Chapter 10
Forest Landscape Restoration: Linkages
with Stream Fishes of the Southern United States

Melvin L. Warren Jr.

10.1 Introduction

With well over 600 native species, the southern United States supports one of the
richest temperate freshwater fish faunas on Earth (Fig. 10.1). Unfortunately, an
expert review revealed that 27% (188 taxa) of southern fishes are endangered,
threatened, or vulnerable (Warren et al. 2000) and that 16—18% of native fishes are
imperiled in 45 of 51 major southern river basins. Other groups of aquatic organ-
isms in the region also show high levels of imperilment (e.g., freshwater mussels
and gastropods, Neves et al. 1997; Haag 2009; crayfishes, Taylor et al. 1996, 2007,
aquatic reptiles, Buhlmann and Gibbons 1997). Based on national extinction rate
projections for fishes (Ricciardi and Rasmussen 1999), about 10% of the region’s
fishes could be extinct by 2050 unless effective conservation actions aimed at main-
taining and improving the physical and biological integrity of the region’s streams
and rivers are implemented.

The combination of historical and current land-use has resulted in a dramatically
changed and changing landscape with consequences for fishes and linkages between
forests, aquatic systems, and fishes. In that context it is useful to briefly review the
basics of interactions between the terrestrial and aquatic systems. The river contin-
uum concept (RCC) (Vannote et al. 1980) provides a useful synthetic framework for
conceptualizing the connectivity of undisturbed stream systems, the importance of
stream size, and the interplay at the interface of terrestrial and aquatic environments
(Fig. 10.2). The physical basis of the RCC is stream size and location along the
gradient from the smallest headwater creek to large rivers. As a stream courses
along this gradient it grows in size, receives tributaries, and drains an increasingly
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Fig. 10.1 Fish species richness across 51 major drainage units in the southern United States
(Compiled from Warren et al. 2000)

large catchment area (Allan 1995). As stream size changes, many associated
biological changes are expected to occur with shifts in energy sources for primary
production.

As viewed for temperate forested streams (Vannote et al. 1980), small streams
are conceived as shaded headwaters where inputs of woody material (CPOM, coarse
particulate organic matter, e.g., leaves, stems, trees) from the riparian zone and sur-
rounding landscape (i.e., allochthonous material) provide the resource base for the
consumer community (Fig. 10.2). Because of the dense shading, little sunlight
reaches the stream channel and in-stream production (autochthonous production) is
limited. As the stream broadens into a large creek or small river, the energy inputs
change. As shading and woody inputs become less relative to increasing channel
width, sunlight can penetrate to the bottom to support significant autochthonous
production of periphyton (e.g., algae, diatoms). Macrophytes become more abun-
dant with stream size, most prominently so in lowland rivers of the southern United
States. In the largest rivers, turbidity, higher currents, and soft or unstable substrates
often preclude growth of macrophytes or periphyton. Here the autochthonous pro-
duction is mostly from phytoplankton, but most productivity is allochthonous being
derived from organic matter received from upstream and lateral tributaries (Minshall
et al. 1985).

Processing of CPOM in upstream areas by aquatic macroinvertebrates, espe-
cially ones that shred CPOM, provides large amounts of fine particulate organic
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Fig. 10.2 Depiction of the conceptual relationship between stream size (as stream order), energy
inputs, and aquatic ecosystem community structure and function under the river continuum con-
cept as conceived by Vannote et al. (1980) (Redrawn from Allan 1995)

matter (FPOM) much of which moves downsteam. As ratios of CPOM to FPOM
shift along the stream size gradient so do invertebrate communities (Fig. 10.2).
The FPOM cascading to downstream areas serves as part of the energy source
along with instream production of periphyton. Hence, in headwaters, shredders,
which process CPOM, are expected to be most abundant. In moderate-sized
streams, grazers, which consume periphyton, and collectors, which process and
consume FPOM, will be abundant, and collectors will dominate in the largest
systems. Finally in the largest rivers, the community becomes one dominated by
collectors (Vannote et al. 1980; Allan 1995). Hence, under the RCC the role that
wood and woody material plays is readily apparent, especially that in the riparian
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zone, in defining the energy sources and other biological characteristics of streams
and rivers. Here I focus on aspects of wood in streams aside from its foundational
role in biological productivity, especially some of its potential effects on fishes.

Forest landscape restoration is among the most significant conservation actions
that could positively affect the region’s fishes and other aquatic fauna, particularly if
used in concert with other management options (e.g., Wissmar and Bisson 2003).
In this context, I view forest landscape restoration broadly to include management
actions which increase and maintain forest coverage in watersheds and restore riparian
forests, especially late successional ones. Although I do not cover specific management
actions in detail, they might involve approaches such as restoring continuous forest
to riparian buffer corridors along stream and river systems in agriculture and urban
watersheds (Bentrup 2008; Bentrup et al. 2012) which are otherwise largely deforested.
Even more broadly, opportunities for forest landscape restoration may involve
entire watersheds on public (e.g., national forest, wildlife refuge) or private lands
(e.g., industrial forests, smallholder forests, agroforests), or urban areas (community
reforestation). These may be driven, not directly by benefit to fishes or other aquatic
organisms, but by improving water quality, increasing wildlife habitat along stream
systems, decreasing effects of extreme events (i.e., floods, droughts), mitigating
impervious surface run-off, or other ecological or aesthetic motivations. Even so,
forest restoration can also potentially benefit the ecological health and function of
aquatic ecosystems and the fishes they support.

