  ) . Clearly, the abundance and production of  fi shes in rivers and streams 
is directly enhanced by the contribution of instream wood to  fi sh food production.  

    10.6   Instream Wood as a Spawning Substrate 

 Many  fi shes attach their eggs to instream wood, which is considered an adaptation 
to decrease silting and potential smothering of eggs (Gale and Gale  1977 ; Burkhead 
and Jelks  2001 ; Fletcher et al.  2004 ; Sutherland  2007  ) . For example, tree trunks 
with cracks, loose bark, or deeply ridged bark provide suitable spawning habitat for 
crevice spawning minnows of the genus  Cyprinella  (P fl ieger  1997  )  (Table  10.1 ). 
The relatively large range of the blacktail shiner,  Cyprinella venusta , across south-
eastern U.S. coastal plain, sand-bed streams is partially attributable to its use of 
wood (and bridge abutments) for egg attachment (P fl ieger  1997  ) . Several darters 
( Etheostoma  spp.) adapted to sand-bottomed habitats (Table  10.1 ) also deposit their 
eggs on wood, almost exclusively so for the lake-dwelling Waccamaw darter, 
 Etheostoma perlongum , a threatened species, and the glassy darter,  Etheostoma vit-
reum  (Fig.  10.11 ) (Winn and Picciolo  1960 ; Lindquist et al.  1981  ) . Female relict 
darters ( Etheostoma chienense ) attach their eggs in clusters to the underside of logs 
and large sticks; individual males then guard the resulting clusters until the eggs 
hatch. Lack of spawning substrate resulting from extensive channel and riparian 
modi fi cation is a primary factor limiting recruitment of this endangered species 
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(Piller and Burr  1999  ) . The pirate perch ( Aphredoderus sayanus ) deposits its eggs 
in canals within underwater root masses of riparian vegetation created by it or sala-
manders and dobson fl y larvae (Fig.  10.12 ) (Fletcher et al.  2004  ) . The species is 
specially adapted to lay eggs in the backs of the canal because its urogenital pore, 
where eggs and sperm are released, is located under its head. As such the species 
can thrust its head deep in a canal and release the eggs or sperm away from water 
currents and egg predators. Several species of madtom cat fi shes (genus  Noturus ), 
the most diverse group of cat fi shes in North America, establish nests under large 
wood and provide extensive care to nests, eggs, and young (Burr and Stoeckel 
 1999  ) . Use of wood (e.g., standing timber, downed trees, root wads) for egg attach-
ment or nesting cover is common among important southern U.S. game (e.g., the 
black basses,  Micropterus  spp.), commercial (cat fi shes,  Ictalurus  spp.,  Pylodictus  
sp.) and nongame  fi shes (Warren  2009 ; Table  10.1 ).    

    10.7   Forests and Stream Temperature 

 The role of the riparian forest in regulating stream temperature and damping extremes 
in temperature is most pronounced in small headwater streams (e.g., Brown and 
Krygier  1970 ; Swift and Messer  1971 ; Swift  1982 ; Isaak and Hubert  2001 ; Wehrly 
et al.  2006  ) . Removal of riparian forests along small upland streams in the southern 
Blue Ridge can alter both maximum and minimum stream temperatures for several 
years (Swift  1982  )  with summer extremes up to 6.7 °C above pre-harvest levels of 
19 °C (Swift and Messer  1971  ) . Even in lowland streams, removal of riparian shade 
produces larger diurnal temperature extremes than observed in shaded streams (Huish 
and Pardue  1978  )  which in summer could result in dissolved oxygen levels below 
critical thresholds for  fi shes (Smale and Rabeni  1995  ) . Although temperature effects 
from riparian forest removal are best documented in coldwater  fi shes, particularly 

