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Abstract: The statistical properties of potential estimators of forest area for the USDA Forest Service’s Forest
Inventory and Analysis (FIA) program are presented and discussed. The current FIA area estimator is compared
and contrasted with a weighted mean estimator and an estimator based on the Polya posterior, in the presence
of nonresponse. Estimator optimality is evaluated both theoretically and via simulation under bias and mean
squared error criteria. The results indicate that, under realistic conditions, the current FIA area estimator can
sometimes result in substantial bias and have a higher mean squared error than both of the alternative estimators.
This finding is of special interest because the same factor that contributes to this increased bias and variance
applies to all area-based FIA estimates. The weighted mean and Polya posterior estimators gave similar results
for estimating the total area of a domain. It is concluded that the main advantage of the latter approach is that
many other statistics are obtainable because the entire population distribution is estimated from the same
sampling effort. The cost of this advantage for the Polya posterior approach is that a single result requires many
more computer operations, a cost that has become virtually ignorable over the past decade. FOR. ScI. 58(6):

559-566.
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HE MOST BASIC and sometimes the most problematic
variable that national forest inventories such as the US
Forest Service’s Forest Inventory and Analysis (FIA)
program attempt to measure is the land area of a particular
condition or domain, such as forest area within a limited
geographical area. Note that it is common in multiresource
inventories to have multiple populations of interest because
different attributes require different realizations of the popula-
tion. Although the areal dimension of the population of interest
for FIA is the land area within the boundaries of the United
States, this article is concerned with estimation within smaller
subdivisions (or domains) of the overall area. In particular, we
explore the estimation of the area of a domain at a fixed point
in time. At present, the FIA program uses an internally devel-
oped, stratum-based estimator for all area estimation. This
estimator is based on Equations 4.1, 4.2, 4.3, and 4.5 of Scott
et al. (2005). Here we show that the estimator, as defined, is
design biased. We show how the bias is introduced into this
area estimator and then compare and contrast that estimator
with a weighted mean estimator in the presence of nonre-
sponse. We then evaluate the optimality of each estimator
with respect to a mean squared error (MSE) criterion.
An alternative presentation of Equation 4.1 in Scott et al.
(2005) is

do
a;
Pi'=—. (1
h

where P is the ratio of the area observed to be in domain
d on plot i to the average plot area within stratum 4 (note that

P! will often be greater than 1 because of plots that were
partially unobserved), a? is area (ac) of plot i observed to be
in domain d, and aj, is average observed plot area in stratum
h (within the population, see Equation 2). That is,
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1
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where n,, is the number of ground plots with phase 1
assignments to stratum /4 (for total area, this includes all
plots with any portion in the population; for subsequent
estimates, any entirely nonsampled plot is excluded) and af
is the observed area (ac) of plot i (in the population). The
reader should note that in the equations above and in the
following, a nonnumeric character in the superscript posi-
tion will be used to indicate context-specific class member-
ship rather than to indicate exponentiation. For instance, an
“0” in the superscript indicates membership in the observed
group, whereas a “d” in the superscript position indicates
membership in the domain d. For the reader’s convenience,
the most often repeated notational elements in this article
are collected in the Appendix.

By this notation, Equation 4.3 in Scott et al. (2005) was
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and the astute reader will notice that three equations could
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have been combined to obtain the proportion of stratum
plot area observed to be in domain d, and simply written as

nn

> af
i=1

Py = : 3)

The estimator for the total area of the domain can be
written as

H

A = D PiA,, 4)

h=1

where A, is the area of stratum 4 and H is the number of
strata.