Here, I focus on three objectives. First, I briefly describe the aquatic setting of the
region. Second, I review some of the major historical and on-going impacts to
aquatic habitats particularly as related directly or indirectly to forests. My third
objective is to present and illustrate selected examples of the benefits of forest land-
scape restoration for fishes in the southern United States. I selected five important
and interdependent, but by no means all-inclusive, benefits to fishes that could
emerge from restoration of forest landscapes including: (1) instream wood as habi-
tat and cover; (2) instream wood as a substrate for food production; (3) instream
wood as a spawning substrate; (4) moderation of water temperature by trees in
streamside forests; and (5) increased access to floodplain forests for foraging and
reproduction. Finally, I updated and expanded a previously compiled list of fishes
(Dolloff and Warren 2003) to include species that are associated with flooded forests,
instream wood (e.g., detritus, leaf packs, debris dams, sticks, and logs), or riparian
vegetation (e.g., root wads, root fibers, overhanging limbs). The purpose of the list
is to document the fishes which are obligately or facultatively dependent on wood
and to inform the forestry community of the high diversity of fishes that might be
affected positively by forest landscape restoration activities. I recognize the impor-
tance of forest landscape restoration to water quality (sediment, pesticide, and nutri-
ent reduction, sensu Waters 1995) and quantity and hence to fishes but do not address
those benefits here. I believe that the benefits and examples outlined provide heuristic
if understated insights into the complex nature of fish, instream wood, riparian, and
watershed interactions (Veery et al. 2000; Gregory et al. 2003; Brown et al. 2005b;
Hughes et al. 20006).
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10.2 Aquatic Setting in the Southern United States

River systems of the southern United States are highly variable in terms of physiog-
raphy, geomorphology, hydrology, chemistry, and biology. Here I provide a brief,
oversimplified description of the streams and rivers in the region but detailed
accounts of the region’s rivers are available (see Benke and Cushing 2005). The area
encompasses 12 entire states and parts of 4 others, at least 10 major physiographic
provinces (Benke and Cushing 2005) and 51 major drainage units (encompassing
about 78 medium to large river systems; Warren et al. 2000) (Fig. 10.1). The area
can be divided into four major hydrologic regions: Southern Atlantic Slope (roughly
Virginia to eastern Florida), East Gulf Slope (western Florida to Mississippi River),
West Gulf Slope (Mississippi River to southwestern Texas), and southeastern Ohio
and Lower Mississippi river basins. The Eastern Continental Divide, formed by the
northeast-southwest trending Blue Ridge Mountains, is the major relief feature in
the region (maximum 1,700 m asl), sending waters east toward the Atlantic Slope or
west and south toward the Ohio and lower Mississippi Rivers and Gulf of Mexico.
Rivers lying just east and west of the divide begin as steep-gradient, cool, low pro-
ductivity, rocky streams traversing rugged, mountainous terrain.

10.2.1 Southern Atlantic Slope

Rivers flowing to the Atlantic Ocean transition from the Blue Ridge Mountains to
the rolling hills of the Piedmont (about 150—-160 m relief) where streams are warmer
and may be rocky, sandy, or silty and then drop off an escarpment (the Fall Line) to
the gently rolling to nearly flat Coastal Plain. On the Coastal Plain, streams and rivers
generally are warm and often highly productive with low gradients, silty to sandy
substrates, and darkly stained water (i.e., high in organic carbon) (Smock et al.
2005). Permanent and perennial oxbows, lakes, and wetlands are often associated
with Coastal Plain stream systems. Much of the Blue Ridge Mountain area has
>80% forest cover; somewhat less and more variable forest cover is present on the
Piedmont and Coastal Plain areas, but over most of the region forest cover is between
21 and 60% (Wear 2002).

10.2.2 Eastern Gulf Slope

Along the Eastern Gulf slope, most streams head as rocky, often gravel dominated,
streams of relatively moderate-gradient in uplands of the hilly upper Coastal Plain,
the Piedmont, Appalachian Plateaus, and Valley and Ridge physiographic provinces
and transition below the Fall Line to productive, slow flowing, sand and silt-dominated
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systems of the Eastern Gulf Coastal Plain (<150 m relief); near the Gulf Coast,
streams are often darkly stained (Ward et al. 2005). Much of this region, except
along the coast is densely forested, including most of Alabama and southeastern
Mississippi with forest cover estimated as 61-100% (Wear 2002) over most
non-urban or non-agricultural areas.

10.2.3 Western Gulf Slope

Streams of the Western Gulf Slope lie along an east-west moisture gradient such
that the east (western Louisiana and eastern Texas) is well-watered and the west
extremely arid. Streams of the Western Gulf Slope in western Louisiana and eastern
Texas lie entirely on the Coastal Plain (relief <200 m) and generally are dominated
by sand and silt throughout their lengths and display other characteristics typical of
Coastal Plain streams (Dahm et al. 2005). Streams of the Western Gulf Slope of
central and western Texas head on uplands (i.e., Edwards Plateau of southern Great
Plains physiographic province) (relief 700-1,200 m) and ultimately enter the
Western Gulf Coastal Plain. Dense forest in this region is primarily confined to
eastern Texas and west and central Louisiana where forest cover in most counties is
21-40% or even higher (61-80%) in extreme eastern Texas (Wear 2002).

10.2.4 Southeastern Ohio and Lower Mississippi River Basins

The southeastern Ohio and lower Mississippi River basin region has two major
upland areas which profoundly affected river drainages and much of the biology of
the region. East of the Mississippi River lies the Eastern Highlands (Blue Ridge,
Valley and Ridge, Appalachian Plateaus, and Interior Low Plateaus physiographic
provinces) (max relief 1,700 m) through which drain several major rivers including
the Tennessee River, Cumberland River, and southeastern Ohio river tributaries
(Tennessee, Kentucky, and northern Alabama). To the west across the Mississippi
Alluvial Valley lies the Interior Highlands (Ouachita and Ozark Plateaus) (maxi-
mum relief 826 m) which also drain major rivers such as southern tributaries to the
Missouri River and the White, Arkansas, and Red river systems (southern Missouri,
Arkansas, eastern Oklahoma, northern Louisiana) (Brown et al. 2005a; Matthews
et al. 2005). In the Highlands, streams are of moderate to high gradient and vary
from boulder-strewn to gravel-dominated. Rivers transition from the Highlands to
lower gradients of the Mississippi Alluvial Valley, which is dominated by sandy,
silty Coastal Plain-like systems. In the Valley, floodplains of streams and rivers
characteristically have permanent and perennial wetlands, ponds, and oxbows. The
densest forest is scattered within the region. A region of high forest cover is along
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the Cumberland Plateau of eastern Tennessee and eastern Kentucky with cover
ranging mostly from about 41-80%. Other areas of similarly high forest cover
include most of central Arkansas and northern Louisiana. Lowest forest cover is in
the Mississippi River Alluvial Valley (about 0-20%).