  Fig. 10.11    Fishes, like the 
glassy darter ( Etheostoma 
vitreum ), attach their eggs to 
the undersides of logs as a 
presumable adaptation to 
increase oxygenation and 
prevent silting of eggs ( arrow  
indicates direction of current) 
(Redrawn from Winn and 
Picciolo  1960  )        
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  Fig. 10.12    The male pirate 
perch prepares for spawning 
by burrowing into the rootlet 
masses of riparian vegetation 
( upper panel ). The female 
noses into the burrow, 
deposits eggs in the  back  of 
the burrow via a specially 
adapted urogenital opening 
located under her throat 
( lower panel ), and leaves. 
The male then enters the 
burrow and fertilizes the eggs 
by releasing sperm from his 
urogenital pore, which like 
the female is located under 
his throat. (Fletcher et al. 
 2004 , used with permission 
of Dean Fletcher)       
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increased temperature effects on salmonids (trout and salmon) (e.g., Meehan  1991  ) , 
many species of southern US  fi shes thrive only in streams with densely forested and 
vegetated riparian zones and in heavily shaded spring-heads and spring runs. The 
distribution of some species is restricted because they are adapted to or bene fi t from 
the generally cooler temperature regimes in these habitats (e.g., Peterson and Rabeni 
 1996 ; Flebbe et al.  2006  ) . When forest cover in riparian areas is removed and water 
temperatures rise, it may be energetically impossible for a  fi sh species or life stage 
with lower temperature requirements to continue living in the system, regardless of 
other apparently favorable conditions (e.g., food availability). For example, adult 
brook trout ( Salvelinus fontinalis ), an important native sport  fi sh in the southern 
Appalachian Mountains, are limited to cool waters (<19 °C) in mature forests (Cherry 
et al.  1977 ; Meisner  1990 ; Clark et al.  2001 ; Flebbe et al.  2006  ) . However, mortality 
and growth rates of young of this species can be affected negatively by slight increases 
in water temperatures that are tolerated by the adults (McCormick et al.  1972 ; Clark 
et al.  2001  ) . Spatial modeling of climate change across the range of the southern 
Appalachians projects a 53–97% loss of trout habitat, leaving populations frag-
mented, isolated, and subject to stochastic extirpation (Flebbe et al.  2006  ) . Similar 
losses might be expected for other headwater species in the Appalachians. Loss of 
riparian vegetation simply exacerbates the problem. Similarly, late twentieth century 
decreases in distribution and abundance of smallmouth bass ( Micropterus dolomieu ), 
another important sport  fi sh, in streams in the prairie-Ozark ecotone of Missouri 
were related in part to maximum summer water temperature, an effect attributable to 
removal of riparian forest (Sowa and Rabeni  1995  ) . Other  fi shes in the southern 
United States, many of which are of conservation concern, also appear to be limited 
to forested habitats at least in part by the lower temperatures produced by shading, 
including species restricted to upland headwater streams, spring heads, or spring 
runs. Proportionally, spring-dependent  fi shes are one of the most jeopardized groups 
of  fi shes in the region (Etnier  1997  ) . Removal of riparian vegetation is implicated in 
extirpation of populations (e.g., Tennessee dace,  Chrosomus tennesseensis , laurel 
dace,  Chromsomus saylori , spring pygmy sun fi sh,  Elassoma alabamae ) and replace-
ment of species with more thermally tolerant congeners (e.g., blackside dace, 
 Chrosomus cumberlandensis  replaced by redbelly dace,  Chrosomus erythrogaster ) 
(e.g., Starnes and Starnes  1981 ; Starnes and Jenkins  1988 ; Burkhead and Jenkins 
 1991 ; Skelton  2001 ; Warren  2004  ) .  