In the presence of nonresponse, Equation 3 is a ratio
estimator (because the af values are estimates and therefore
cannot be assumed to be known). Ratio estimators have long
been known to be design biased, except under special con-
ditions, (e.g., Pathak 1964, Cochran 1963, Chapter 6, Rao
1966, 1977, Srivenkataramana 1980). In the case at hand,
these special conditions would be met if ¢/ = Pa? + ¢,
where P is the true proportion of stratum / area in domain
d and the g; are independent with an expectation of zero.
This condition would seem tenable when there cannot be
any nonresponse. Otherwise, when one is willing to assume
that this condition is true, this design-biased estimator
would be model unbiased (or conditionally unbiased). The
bias of A, will be a direct result of the bias in P{°. Exactly
how much bias will be present is application dependent.

As in most surveys, portions of the intended sample are
not observed for a variety of reasons. The most obvious
reasons are the following: first, denial of access to the
location by a landowner; second, the presence of a hazard in
the vicinity of the location; and third, insufficient allocation
of human resources. Some of these reasons are truly reflec-
tive of the population. For the first reason, for instance, we
can assume that there is some group of landowners that, if
given the choice, would always deny access to land. In
addition, for the second reason, certain hazards would al-
ways be avoided, and therefore land in the vicinity of those
hazards is not observable. This effective reduction in the
sampled population relative to the target population is ig-
nored in many public surveys. Here we assume that all
failure to observe is a result of a partitioning of the target
population by an interaction of (potentially random) factors
and the sample design. In areas where this assumption is
highly untenable, it would be preferable to sever the area
from the target population.

Assume that we have divided (uniquely and completely)
the entire land area into a number of strata. Further assume
that our sampling mechanism partitions each stratum into
areas of specific sampling intensity (substrata). In general,
the proportion of stratum % in domain d can be found by
multiplying the proportion of each partition in domain d by
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the proportion of the stratum covered by the partition and
summing the results over all partitions, i.e.,

In
d _
P, = zpjlhnd\ja
j=1

where P, is the proportion of stratum 4 that is partition j,
I, is the proportion of partition j in domain d, and J,, is the
number of partitions in stratum .

Likewise, the proportion of the domain over the entire
area can also be calculated using a weighted mean
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where P is the proportion of stratum / in domain d, and I1,,
is the proportion of the area in stratum A. Of the quantities
above, I, is known, whereas P;;, may or may not be known
and I1,; must be estimated from the sample:

H H Jn
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h=1
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where P is the sample estimate of the proportion of stratum
h in domain d, ﬁﬂh is the sample estimate of the proportion
of stratum h that is partition j, and f[d| ; is the sample
estimate of the proportion of partition j in domain d.

If both Pj‘h and lA[d‘ ; are unbiased and have zero covari-
ance or P can be unbiasedly estimated directly, then P, will
be unbiased.

As discussed above, the approach of Scott et al. (2005)
calculates the average sample intensity across the stratum,
regardless of the actual substrata inclusion probabilities
with a ratio estimator, Pﬁf", and the estimator for the area of
the domain A ,.

The expected value of A :
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The covariance term may not be safely ignorable because
both terms are affected by nonresponse. Regardless of how

the nonresponse arises, we define a/ = I,a; and a? = IYa?,



where a; and af are the areas of plot i and domain d on plot
i, which would be observed, respectively, whereas I, and I
are indicator variables equal to 1 if plot i and domain d on
plot i, respectively, are observable and 0 otherwise.

In the event of 100% response only, in the case at hand,
the realizations of all indicator variables are equal to 1, and
the expected value becomes the expected value of a pro-
portion and the estimator can be shown to be unbiased.
Otherwise set

I mj Jn mj

Age =2 X Ilal, and Ay = 2 X La,,

j=1i=1 j=1i=1

where m; is the number of plots in partition j, J, is the
number of partitions in stratum h, A% is the observed area
in domain d in stratum A, and Aj, is the observed area in
stratum 4. Then

Ado
E[A,] = EA,,E[ A9 ] ()
h=1

Intuitively, examination of Equation 5 suggests that if
nonresponse is random, the bracketed proportion should
deviate little from the desired proportion, and, therefore, the
bias in A 4 should be small. Furthermore, Equation 5 can be
expanded to