10.3 Factors Affecting Forest Linkages to Fishes

Large-scale declines of aquatic biota are signals of a pervasive degradation of
southern U.S. waters and of the failure of humans to recognize the interactive nature
of land and water ecosystems and management (Angermeier 1995; Burkhead et al.
1997; Warren et al. 1997). Historically, three major overlapping periods of land-use
occurred in the southern United States, all of which affected and continue to affect
water quality, water quantity, and fish habitat: (1) the era of agricultural and timber
exploitation; (2) the era of dam building and channel modification; and (3) the era
of population growth, industrialization, and urbanization (Abell et al. 2000; Wear
and Greis 2002; Haag 2009). Unfortunately, precise information is generally lack-
ing or fragmentary on the fish fauna for most of these eras (1700-early 1900s) and
explicit documentation of impacts is not always possible. However, the direct and
indirect causes of land-use associated fish and other aquatic community impacts are
well documented (Scott and Helfman 2001; Allan 2004; Hughes et al. 2006; Peacock
et al. 2005; Helfman 2007).

10.3.1 Era of Agricultural and Timber Exploitation

Agricultural exploitation with removal of forests of the southern United States
started in the seventeenth century but reached a peak in the late nineteenth century,
and timber exploitation in mountainous and wetland environments peaked in the
early twentieth century. The area of forested land in the south declined by 40% from
1890 to 1919 (Williams 1989). Timber exploitation during this period resulted in
the removal of mature riparian vegetation along most stream and river courses. Few
riparian areas have had time (or have been permitted) to produce the large, late-
successional trees that are not only the source of instream wood but are also critical
in forming complex, long-lasting habitat configurations important to aquatic
organisms and other critical functions (see subsequent; Dolloff and Webster 2000;
Dolloff and Warren 2003). The loss of old or late-successional riparian forests dras-
tically reduced recruitment of large wood into flowing waters and coupled with
natural processes of decay and downstream transport, resulted in unnaturally low
accumulations of large wood in streams across entire landscapes. Without instream
wood, many streams and rivers in the region have undoubtedly become more homo-
geneous with reduced habitat complexity, stream productivity, fish abundance and
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diversity, and accompanying dramatic shifts in fish assemblage composition (Jones
et al. 1999; Scott and Helfman 2001; Benke and Wallace 2003; Dolloff and Warren
2003; Warren et al. 2009).

A second impact during the era of agricultural and timber exploitation was a
dramatic increase in sediment in streams, rivers, and wetlands as agricultural and
logging activities intensified and covered large areas of watersheds. Early explorers
and naturalists to the southern United States repeatedly characterized streams in the
region as clear and dark as opposed to the brown or red color that now dominates
many southern U.S. streams (Burr and Warren 1986; West 2002). For example, soil
loss in the North Carolina Piedmont was estimated at 0.25 cm 1,000 year™" prior to
European settlement. Current rates from clean cultivated land are 20-762 cm
1,000 year™! (West 2002); earlier historical losses from denuded agricultural lands
combined with logged slopes likely were even higher. Similarly, in the upper Coastal
Plain of Mississippi, valley bottoms were covered by up to several meters of sedi-
ments as watersheds were deforested and hill-top agriculture increased in the early
to late 1830s (Shields et al. 1995a and references therein). As a result of soil tillage
and loss of forest cover, high loads of sediment filled southern U.S. streams and riv-
ers. Sediment can adversely affect fish food production, ability of fishes to forage,
and development of fish eggs and larvae, most dramatically so in upland stream
systems (Helfman 2007).

During this era, wetlands also filled with sediment or were logged, drained, and
often put into agricultural production, all of which directly affected habitat for many
wetland dependent and riverine fishes. About 50% of all wetlands and 65% of for-
ested wetlands in the United States occur in the south. Over the conterminous United
States, 47% of all wetlands were lost between 1780 and 1980. Between 1950 and
1970, 16% of southern forested wetlands were lost (Ainslie 2002). In the Lower
Mississippi River Valley alone, 80% of 10 million ha of wetlands were lost to agri-
culture by the 1970s.

10.3.2 Era of Dam Building and Channel Modification

The era of dam building and stream channel modification imposed a second major
impact on fishes and aquatic systems of the southern United States. The period from
about 1920-1985 marked a frenzy of dam building and stream channelization in
the southern United States for the ostensible purposes of flood control (flooding
being exacerbated in part by sediment-clogged waterways), hydroelectric power
generation, navigation, water storage, and recreation. The frenzy of dam building
eliminated most free-flowing large rivers and many small- and medium-size
streams in much of the United States including the south (Benke 1990; Dynesius
and Nilsson 1994) with a resulting biotic impoverishment of these systems
(Burr and Warren 1986; Pringle et al. 2000; Bednarik and Hart 2005; Haag 2009).
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Many riverine and stream fishes are dependent on the heterogeneity of free-flowing
systems with log-jams, woody snags, brush piles, gravelly shoals, sand bars, and
pools, which occurred naturally from headwater streams to even the largest rivers
in the region. Many fishes are also dependent on seasonal late winter and spring
floods which send streams and rivers over their banks into adjacent forests and
wetlands. As reviewed in part here, the river-floodplain interaction gives fishes
access to shallow low-velocity spawning sites and supplemental food resources
as well as provides nursery areas for larvae and juveniles. Impoundments created
by dams completely eliminated all such habitats, and the dams themselves
created barriers to migratory fishes, isolated and fragmented stream and riverine
fish populations, and eliminated or caused declines in many fish species (e.g.,
Etnier et al. 1979; Burr and Warren 1986; Robison and Buchanan 1988;
Angermeier 1995; Winston et al. 1991; Burkhead et al. 1997). For example, fish
diversity in the Clinch River (upper Tennessee River drainage) before impoundment
of Norris Reservoir consisted of 17 families and 65 species; post-impoundment,
four families were lost and species diversity decreased to about 30 species (Neves
and Angermeier 1990).

Stretches of river not impounded directly but located downstream of dams
(referred to as tailwaters) often were changed dramatically by dam releases. Because
of dam releases, tailwaters often are subjected to highly altered, unnatural flow
regimes (precluding natural winter-spring flood cycles), unnaturally cold tempera-
tures (affecting fish growth, reproduction, and food production), low dissolved oxy-
gen concentrations (often eliminating all fishes) or some combination of these
impacts (Krenkel et al. 1979; Layzer et al. 1993; Travnicheck et al. 1995; Tippit
et al. 1997; Bednarik and Hart 2005). For example, the tailwater releases on the
South Fork Holston and Watauga rivers (upper Tennessee River drainage) decreased
fish diversity from 43 to 17 and 32 to 13 species, respectively. Similar and often
greater decreases in diversity occurred in association with most dams (Neves and
Angermeier 1990).

