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1. Introduction

ABSTRACT

Currently geospatial fire behavior analyses are performed with an array of fire behavior modeling systems
such as FARSITE, FlamMap, and the Large Fire Simulation System. These systems currently require standard
or customized surface fire behavior fuel models as inputs that are often assigned through remote sensing
information. The ability to handle hundreds or thousands of measured surface fuelbeds representing the
fine scale variation in fire behavior on the landscape is constrained in terms of creating compatible custom
fire behavior fuel models. In this study, we demonstrate an objective method for taking ecologically com-
plex fuelbeds from inventory observations and converting those into a set of custom fuel models that can be
mapped to the original landscape. We use an original set of 629 fuel inventory plots measured on an
80,000 ha contiguous landscape in the upper Atlantic Coastal Plain of the southeastern United States. From
models linking stand conditions to component fuel loads, we impute fuelbeds for over 6000 stands. These
imputed fuelbeds were then converted to fire behavior parameters under extreme fuel moisture and wind
conditions (97th percentile) using the fuel characteristic classification system (FCCS) to estimate surface
fire rate of spread, surface fire flame length, shrub layer reaction intensity (heat load), non-woody layer
reaction intensity, woody layer reaction intensity, and litter-lichen-moss layer reaction intensity. We per-
formed hierarchical cluster analysis of the stands based on the values of the fire behavior parameters. The
resulting 7 clusters were the basis for the development of 7 custom fire behavior fuel models from the clus-
ter centroids that were calibrated against the FCCS point data for wind and fuel moisture. The latter process
resulted in calibration against flame length as it was difficult to obtain a simultaneous calibration against
both rate of spread and flame length. The clusters based on FCCS fire behavior parameters represent reason-
ably identifiable stand conditions, being: (1) pine dominated stands with more litter and down woody deb-
ris components than other stands, (2) hardwood and pine stands with no shrubs, (3) hardwood dominated
stands with low shrub and high non-woody biomass and high down woody debris, (4) stands with high
grass and forb (i.e., non-woody) biomass as well as substantial shrub biomass, (5) stands with both high
shrub and litter biomass, (6) pine-mixed hardwood stands with moderate litter biomass and low shrub bio-
mass, and (7) baldcypress-tupelo stands. Models representing these stand clusters generated flame lengths
from 0.6 to 2.3 m using a 30 km h~" wind speed and fireline intensities of 100-1500 kW m~! that are typical
within the range of experience on this landscape. The fuel modelsranked 1 <2 <7 <5 <4 <3 <6interms of
both flame length and fireline intensity. The method allows for ecologically complex data to be utilized in
order to create a landscape representative of measured fuel conditions and to create models that interface
with geospatial fire models.
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ness of those treatments. Various geospatial models, such as FAR-
SITE, FlamMap, and the Large Fire Simulation System (e.g. Finney,

Fire management requires an understanding of the spatial
distribution of fuels and fire behavior parameters over large
landscapes to assess risk, plan treatments and monitor effective-
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2004), are available to simulate fire behavior over large landscapes
if standard or customized surface fire behavior fuel models
(FBFMs) are available and can be linked to canopy structure (Ar-
royo et al., 2008; Scott and Burgan, 2005; Fernandes et al., 2006;
Hollingsworth et al., 2012). However, ecologically variable and
complex surface fuels are a barrier to modeling fire behavior at
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the landscape scale and monitoring the effectiveness of treatments.
The problem of validating treatment effectiveness and the thresh-
old for retreatment will become more important in the future as
limited resources are available for risk reduction (Fernandes and
Botelho, 2003).