1
140,Ad0:|:| (6)

If the missing values occur completely at random within
strata, the terms 1/A7 and A{ in Equation 6 are independent,
and the covariance term is equal to 0, resulting in a bias that
will be equal to 0. Otherwise, the expected value can be
estimated via approximation by Taylor series expansion
(Mood et al., 1974, p. 181):

E[A,] = EAh[ [ ! ]E[A ] + cov
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For completeness, Mood et al. (1974, p. 181, Theorem 4)
also gives the corresponding variance estimator, which in
our case is the within-stratum variance estimator
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If the number of plots in the population was finite, we could set
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with the index k going from 1 to the total number of plots in

the stratum (V). The approximation to the expected value
in 7 would then result in
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Note that in Equation 9, we have an additional approxima-
tion over and above what is discussed in Mood et al. (1974).
The approximation concerns the expression N, in the defi-
nitions of >, and >,. Of course, obtaining the number of
population elements requires a finite population, whereas
the FIA sample of land area is actually drawn from an
infinite population. Because the sample is very sparse, there
is probably no practical consequence to this further approx-
imation, but to make it without acknowledgment would be
a mistake, as pointed out by Williams (2001). Although it is
beyond the scope of this article, many infinite populations
of forest attributes can be mapped over the land area (and
even through time) into a finite population (Roesch et al.
1993, Roesch 2008). In this case, we note that there are a
finite number of segments in the population and each seg-
ment has associated with it the domain attribute d = 1 or
d = 0, corresponding to the segment being in the domain or
not, respectively. The infinite population of possible points
over the land area is thus mapped into a finite population of
segments. Each segment is sampled with a probability pro-
portional to its size.

Alternatively, there is a finite (but possibly very large)
number N, of starting points for a randomly placed grid.
Each grid yields the observation

)
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with probability equal to

np
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The probability proportional to size estimator for the area of
stratum £ that is domain d is

P = (Ea/A ) (2@?’"/2%’)/(2%/&)
i=1 i=1 i=1
; (zasfo/zaf),
i=1 i=1
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the ratio of means estimator with variance is

VP = (1IN S (E a,-/Ah)

g=1 \i=1

R

Approximate Bias, Variance, and MSE of Ad

From Equation 9, we see that the bias, variance, and
MSE of A, are approximately

bias [A,] = E[A, — A,]
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respectively.

Missing at Random

The estimator A, therefore appears to be unbiased when
observations are truly missing at random within strata. On
the other hand, Patterson et al. (2011) present evidence
strongly indicating that observations are often not missing at
random within FIA strata but might be missing at random
within the identifiable partitions discussed here. In that case,
A, would be biased proportional to the covariance term in
Equation 6.
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Weighted Mean Estimator for the Area of
Domain d

We contrast A, with a weighted mean estimator

which differs from A, only in its recognition of the parti-
tions creating the substratification. In addition, we note that
the weighted mean estimator is unbiased under more gen-
eral conditions, i.e.,

E[Ad] =F E Ay -

Set
qulo = > Ia! and §) = > lLa;,
i=1 =1
then
- H Iy Sd(’
wia- 3 $nef]
=1 j=1 J
Therefore,
H I 1 1
EA,] = E EA;' E§ E[Sj‘?u]+cov @,S}’o .
h=1 j=1 / !
(10)

If the missing values occur completely at random within the
partitions (within substrata), the terms 1/S; and SJ‘-’" are
independent and the covariance term is equal to 0, resulting
in a bias that will equal 0. That is, A 4 1s unbiased under this
more robust condition because the missing at random as-
sumption needs only to be applied within the identifiable
partitions, and we can assume that the covariance term is 0
in Equation 10. An example of a potential partitioning that
is almost always identifiable in the United States is one
based on ownership category.

Variance of A,

H I Sa_io
var[Ad] = [Ad - E[Ad]]z = E E A_,‘ ? —Ay
h=1j=1 J

MSE of A,
MSE[A,] = var[A,] + [bias[A,]]* = var[A,].