During the dam-building period, river systems supporting the most diverse tem-
perate, riverine fish faunain the world (e.g., Tennessee, Cumberland, Ohio, Alabama,
Coosa, and Tombigbee rivers) were transformed into a series of reservoirs and regu-
lated reaches with little free-flowing main-channel native fish habitat remaining
(Etnier and Starnes 1993; Boschung and Mayden 2003). Most of the large tributaries
in these systems also were dammed. In the Tennessee River alone, there are 53
major dams (>40 ha): nine on the main channel and the remainder on tributaries
(Etnier and Starnes 1993). The amount of natural fish habitat lost is astounding. As
one example, 11 major dams on the Clinch, Holston, and French Broad rivers (upper
Tennessee River) eliminated 1,100 of 2,800 km of river habitat for resident native
fishes (Neves and Angermeier 1990).

In conjunction with dam-building, many small- to medium-size streams and
rivers were channelized completely from headwaters to mouth ostensibly to
reduce flooding. In the process of stream channelization, riparian areas are
cleared of forest and vegetation, and by dredging, the channel is straightened and
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Fig. 10.3 Typical channelized stream, the Little Tallahatchie River canal, in the southern United
States. The Little Tallahatchie River, Lafayette County, Mississippi, was channelized in about
1960 (photo by M.L. Warren, Jr.)

deepened (Fig. 10.3). Many channelized streams are subjected to periodic main-
tenance activities such as re-clearing of riparian zones, re-dredging of the channel,
or removal of instream wood (“snagging and dragging”) (Jackson and Jackson
1988; Shields and Smith 1992; Shields et al. 2000). Even if no maintenance is
performed, it may require 65 years after channelization for small lowland rivers
and their riparian forests to show some semblance of recovery (e.g., sinuosity,
in-channel heterogeneity, large riparian trees) (Hupp 1992). Channelization and
associated maintenance activities result in streams with exacerbated, unnaturally
flashy storm flows, homogeneous flow conditions especially at base flow,
decreased flow permanence, no interaction with the floodplain, increased water
temperatures from decreased riparian shading, little to no wood or other organic
matter, and little to no recruitment of wood into the stream. Relative to undis-
turbed streams, the fish assemblages in these streams are less diverse, subject to
large temporal variations in composition and abundance, and tend to be dominated
by one or few species of small-bodied fishes tolerant of the extreme conditions
caused by channelization (Shields et al. 1994, 1995b; Adams et al. 2004; Haag
et al. 2007; Warren et al. 2009). The full payment of the extinction debt for
aquatic organisms caused by dams and channelization likely is yet to be realized
(Haag 2009).
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Fig. 10.4 Population growth and density from 1890 to 2010 in the southern United States. Data
compiled from censuses for Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi,
North Carolina, Oklahoma, South Carolina, Tennessee, Texas, and Virginia

10.3.3 Era of Population Growth, Industrialization,
and Urbanization

The next era, one of population growth, industrialization, and urbanization, although
primarily a post-World War II phenomenon, began on a slow, but steadily increasing,
pace as soon as Europeans settled the region. In 1890, the population across 13 south-
ern states stood at almost 3 million people (12 persons km™) (Fig. 10.4). By 2010 the
population stood at about 105.4 million people (79.8 persons km=2). Growth was not
uniform across the region. Between 1950 and the present most population growth
was concentrated in the Appalachian Plateau, Valley and Ridge, the upper Piedmont,
and along the Gulf and Atlantic coasts (Wear 2002). Since 1980, the population in
the region grew at a higher rate than the rest of the United States (Tarrant et al. 2002;
Wear 2002) and by 2010 the region’s share of the U.S. population reached 34%. With
increased population came increased urbanization. In 1945 urbanized land comprised
only about 2.1% (about 2.8 million ha) of the land area in 11 southern states. By
1992, land converted to transportation or urban use roughly tripled to 6.6% of land
area and is projected to increase to 16% by 2020 and 23% by 2040 (Wear 2002).
Although total areal coverage of forest in the region (about 56% in 1992, excluding
Texas and Oklahoma) has changed little since the beginning of rapid population growth
in 1945, the region now is largely characterized as a fragmented, edge-dominated
mosaic of second (or third)-growth forests within a matrix of farmland, old fields,
and urbanized areas (Wear 2002). Planted pine (Pinus spp.) forests, occurring
predominantly in the Piedmont and Coastal Plain and covering smaller areas within
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Fig. 10.5 Alteration and degradation of surface waters in the southern United States: (a) percent-
age of catchment (landcover) alteration, (b) percentage of surface water alteration, (c) percentage
of water quality degradation, and (d) percentage of aquatic habitat fragmentation across the south-
ern United States (Compiled from Abell et al. 2000)

the Eastern and Interior Highlands, constitute about 20% of the total forest coverage.
Area in natural pine, mixed pine-hardwood, upland hardwood, and lowland hard-
wood forests is projected to decline by about 15% by 2040. Plantation expansion is
projected to increase from 8.9 million ha in 1992 to 21.8 million ha in 2040
(Prestmon and Abt 2002).

In aggregate, these three eras of land-use dramatically changed the landscape across
the southern United States. As integrators of watershed land-use, aquatic systems in the
region were also dramatically affected. Perhaps not surprisingly given the land-use
legacy, expert-based appraisal of present conditions of aquatic systems revealed high
and widespread levels of catchment alteration, surface water degradation, and aquatic
habitat fragmentation (Fig. 10.5). Forest landscape restoration could contribute to the
improvement of conditions of aquatic systems in the region both within stream and
river channels and in the riparian systems that bound their channels.

10.4 Instream Wood as Habitat and Cover

Cobble and gravel substrates are rare or absent in many lowland streams where
instream wood is often the only element contributing to channel roughness and
hence to the formation of complex riffle and pool habitats (Smock and Gilinsky
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Fig. 10.6 Fishes benefit from (a) small woody debris piles (limbs and leafs) and (b) large log jams
which help form heterogeneous stream habitats, afford stable substrate for invertebrate colonization,
provide cover and velocity refuges at high flow, and refuge from predators at low flow (Photos by
M.L. Warren, Jr.)