    10.8   Fringing Forests, Fish Foraging, and Reproduction 

 The bene fi ts of forests to  fi shes are realized well beyond the stream banks. Forested 
 fl oodplains also are sites of high production of both terrestrial and aquatic inverte-
brates (Gladden and Smock  1990 ; Anderson et al.  1998 ; Braccia and Batzer  2001  )  
and can harbor denser populations of potential  fi sh food organisms than adjacent 
stream channels (O’Connell  2003  ) . Fishes can quickly move onto the  fl oodplain 
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during  fl ooding to avoid high currents of  fl ood waters and to exploit  fl oodplain food 
resources (Guillory  1979 ; Ross and Baker  1983 ; Kwak  1988 ; Eggleton and Schramm 
 2004  ) . Direct bene fi ts to  fi sh growth can accrue. Growth in blue cat fi sh ( Ictalurus 
furcatus ), a species that exploits  fl ooded habitats, was related positively to areal 
extent and duration of  fl ooding along the Mississippi River, a direct bene fi t of the 
higher energy food sources provided in  fl ooded off-channel habitats (Eggleton and 
Schramm  2004 ; Schramm and Eggleton  2006  ) . Even short-term inundation of for-
ested fringing  fl oodplains, a relatively common phenomenon after storm events in 
many small streams of the southern United States, can provide important food 
resources to  fi shes. During 4–5 day overbank  fl ood events, stream  fi shes moved 
rapidly onto and extensively within a forested fringing  fl oodplain of a small black-
water creek on the lower Coastal Plain of southern Mississippi. Fish captured on the 
 fl oodplain had full stomachs, indicative of rapid exploitation of  fl oodplain associ-
ated food. In the same stream system, more food was available and more food was 
consumed (especially Collembola, springtails, from the forest  fl oor) by cherry fi n 
shiners ( Lythrurus roseipinnis ) on the inundated  fl oodplain than was available in the 
stream at low  fl ow (O’Connell  2003  ) . The correlation of high spring discharge with 
summer spawning success suggested that some species, such as the weed shiner 
( Notropis texanus ), obtain direct energy subsidies from exploitation of  fl oodplain 
food resources (terrestrial and  fl oodplain pool invertebrates) that are important for 
subsequent reproduction (Ross and Baker  1983  )  (Table  10.1 ). Even more direct 
reproductive bene fi ts can accrue from inundated  fl oodplains. 

 At least 76  fi sh species are characteristic residents within southern forested wet-
lands (Hoover and Killgore  1998  ) , and these species and many other southern U.S. 
 fi shes use seasonally inundated forests for spawning and nursery areas (Hoover and 
Killgore  1998 ; Guillory  1979 ; Finger and Stewart  1987 ; Baker et al.  1991 ; Turner 
et al.  1994 ; Killgore and Baker  1996  )  (Table  10.1 ). Over half the  fi shes known from 
the large Atchafalaya Basin of Louisiana use  fl ooded forests for spawning or rearing 
of young (Lambou  1990  ) . During spring and early summer, catches of larval  fi shes 
were nearly four times greater in  fl ooded  Quercus  forest than in the main channel of 
the Cache River, Arkansas (Killgore and Baker  1996  ) . Relative to the channel, the 
larval catch in  fl ooded forests yielded large numbers of sun fi shes (Centrarchidae), 
minnows (Cyprinidae), and darters (Percidae). In the lower Yazoo River basin, 
Mississippi, abundance of native sport, commercial, and nongame larval  fi shes was 
much higher in  fl ooded forests than  fl ooded agricultural land, particularly so for 
black basses, darters, and sun fi shes (Fig.  10.13 ).   

    10.9   Conclusions 

 Rapid growth of the human population in the southern United States places ever 
growing demands on water and other natural resources and signi fi cantly challenges 
aquatic resource management and conservation (Cordell et al.  1998 ; Wear et al.  1998 ; 
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Wear and Greis  2002  ) . Land ownership patterns further confound conservation of 
aquatic resources in the region, where <12% of the land base lies in the public 
domain. Because most of the biologically signi fi cant streams in the region are found 
in predominantly forested watersheds, most jeopardized  fi shes and their habitats are 
not afforded protection through federal or state land ownership (Neves et al.  1997 ; 
Master et al.  1998  ) . About 71% of forested land in the region is owned by thousands 
of non-industrial private landowners, mostly in small parcels of one to several hun-
dred ha (Conner and Hartsell  2002  ) . These owners, many of whom do not live on 
their land, vary greatly in their knowledge and attitudes towards the environment and 
their reasons for land ownership (Cordell et al.  1998 ; Tarrant et al.  2002  ) , which 
further complicates effective watershed-scale or even local restoration. 