Because bias is generally considered the worst of the evils



in multiresource monitoring efforts, we certainly should
prefer to use the estimator A, over the estimator A, when
MSE[A,] = MSE[Ad]. Of course, unknown events occur-
ring in a sampled population can impart bias to any estima-
tor. The reason A, is characterized as a biased estimator in
this work whereas A is not is that A, is defined to ignore
potentially known events leading to nonresponse within
strata.

Domain Estimator Based on the Polya
Posterior

All estimation efforts, either explicitly or implicitly, in-
volve a model of how the observed relates to the unob-
served. Suppose that we did observe all of what we intended
to observe in our sample and we did not have a supplemen-
tal sample to “make up for” the missing observations? The
frequentist literature is replete with discussions concerning
comparisons to what would have been observed at the
“missing data” locations. It is rare outside of the Bayesian
literature to find an acknowledgment that intended but un-
observed sample elements should play absolutely no role in
inference over and above the role of elements that were
never intended to be in the sample. That is, for inference
purposes, a finite population of size N is partitioned into s =
o “observed” elements and s’ = (m + n') “unobserved”
elements. The utility of this acknowledgment became obvi-
ous subsequent to Rubin’s (1987) work in multiple impu-
tation (Ghosh and Meeden 1997). Multiple imputation was
devised to allow the use of complete data methods for
incomplete data through the creation of a set of complete
pseudosamples by modeling the relationship of the unob-
served to observed sample elements. In contrast, the Polya
posterior provides a mechanism to create a set of pseudo-
populations using a model of the relationship of unobserved
population elements to observed population elements. Sur-
prisingly, little use of the Polya posterior method is found in
the forestry literature, with notable exceptions being Mag-
nussen and Kohl (2002), Magnussen et al. (2004), and
Magnussen et al. (2010).

The Polya posterior is based on the Polya urn model. In
it, we assume that we have an urn containing s; balls of color
b,i=1,...,kands = s, + -+ + 5. In keeping with the
notation above, let N = s + s’. Draw a ball at random from
the urn and observe its color. Replace it and place one more
ball of the same color into the urn. Do this s’ times. The
probability of getting r; balls of color b; in a specified order
is

[TITG; + r)/T(s)T{AT(s + s')T(s)}, where s’ = > r,.

i=1 i=1

The limiting distribution of the vector of proportions of each
color of ball is Dirichlet (sy, ..., s;), as s’ goes to infinity
(Ghosh and Meeden 1997, p. 42). If we repeat this R times,
we will have R simulated copies of the Polya posterior for
the entire population and when R is large, we can estimate
almost any characteristic of the population that we desire.

Example of Use of a Polya Urn: Mapped Plots
and Forest Fragmentation

Suppose we are only interested in forested conditions
and we used a Polya Urn model to generate copies of the
entire distribution of forest proportion in an area? That is,
suppose that there are a finite number of plots and that each
plot has an area of forest ranging from zero to the maximum
plot size, We throw all our s plots into an urn, and pull one
out, determining its value of a¢°. We place it and an iden-
tical plot back into the urn. We do this s’ times, resulting in
one copy of the simulated population. We repeat this R
times, and we will have R simulated copies of the Polya
posterior for the entire population. We can then estimate
most population parameters. For instance, the area of forest
would be estimated by

R H pa si si
A=R 2 EE(Ea?“r Ed?") ,

k=1 | h=1j=1 \i=1 i=1

where 4% is an ¢ from the original sample selected to be
repeated by the simulation.