1992). Relatively modest quantities of instream wood can shift fish assemblage
attributes from colonizing to intermediate or stable stages (Warren et al. 2002),
primarily by influencing habitat development and providing cover. The colonizing
stage of fish assemblages is typical of shallow, uniform habitats with little instream
wood, flashy hydrology, and propensity for drying. Colonizing fish assemblages are
dominated by small-bodied species, particularly minnows (e.g., Notropis spp.,
Cyprinella spp.) (Schlosser 1987; Shields et al. 1998; Adams et al. 2004).
Intermediate assemblages typify streams with some increase in pool volume and
begin to be comprised of larger-bodied fishes (e.g., catfishes, spotted bass, longear
sunfish). As pool depth and volume increase further, stable assemblages develop
with fewer, but larger, top predator fishes. Abundance of small-bodied, invertivo-
rous fishes decreases, particularly minnows, as predation and resulting competition
for refugia among prey species increases. At the stable stage, shallow riffle areas
between pools provide important habitat (e.g., refuge from predators) for bottom-
dwelling invertivorous fishes. Wood-formed riffle-run-pool complexes support a
significant proportion of the stream fish diversity in Coastal Plain streams and are
likely critical to the persistence of many darters (Etheostoma spp., Percina spp.),
madtom catfishes (Noturus spp.), and many other fish species (Monzyk et al. 1997;
Chan and Parsons 2000; Warren et al. 2002; Shields et al. 2006). Even relatively
small-diameter pieces of wood, in shallow sandy flowing areas, can create heteroge-
neous zones of variable velocities and depths (Fig. 10.6). Experimental microhabi-
tat units (brush bundles, leaf packs, and faux rootlets) placed in wood-starved upper
Coastal Plain streams in Mississippi (Fig. 10.7) were used extensively by crayfishes
and a diversity of stream fishes, particularly small-bodied individuals and juveniles
of large species. During winter and late spring sample periods, 89% of the micro-
habitat units were occupied by fishes, crayfishes, or both (Fig. 10.8), and catch rates
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Fig. 10.7 Constructed microhabitat bundles (cane, left, faux rootlets, middle, leaf pack, right)
experimentally placed in wood-starved streams in northern Mississippi, U.S.A. (rule at bottom=1 m)
(Photo by M.L. Warren, Jr.)
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Fig. 10.8 Average percentage occupancy by fish and crayfish of constructed woody microhabitat
units experimentally placed in wood-starved Coastal Plain streams in north Mississippi, USA
(Redrawn from Warren et al. 2009)

of fishes after 14 and 44-day exposures ranged from 1.7 to 12.2 individual fish per unit.
The microhabitats were used by 32 species of fishes, constituting greater than
two-thirds of the known fish fauna within the study streams (Warren et al. 2009).
Instream wood and debris piles provide cover and flow refugia for southern US
fishes. For many fish species, association with large wood is facultative, particularly
in streams where rocky substrates or other elements provide alternative cover within
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well-developed riffles, runs, and pools (Table 10.1). Nevertheless, species such as
the shadow bass (Ambloplites cavifrons) and smallmouth bass (Micropterus dolomieu)
show extensive use of and spatial partitioning among woody habitats even in upland,
rocky streams with strong riffle-pool development on the Ozarkian Plateau
(Fig. 10.9). Fish in streams of the Coastal Plain where streambed materials tend to
be fine-grained and highly mobile (Felley 1992; Smock and Gilinsky 1992) benefit
from pool and riffle formation caused by instream wood (Montgomery et al. 2003;
Mutz 2003) but also often use and are highly dependent on wood for cover
(Table 10.1). For fishes in these and other streams, wood provides overhead cover
and shade, visual and physical isolation, and velocity refuges (Fausch 1993).
Overhead cover provides protection from aerial predators (e.g., wading birds,
kingfishers) as well as contributing to the camouflaging benefit of shade (Helfman
1981; Power 1984). Visual and physical isolation from other fishes decreases predator-
prey interactions and agonistic interactions between conspecifics (individuals of the
same species) (Dolloff and Reeves 1990; Crook and Robertson 1999). Occupying
positions behind logs, root wads, or other woody cover in flowing water also minimizes
energy expenditures, which can be particularly important at extreme cold or warm
water temperatures (Fausch 1984; Ross et al. 1992; Warren et al. 2009). For exam-
ple, two nocturnally active fishes, the brown madtom (Noturus phaeus) and the pirate
perch (Aphredoderus sayanus), are associated strongly during daylight hours with
complex woody habitats in small coastal plain streams where all three functions
(overhead cover, visual-physical isolation, and velocity refuge) likely play a role
(Monzyk et al. 1997; Chan and Parsons 2000). Structural complexity of the woody
microhabitat refuges (measured as a function of number and length of woody com-
ponents) was a significant predictor of the occurrence of the pirate perch (Monzyk
et al. 1997). The bayou darter, Etheostoma rubrum, a threatened species, responds
to the cold, high-velocity flows of winter by seeking refuge behind logs and other
instream wood, which likely have a significant impact on overwintering survival
and ultimately the population size of the species (Ross et al. 1992). Similarly, sam-
pling in January (water temperature 2—5 °C) of small woody microhabitat units
(about 0.3 m? per unit) experimentally placed in shifting sand-bottomed streams
yielded up to 70 individual minnows (Cyprinidae) per unit offering further evidence
that winter refuges are critical for many fishes (Warren et al. 2009).

Although fishes clearly use instream wood when available as habitat, the restora-
tion strategy of placing wood in streams alone may provide short-term benefits but
not be of long-lasting benefit. This is particularly relevant in systems rendered
unstable by past and present watershed land-use and resultant erosion, incision, and
instability of the sand-bed stream channel. For example, large woody structures
were added to and bank vegetation established along such a stream in north
Mississippi to assess changes in aquatic assemblages and their habitat (Shields et al.
1998, 2008). Prior to restoration, the stream supported a colonizing fish assemblage.
Post-restoration base-flow water depths increased (i.e., indicative of pool forma-
tion), aquatic invertebrate assemblages became more diverse, and the number of fish
species increased. Notably, the fish assemblage acquired more, larger predators as it
shifted from a colonizing to an intermediate fish assemblage. Even so, the structures
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Fig. 10.9 Habitat partitioning of logs, root wads, and four other cover types by two co-occurring
top-predator fishes in a rocky, upland river in Missouri (Compiled from Probst et al. 1984)

were short-lived (about 4 year) and failed because the underlying geomorphic and
watershed problems causing instability of the channel were not addressed.
Restoration efforts in other streams showed similar results (Shields et al. 2007).