 Nevertheless, forest restoration, especially restoration of riparian forests, can 
provide multiple bene fi ts to stream  fi shes in the southern United States. Indirect 
bene fi ts include reduced sediment and nutrient inputs, stream bank stabilization, 
and temperature moderation, all factors that can affect  fi sh production, physiology, 
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Basin, Mississippi (Redrawn from Hoover and Killgore  1998  )        

 



25510 Forest Landscape Restoration: Linkages with Stream Fishes...

reproduction, and assemblage composition. Direct inputs of leaves and wood into 
streams provide the primary energy base and substrate for production of macroin-
vertebrates, the food base for  fi shes (Dolloff and Webster  2000 ; Benke and Wallace 
 2003 ; Dolloff and Warren  2003  ) . Wood derived from forested riparian areas also 
provides general cover for at least 131 southern  fi shes (22% of total native fauna) 
(Table  10.1 ). Wood is used as spawning or nesting cover for at least 42 species 
(7%) and egg attachment sites by at least 38 species (6%). Water temperature mod-
eration provided by riparian shading is critical for at least 9 species (2%), but ripar-
ian shading is also important as cover to many  fi shes (e.g., Helfman  1981  ) . Wood 
is documented as a primary feeding site for 11  fi sh species (2%). In addition at 
least 74 species (12%) access and use seasonally  fl ooded forest for at least a por-
tion of their life cycle. Many  fi shes derive multiple bene fi ts from instream wood 
(Table  10.1 ). 

 The taxonomic, geographic, and ecological diversity of the region’s  fi shes pro-
vides a template to highlight potential bene fi ts of forest landscape restoration aimed 
at maintaining  fi sh biodiversity in a variety of biological, ecological, and physical 
contexts. Clearly, the southern United States faces major challenges in conserving 
not only native  fi shes but the entire richly diverse system of streams, rivers, and 
wetlands in the region (Benz and Collins  1997 ; Master et al.  1998 ; Ricciardi and 
Rasmussen  1999 ; Veery et al.  2000  ) . I believe forest landscape restoration could be 
an extremely positive tool in meeting these challenges. 

 Rehabilitation of warmwater streams is possible with current knowledge but not 
without major shifts in stream corridor management strategies. Watershed-scale 
forest restoration needs to emphasize establishing and maintaining viable forested 
riparian corridors. This could complement instream habitat restoration, which needs 
to focus on factors such as re-operation of dams to provide environmental  fl ows and 
restoration of more natural geomorphology (e.g., sinuosity) and hydrology (e.g., 
levee setbacks for overbank  fl ows, Richter and Thomas  2007  )  in channelized or 
dredged rivers. In agricultural and urban areas, emphasis on restoring forests or 
minimally vegetated buffer zones on riparian corridors should become an increas-
ingly important element of region-wide restoration of  fi sh habitat. Forested riparian 
corridors also will likely be necessary to maintain water quality and quantity and 
help mitigate extreme hydrologic events affecting life and property (e.g., high storm 
 fl ows and  fl ooding, excessive erosion, dewatering, infrastructure damage) (Brown 
et al.  2005  b  )  in both urban and rural settings. However, implementing forest restora-
tion in these environments is a major challenge given their past and current uses and 
management, regardless of the potential ecological services it could provide (Naiman 
et al.  2005  ) . Further, even when established, the long-term challenge will be manag-
ing riparian forests sustainably in a landscape composed of highly differing land uses 
overlain by a highly fragmented matrix of landownership.      
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