Simulation

To compare these estimators, we wrote a simulation in R
and ran it in R version 2.8.1 (R Development Core Team
2010). For the simulation, we defined an area of 1,000,000
units, consisting of two equally sized strata, A and B.
Within each stratum, there are two equally sized partitions,
1 and 2. From this basic framework, we defined 12 different
populations. These populations were constructed from ev-
ery combination of two different proportions of forest in
each stratum. Stratum A could be 60% forested or 80%
forested (P1 = 0.6 or 0.8) and stratum B could be 20%
forested or 40% forested (P2 = 0.2 and 0.4). For each of
these four combinations, we defined three different alloca-
tions of the proportion of the stratum’s forestland to each of
the equally sized partitions shown in Table 1.

On each of these 12 populations, we applied three dif-
ferent vectors (V1, V2, and V3) for the probability of
missing in each partition. These vectors are given in Table
2. This resulted in 36 simulations of 1,000 iterations (com-
plete samples) each. The total area intended for each sample
was equivalent to the area sampled by FIA on a subplot
basis. That is, the intended sampling effort was 1:36,000.
For each iteration, conditions were sampled until enough
area was collected to form 167 “plots” (of ' acre each) over
the 1,000,000 units (assume acres). Condition sizes were
randomly drawn from an empirical distribution of condition
sizes observed on all FIA plots (on a subplot basis) since the
inception of the mapped plot approach. That distribution is

Table 1. Proportion of forest land in each partition by allo-
cation set.

Allocation set Partition 1 Partition 2
1 0.52 0.48
0.54 0.46
3 0.56 0.44
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Table 2. Vectors V1-V3 giving the probability of missing in
each partition of each stratum.

Vector
Stratum and
partition V1 V2 V3
Al 0.01 0.01 0.5
A2 0.01 0.30 0.0
Bl 0.01 0.01 0.1
B2 0.01 0.01 0.0

given in Table 3. For completeness, we also give the equiv-
alent empirical distribution for all plots observed on a
macroplot basis. A description of the distinction between
plots consisting of four subplots as opposed to plots con-
sisting of four of the larger macroplots can be found in
Roesch (2007). Each condition observation was assigned
“forest” or “nonforest” by comparison against a uniform
random iterate with “p” equal to the percent forest for each
partition. The analogous procedure was used to assign “ob-
served” or “not observed. ” Each estimator was computed
for each iteration. The empirical bias and mean squared
error was then calculated for each estimator. For Polya
posterior approach, A, was calculated as described above,
with the exception that condition sizes on the plot were used
as weights and the parameter R was set equal to 500 using
the function wtpolyap in the R library polyapost (Meeden
and Lazar 2000).

Discussion of Simulation Results

To place all of the comparisons on an even footing, Table
4 gives the empirical bias calculated over 1,000 samples as
a percentage of the true value for A, A, and A, We see in
Table 4 that, in all cases, the biases for A, and A, are very
low, never reaching an absolute value of 1% and seldom
exceeding 0.5% in absolute value. We note that the same is
true for A, in every allocation set when the vector of
missing values V1 is used. This verifies that, with respect to
bias, the assumption of missing at random within each
stratum is a safe one to make when it is actually true. That
is, the significant aspect in that observation for the vector
V1 is that the probability of missing is the same in each
partition. From that same table, we see that the effect of
ignoring the partitions is a dramatic increase in percent bias
for Ad when vectors V2 and V3 apply, a condition that
worsens as the differential, in the proportion of forest,
between partitions, gradually increases with allocation set.

Table 3. Distribution of condition sizes on FIA mapped plots
(empirical cumulative distribution function).

Condition proportion

of plot Subplot basis Macroplot basis
<0.25 0.048994569 0.114391608
0.25 0.122260536 0.131038382
>0.25 and <0.5 0.157512839 0.177900622
0.5 0.182438849 0.181732521
>0.5 and <0.75 0.216289726 0.227401219
0.75 0.27638506 0.239650732
>0.75 and <1.0 0.312315026 0.321816697
1.0 1.000000000 1.000000000
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The significant aspect of this latter observation is that there
is a large difference in the probability of missing values
between partitions within each stratum. Because we used
actual data to inform the simulation parameters, we know
that the simulated differences are not impossible. In fact,
even larger differences between identifiable partitions can
be observed in the FIA database.