10.5 Instream Wood and Food Production

Wood deposited in streams from the riparian zone plays an important role in aquatic
invertebrate production and hence, availability of food to other invertebrates, fishes,
and other vertebrates (Angermeier and Karr 1984; Smock and Gilinsky 1992; Benke
and Wallace 2003). Production in streams is categorized as primary production
(biomass or energy from photosynthesis, e.g., algae) and secondary production
(biomass or energy from organic carbon sources, e.g., microcrustaceans, aquatic
insects). Nearly all fishes in southern U.S. waters depend entirely on invertebrates
(secondary producers) for food during one or more life stages (i.e., larval, juvenile,
adult) albeit a few are strict herbivores, scraping algae from hard substrates. For
example, all the important warmwater sportfishes, such as largemouth bass
(Micropterus salmoides) and bluegill (Lepomis macrochirus), feed heavily on
microcrustaceans (e.g., water fleas) as young fish, then switch to larger aquatic
insects (e.g., midge pupae and larvae, dragonfly larvae, aquatic beetles) as juveniles.
Even as adults, largemouth bass and many other top-predator fishes feed extensively
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Fig. 10.10 Aquatic invertebrate density on instream wood surfaces in selected southern U.S.
Coastal Plain streams and rivers (Compiled from Benke and Wallace 2003)

on large aquatic invertebrates such as crayfish and terrestrial insects (Warren 2009).
Similarly, one of the most species-rich group of fishes in southern waters, the darters
(e.g., Etheostoma spp., Nothonotus spp., Percina spp.) feed extensively and at times
almost exclusively on the aquatic larvae and pupae of flies and midges living on and
around hard substrates (e.g., logs, sticks, rocks) in streams. Species in another large
family, the minnows (family Cyprinidae), exploit aquatic insects on hard surfaces as
well as those drifting in the water column and on the surface.

The riparian zone contributes large instream wood in the form of trees or parts of
trees to stream and river channels, providing substrate for aquatic organisms (e.g.,
bacteria, fungi, and invertebrates) to colonize and foraging habitat for fishes (Nilsen
and Larimore 1973; Benke et al. 1984, 1985; Lehtinen et al. 1997) (Fig. 10.6).
Instream wood can collect other organic material (e.g., leaves, twigs) to form organic
debris dams, which also are colonized by aquatic organisms that decompose wood,
shred organic matter, and filter small organic particles from the water column.
Establishment of these communities ultimately results in diverse, highly productive,
and complex wood-associated food webs (e.g., Anderson et al. 1978; Harmon et al.
1986; Wallace et al. 1992; Benke et al. 2001; Benke and Wallace 2003).

Wood is especially important to invertebrates in habitats with fine, mobile bot-
tom substrates and few other streambed geomorphic controls (Angermeier and Karr
1984; Benke et al. 1984, 1985; Benke and Wallace 2003), a common feature of
lowland southern U.S. streams. In sand-bed streams and rivers, wood surfaces and
debris dams often support the highest densities and diversity of invertebrate species
and contribute the greatest amount of secondary production (e.g., Smock et al. 1989;
Drury and Kelso 2000; Johnson et al. 2003). Wood surfaces in southern US Coastal
Plain streams support 9,000-98,000 invertebrates m= (Fig. 10.10). Snags in
Georgia’s Savannah River supported densities of net-spinning caddisfly larvae that
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ranged from 6,000 to 22,000 individuals m=2 (Cudney and Wallace 1980). Sampling
of the immersed surfaces of snags in the well-studied Ogeechee River system of
Georgia yielded 108 invertebrate species but only 70 species occurred exclusively
in the sandy stream bed (Benke and Wallace 2003). Similarly, 11 of 12 samples
yielded greater percentages of invertebrates from gravel and wood than from sand
substrate in six streams on Louisiana’s coastal plain, where gravel is scarce and
wood likely supports the greatest secondary production (Drury and Kelso 2000).
Annual production estimates of aquatic invertebrates in sand-dominated systems
range from 72 gm™ on snags in large rivers to 36 gm™ in debris dams in headwater
streams, which usually represents >20% of the total invertebrate numbers and >30%
of invertebrate biomass in these systems (Smock and Gilinsky 1992; Benke and
Wallace 2003). About 60% of in-channel invertebrate biomass is associated with
snags in Georgia’s Satilla River where four of eight large-bodied fish species
obtained at least 60% of their prey biomass during non-flood conditions from snag-
dwelling invertebrates in the river (Benke et al. 1985). The ‘snag fauna-sunfish’
food chain represented an essentially completely separate trophic pathway from the
‘bottom fauna-small fish-piscivore’ food chain (Benke et al. 1985; Benke and
Wallace 2003). Other work similarly indicates stream and riverine fishes often show
higher abundances, higher foraging success, and increased growth in association
with the invertebrate fauna supported by instream wood (Angermeier and Karr
1984; Angermeier 1985; Lehtinen et al. 1997; Crook and Robertson 1999; Quist
and Guy 2001). Clearly, the abundance and production of fishes in rivers and streams
is directly enhanced by the contribution of instream wood to fish food production.

10.6 Instream Wood as a Spawning Substrate

Many fishes attach their eggs to instream wood, which is considered an adaptation
to decrease silting and potential smothering of eggs (Gale and Gale 1977; Burkhead
and Jelks 2001; Fletcher et al. 2004; Sutherland 2007). For example, tree trunks
with cracks, loose bark, or deeply ridged bark provide suitable spawning habitat for
crevice spawning minnows of the genus Cyprinella (Pflieger 1997) (Table 10.1).
The relatively large range of the blacktail shiner, Cyprinella venusta, across south-
eastern U.S. coastal plain, sand-bed streams is partially attributable to its use of
wood (and bridge abutments) for egg attachment (Pflieger 1997). Several darters
(Etheostoma spp.) adapted to sand-bottomed habitats (Table 10.1) also deposit their
eggs on wood, almost exclusively so for the lake-dwelling Waccamaw darter,
Etheostoma perlongum, a threatened species, and the glassy darter, Etheostoma vit-
reum (Fig. 10.11) (Winn and Picciolo 1960; Lindquist et al. 1981). Female relict
darters (Etheostoma chienense) attach their eggs in clusters to the underside of logs
and large sticks; individual males then guard the resulting clusters until the eggs
hatch. Lack of spawning substrate resulting from extensive channel and riparian
modification is a primary factor limiting recruitment of this endangered species