Table 5 gives the MSE calculated over 1,000 samples for
each estimator in each of the 36 cases. Note that these
values are usually very close, indicating that in many of the
cases noted above, in which ignoring the partitions led to an
increase in bias, there was a sufficient lowering of variance
in A, resulting from drawing sample size strength from the
joined partitions to offset the increase in the contribution of
bias squared to the MSE. This is to be expected because we
are only reporting on subtle differences in the true propor-
tion of forest between partitions within strata. The exception
to this successful offset can be seen in the rows of the table
corresponding to vector 3 for allocation sets 2 and 3. We see
that if differences in both the proportion of forest and the
probability of observation between partitions are great
enough, the MSE of A, and A, will be significantly lower
than the MSE of Ad. Even when these differences are very
low, the MSEs of A, and A, are never much higher than the
MSE of A + We would expect the MSE of A, to rise relative
to the MSE of A ; when the partitions become small enough
to result in an inadequate sample within the partitions,
whereas there remains an adequate sample over the com-
bined partitions.

The simulation reported on here used a small subset of
potential parameter settings. We actually ran many other
simulations in which the parameter settings varied much
more widely. We chose these particular parameter settings
because they are either close to those that have been ob-
served in FIA data or could realistically be expected to be
observed (if that were possible). Given that any simulation
could inadvertently favor one estimator over another, we
explain our choices below.

The original simulations contained both widely varying
stratum sizes and partition sizes and more choices for per-
cent forest in each stratum and between partitions within
each stratum. For verification, we also ran the simulation for
the case in which the probability of missing and percent
forest was equal across partitions and obtained the expected
results with respect to a lowering of MSE when the parti-
tions are ignored. The R code for the simulations can be
obtained from the first author on request.

The differences that were observed in simulations based
on those other parameter settings, not reported here, were
for the most part predictable. Varying the stratum sizes in
favor of the more heavily forested stratum, while keeping
everything else constant, increases the effect of ignoring
partitions. Likewise, varying the stratum sizes in favor of
the less heavily forested stratum, while keeping everything
else constant, decreases the effect of ignoring partitions.
Varying the partition sizes in favor of the more heavily
observed partition, while keeping everything else constant,
decreases the effect of ignoring partitions. In addition, vary-
ing the partition sizes in favor of the less heavily observed
partition, while keeping everything else constant, increases



Table 4. Percent bias over 1,000 simulated samples.

Proportion forest

Stratum A: 0.6

Stratum A: 0.8

Mlismg Stratum B: 0.2 Stratum B: 0.4 Stratum B: 0.2 Stratum B: 0.4
values
vector  Estimator 1* 2 3 1 2 3 1 2 3 1 2 3
Vi 4d -048 —-036 —-0.16 -022 -032 -0.16 -023 -—0.24 0.14 —-0.06 -0.23 0.09
A, -0.52 —-042 -027 -025 -037 -025 -—-027 —0.32 0.01 -0.09 -029 -0.02
A, -045 -043 —-023 -021 -040 —-026 -0.22 -0.30 0.04 —-0.06 -0.30 -—0.02
V2 éd -0.16 —-1.03 -100 -0.12 -059 -123 -0.11 -—-115 -137 -0.08 -0.76 —1.50
A, 032 —0.08 0.46 0.26 0.17  —0.06 042 —-0.12 0.19 0.35 0.09 -0.20
A, 031 —0.08 0.43 0.26 0.18 —0.09 045 —0.17 0.18 0.39 0.05 -0.21
V3 4d 0.67 1.96 3.13 0.21 1.81 2.39 0.88 2.11 3.36 0.46 1.96 2.71
A, —-0.49 —0.20 0.00 -0.77 —-0.01 -022 -025 -—0.13 0.06 —0.53 0.02 —0.13
A, —-048 —0.17 0.01 —0.76 0.00 -021 -0.25 -0.13 0.07 —0.52 0.01 —0.13

@ Allocation sets 1-3.