250 M.L. Warren Jr.

Fig. 10.11 Fishes, like the
glassy darter (Etheostoma
vitreum), attach their eggs to
the undersides of logs as a
presumable adaptation to
increase oxygenation and
prevent silting of eggs (arrow
indicates direction of current) o
(Redrawn from Winn and
Picciolo 1960)

o e ey

FINE SAND

(Piller and Burr 1999). The pirate perch (Aphredoderus sayanus) deposits its eggs
in canals within underwater root masses of riparian vegetation created by it or sala-
manders and dobsonfly larvae (Fig. 10.12) (Fletcher et al. 2004). The species is
specially adapted to lay eggs in the backs of the canal because its urogenital pore,
where eggs and sperm are released, is located under its head. As such the species
can thrust its head deep in a canal and release the eggs or sperm away from water
currents and egg predators. Several species of madtom catfishes (genus Noturus),
the most diverse group of catfishes in North America, establish nests under large
wood and provide extensive care to nests, eggs, and young (Burr and Stoeckel
1999). Use of wood (e.g., standing timber, downed trees, root wads) for egg attach-
ment or nesting cover is common among important southern U.S. game (e.g., the
black basses, Micropterus spp.), commercial (catfishes, Ictalurus spp., Pylodictus
sp.) and nongame fishes (Warren 2009; Table 10.1).

10.7 Forests and Stream Temperature

The role of the riparian forest in regulating stream temperature and damping extremes
in temperature is most pronounced in small headwater streams (e.g., Brown and
Krygier 1970; Swift and Messer 1971; Swift 1982; Isaak and Hubert 2001; Wehrly
et al. 2006). Removal of riparian forests along small upland streams in the southern
Blue Ridge can alter both maximum and minimum stream temperatures for several
years (Swift 1982) with summer extremes up to 6.7 °C above pre-harvest levels of
19 °C (Swift and Messer 1971). Even in lowland streams, removal of riparian shade
produces larger diurnal temperature extremes than observed in shaded streams (Huish
and Pardue 1978) which in summer could result in dissolved oxygen levels below
critical thresholds for fishes (Smale and Rabeni 1995). Although temperature effects
from riparian forest removal are best documented in coldwater fishes, particularly
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Fig. 10.12 The male pirate
perch prepares for spawning
by burrowing into the rootlet
masses of riparian vegetation
(upper panel). The female
noses into the burrow,
deposits eggs in the back of
the burrow via a specially
adapted urogenital opening
located under her throat
(lower panel), and leaves.
The male then enters the
burrow and fertilizes the eggs
by releasing sperm from his
urogenital pore, which like
the female is located under
his throat. (Fletcher et al.
2004, used with permission
of Dean Fletcher)
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increased temperature effects on salmonids (trout and salmon) (e.g., Meehan 1991),
many species of southern US fishes thrive only in streams with densely forested and
vegetated riparian zones and in heavily shaded spring-heads and spring runs. The
distribution of some species is restricted because they are adapted to or benefit from
the generally cooler temperature regimes in these habitats (e.g., Peterson and Rabeni
1996; Flebbe et al. 2006). When forest cover in riparian areas is removed and water
temperatures rise, it may be energetically impossible for a fish species or life stage
with lower temperature requirements to continue living in the system, regardless of
other apparently favorable conditions (e.g., food availability). For example, adult
brook trout (Salvelinus fontinalis), an important native sport fish in the southern
Appalachian Mountains, are limited to cool waters (<19 °C) in mature forests (Cherry
etal. 1977; Meisner 1990; Clark et al. 2001; Flebbe et al. 2006). However, mortality
and growth rates of young of this species can be affected negatively by slight increases
in water temperatures that are tolerated by the adults (McCormick et al. 1972; Clark
et al. 2001). Spatial modeling of climate change across the range of the southern
Appalachians projects a 53-97% loss of trout habitat, leaving populations frag-
mented, isolated, and subject to stochastic extirpation (Flebbe et al. 2006). Similar
losses might be expected for other headwater species in the Appalachians. Loss of
riparian vegetation simply exacerbates the problem. Similarly, late twentieth century
decreases in distribution and abundance of smallmouth bass (Micropterus dolomieu),
another important sport fish, in streams in the prairie-Ozark ecotone of Missouri
were related in part to maximum summer water temperature, an effect attributable to
removal of riparian forest (Sowa and Rabeni 1995). Other fishes in the southern
United States, many of which are of conservation concern, also appear to be limited
to forested habitats at least in part by the lower temperatures produced by shading,
including species restricted to upland headwater streams, spring heads, or spring
runs. Proportionally, spring-dependent fishes are one of the most jeopardized groups
of fishes in the region (Etnier 1997). Removal of riparian vegetation is implicated in
extirpation of populations (e.g., Tennessee dace, Chrosomus tennesseensis, laurel
dace, Chromsomus saylori, spring pygmy sunfish, Elassoma alabamae) and replace-
ment of species with more thermally tolerant congeners (e.g., blackside dace,
Chrosomus cumberlandensis replaced by redbelly dace, Chrosomus erythrogaster)
(e.g., Starnes and Starnes 1981; Starnes and Jenkins 1988; Burkhead and Jenkins
1991; Skelton 2001; Warren 2004).