Table 5. MSE (x10~°) over 1,000 simulated samples.

Proportion forest

Stratum A: 0.6

Stratum A: 0.8

Mlismg Stratum B: 0.2 Stratum B: 0.4 Stratum B: 0.2 Stratum B: 0.4
values
vector Estimator 1* 2 3 1 2 3 1 2 3 1 2 3
Vi éd 1.02 1.13 1.15 1.20 1.35 1.42 0.76 0.86 0.88 0.97 1.03 1.03
A, 1.02 1.13 1.15 1.20 1.35 1.41 0.76 0.87 0.87 0.97 1.03 1.02
A, 1.01 1.16 1.16 1.20 1.38 1.43 0.76 0.87 0.87 0.98 1.04 1.03
V2 éd 1.21 1.25 1.10 1.38 1.28 1.29 0.97 0.95 0.89 1.20 1.07 1.11
A, 1.22 1.26 1.13 1.38 1.30 1.28 1.00 0.97 0.91 1.22 1.10 1.09
A, 1.21 1.27 1.14 1.37 1.30 1.30 1.00 0.98 0.92 1.23 1.11 1.10
V3 éd 1.21 1.34 1.36 1.51 1.66 1.65 1.01 1.08 1.24 1.26 1.38 1.55
A, 1.36 1.35 1.35 1.68 1.67 1.62 1.05 0.94 0.89 1.30 1.20 1.20
A, 1.37 1.36 1.38 1.68 1.68 1.64 1.04 0.94 0.91 1.29 1.21 1.21

@ Allocation sets 1-3.

the effect of ignoring partitions. An analogous but more
subdued set of effects is observed by more widely varying
the difference of percent forest between strata. Although we
do have examples of greater differential in percent forest
between partitions within a stratum, we are not sure how
prevalent they are. However, the fact that we have found
these examples in conjunction with the study presented here
suggests that further investigation is warranted.

Conclusions

Tables 4 and 5, for the most part, reveal very similar
results for the weighted mean estimator (Ad) and the esti-
mator based on the Polya posterior (A,). This was to be
expected as it is in keeping with the theoretical development
of the latter estimator and underlines the point that if one
were merely interested in a population total or mean, there
would not be much justification in accepting the computa-
tional overhead corresponding to use of the Polya posterior.
The advantage of the approach lies in the ability to obtain a
probabilistic picture of the entire population distribution.
Virtually any distributional measure can be calculated once
one has obtained the posterior distribution. The interested
reader can explore this topic further in the Bayesian litera-
ture, starting with the texts by Ghosh and Meeden (1997),
Carlin and Louis (2000), Leonard and Hsu (1999), and

Bernardo and Smith (1994). The potential for providing
insight coupled with the ever-lowering cost of computer
operations suggests that the Polya posterior approach will,
and should, become more heavily used.
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Appendix
Notation used in this article is as follows:

P! ratio of the area observed to be in domain d on plot

i to the average plot area within stratum %

area (ac) of plot i observed to be in domain d

observed area (ac) of plot i (in the population)

aj, average observed plot area in stratum /

n, number of ground plots in stratum £

P9 proportion of stratum / plot area observed to be in
domain d

P¢  proportion of stratum / in domain d

P;,  proportion of stratum / that is partition j

I1,; proportion of partition j in domain d

I number of partitions in stratum h

f’Z sample estimate of the proportion of stratum 4 in

domain d

f’j‘ ,  sample estimate of the proportion of stratum £ that is

. partition j

I1,; sample estimate of the proportion of partition j in
domain d

I, indicator variable equal to 1 if plot i is observable

b5 indicator variable equal to 1 if domain d on plot i is
observable

m;  number of plots in partition j

A% observed area in domain d in stratum &
A7 observed area in stratum h