10.8 Fringing Forests, Fish Foraging, and Reproduction

The benefits of forests to fishes are realized well beyond the stream banks. Forested
floodplains also are sites of high production of both terrestrial and aquatic inverte-
brates (Gladden and Smock 1990; Anderson et al. 1998; Braccia and Batzer 2001)
and can harbor denser populations of potential fish food organisms than adjacent
stream channels (O’Connell 2003). Fishes can quickly move onto the floodplain
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during flooding to avoid high currents of flood waters and to exploit floodplain food
resources (Guillory 1979; Ross and Baker 1983; Kwak 1988; Eggleton and Schramm
2004). Direct benefits to fish growth can accrue. Growth in blue catfish (Ictalurus
furcatus), a species that exploits flooded habitats, was related positively to areal
extent and duration of flooding along the Mississippi River, a direct benefit of the
higher energy food sources provided in flooded off-channel habitats (Eggleton and
Schramm 2004; Schramm and Eggleton 2006). Even short-term inundation of for-
ested fringing floodplains, a relatively common phenomenon after storm events in
many small streams of the southern United States, can provide important food
resources to fishes. During 4-5 day overbank flood events, stream fishes moved
rapidly onto and extensively within a forested fringing floodplain of a small black-
water creek on the lower Coastal Plain of southern Mississippi. Fish captured on the
floodplain had full stomachs, indicative of rapid exploitation of floodplain associ-
ated food. In the same stream system, more food was available and more food was
consumed (especially Collembola, springtails, from the forest floor) by cherryfin
shiners (Lythrurus roseipinnis) on the inundated floodplain than was available in the
stream at low flow (O’Connell 2003). The correlation of high spring discharge with
summer spawning success suggested that some species, such as the weed shiner
(Notropis texanus), obtain direct energy subsidies from exploitation of floodplain
food resources (terrestrial and floodplain pool invertebrates) that are important for
subsequent reproduction (Ross and Baker 1983) (Table 10.1). Even more direct
reproductive benefits can accrue from inundated floodplains.

At least 76 fish species are characteristic residents within southern forested wet-
lands (Hoover and Killgore 1998), and these species and many other southern U.S.
fishes use seasonally inundated forests for spawning and nursery areas (Hoover and
Killgore 1998; Guillory 1979; Finger and Stewart 1987; Baker et al. 1991; Turner
et al. 1994; Killgore and Baker 1996) (Table 10.1). Over half the fishes known from
the large Atchafalaya Basin of Louisiana use flooded forests for spawning or rearing
of young (Lambou 1990). During spring and early summer, catches of larval fishes
were nearly four times greater in flooded Quercus forest than in the main channel of
the Cache River, Arkansas (Killgore and Baker 1996). Relative to the channel, the
larval catch in flooded forests yielded large numbers of sunfishes (Centrarchidae),
minnows (Cyprinidae), and darters (Percidae). In the lower Yazoo River basin,
Mississippi, abundance of native sport, commercial, and nongame larval fishes was
much higher in flooded forests than flooded agricultural land, particularly so for
black basses, darters, and sunfishes (Fig. 10.13).

10.9 Conclusions

Rapid growth of the human population in the southern United States places ever
growing demands on water and other natural resources and significantly challenges
aquatic resource management and conservation (Cordell et al. 1998; Wear et al. 1998;
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Fig. 10.13 Abundance of larval fishes in agricultural and forested habitats in the Yazoo River
Basin, Mississippi (Redrawn from Hoover and Killgore 1998)

Wear and Greis 2002). Land ownership patterns further confound conservation of
aquatic resources in the region, where <12% of the land base lies in the public
domain. Because most of the biologically significant streams in the region are found
in predominantly forested watersheds, most jeopardized fishes and their habitats are
not afforded protection through federal or state land ownership (Neves et al. 1997;
Master et al. 1998). About 71% of forested land in the region is owned by thousands
of non-industrial private landowners, mostly in small parcels of one to several hun-
dred ha (Conner and Hartsell 2002). These owners, many of whom do not live on
their land, vary greatly in their knowledge and attitudes towards the environment and
their reasons for land ownership (Cordell et al. 1998; Tarrant et al. 2002), which
further complicates effective watershed-scale or even local restoration.
Nevertheless, forest restoration, especially restoration of riparian forests, can
provide multiple benefits to stream fishes in the southern United States. Indirect
benefits include reduced sediment and nutrient inputs, stream bank stabilization,
and temperature moderation, all factors that can affect fish production, physiology,
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reproduction, and assemblage composition. Direct inputs of leaves and wood into
streams provide the primary energy base and substrate for production of macroin-
vertebrates, the food base for fishes (Dolloff and Webster 2000; Benke and Wallace
2003; Dolloff and Warren 2003). Wood derived from forested riparian areas also
provides general cover for at least 131 southern fishes (22% of total native fauna)
(Table 10.1). Wood is used as spawning or nesting cover for at least 42 species
(7%) and egg attachment sites by at least 38 species (6%). Water temperature mod-
eration provided by riparian shading is critical for at least 9 species (2%), but ripar-
ian shading is also important as cover to many fishes (e.g., Helfman 1981). Wood
is documented as a primary feeding site for 11 fish species (2%). In addition at
least 74 species (12%) access and use seasonally flooded forest for at least a por-
tion of their life cycle. Many fishes derive multiple benefits from instream wood
(Table 10.1).

The taxonomic, geographic, and ecological diversity of the region’s fishes pro-
vides a template to highlight potential benefits of forest landscape restoration aimed
at maintaining fish biodiversity in a variety of biological, ecological, and physical
contexts. Clearly, the southern United States faces major challenges in conserving
not only native fishes but the entire richly diverse system of streams, rivers, and
wetlands in the region (Benz and Collins 1997; Master et al. 1998; Ricciardi and
Rasmussen 1999; Veery et al. 2000). I believe forest landscape restoration could be
an extremely positive tool in meeting these challenges.

Rehabilitation of warmwater streams is possible with current knowledge but not
without major shifts in stream corridor management strategies. Watershed-scale
forest restoration needs to emphasize establishing and maintaining viable forested
riparian corridors. This could complement instream habitat restoration, which needs
to focus on factors such as re-operation of dams to provide environmental flows and
restoration of more natural geomorphology (e.g., sinuosity) and hydrology (e.g.,
levee setbacks for overbank flows, Richter and Thomas 2007) in channelized or
dredged rivers. In agricultural and urban areas, emphasis on restoring forests or
minimally vegetated buffer zones on riparian corridors should become an increas-
ingly important element of region-wide restoration of fish habitat. Forested riparian
corridors also will likely be necessary to maintain water quality and quantity and
help mitigate extreme hydrologic events affecting life and property (e.g., high storm
flows and flooding, excessive erosion, dewatering, infrastructure damage) (Brown
et al. 2005b) in both urban and rural settings. However, implementing forest restora-
tion in these environments is a major challenge given their past and current uses and
management, regardless of the potential ecological services it could provide (Naiman
et al. 2005). Further, even when established, the long-term challenge will be manag-
ing riparian forests sustainably in a landscape composed of highly differing land uses
overlain by a highly fragmented matrix of landownership.
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