Even if the surface fuels themselves change little over time, it
can be challenging to account for the spatial variation in surface
fuels and to predict patterns. Progress has been made over the last
several decades in using statistical modeling to predict and explain
the distribution of surface fuels with varying degrees of success.
Several studies have successfully used hierarchical approaches
involving cluster analysis and regression trees to model fuels with
reasonable precision and limited bias over large areas (Keane et al.,
2001; Rollins et al., 2004; Reich et al., 2004; Poulos et al., 2007).
More recently Pierce et al. (2009) evaluated several methods
including gradient nearest neighbor, linear models, regression
trees and several geostatistical methods to map fuels in western
Washington, Oregon and California. The gradient nearest neighbor
approach worked well at very large scales, but not at small scales,
and other models faired poorer. The common element in these pre-
vious studies was the presence of strong geospatial gradients, such
as elevation, aspect, etc., within relatively natural systems. There-
fore, natural environmental processes likely dominated spatial
patterns.

Although it is possible to predict the spatial distribution of sur-
face fuels themselves, it is far more difficult to reliably establish
the spatial distribution of FBFMs because of the complex interac-
tions between fuel components that generate fire behavior (see
Cruz and Fernandes, 2008). The result has been that models are as-
signed to locations on the landscape from remote sensing imagery
associated with limited field data and verification (Andreu and
Hermansen-Baez, 2008; Arroyo et al., 2008; Rollins, 2009). These
models are believed adequate for coarse scale assessment. As Reich
et al. (2004) stated, “Comprehensive fuel models take considerable
sampling effort, and are largely impossible for developing spatial
models based on ground surveys.” Despite this daunting predic-
tion, efforts are being made to link field inventory data directly
to FBFMs (Fernandes et al., 2006).

Large complex inventory data sets are difficult to translate into
fuel models. Simple replacement of fuel loading values in standard
FBFMs is usually inappropriate. In order to use real sample data to
improve fire behavior modeling on the landscape, a method to re-
duce the ecologically complex fuel components to similar FBFMs is
required. The key to this dilemma is to first convert surface fuel
components to fire behavior parameters, such as with the fuel
characteristic classification system (FCCS) (Ottmar et al., 2007;
Sandberg et al., 2007), and then to apply statistical methods to
group and predict the spatial distribution. We demonstrate an
objective statistical approach in which complex fuel conditions
generated through ecological factors and management activities
can be simplified to generate a limited set of custom FBFMs to
characterize large landscapes. The latter approach allows for the
application of landscape fire behavior modeling tools and the use
of periodic survey, monitoring or inventory information to update
and improve modeling where vegetation conditions are dynamic.
This approach is applied to an 80,000 ha managed forest landscape
in the upper Atlantic Coastal Plain of South Carolina, USA with a
long history of man-made disturbances that often override natural
processes that once dominated the landscape.

1.1. Objective

The overall objective of our study was to develop a method to
convert a large number of ecologically complex surface fuelbeds
into a set of custom fuel models with fire behavior parameters that
can be mapped to the original landscape (Hollingsworth et al.,

2012). The goal in the study is to achieve a practical compromise
in order to create a reasonable number of fire behavior fuel models
that can be used with fire spatial models, but also models that rep-
resent the landscape. The practical compromise will result in the
loss of information as it collapses the spatial variability into groups
or populations with distinct fire behavior parameters. However,
this compromise facilitates the use of inventory or monitoring data
within the current demands of FlamMap and FARSITE. The under-
lying principles to this method are: (1) imputing fuel component
loads from plot measurements to ecologically similar units (Parre-
sol et al., 2012), (2) performing cluster analysis on the FCCS fire
parameters, and not the fuels themselves, (3) creating custom fire
behavior fuel models based on the centroid fuelbeds calibrated to
the FCCS point estimates for wind and fuel moisture, and (4) map-
ping the custom models back to the original landscape based upon
the clustering of the ecological units.

2. Materials and methods
2.1. Study area

The landscape under study was The United States Department
of Energy Savannah River Site (SRS), an 80,000 ha National Envi-
ronmental Research Park, near Aiken, South Carolina (Kilgo and
Blake, 2005). The SRS is located on the Upper Coastal Plain and
Sandhills physiographic provinces in South Carolina, USA. The
SRS today contains approximately 74,000 ha of forested landscape
divided into over 6000 stands. When the SRS was established in
1951, approximately 33,000 ha were in old-fields and the balance
consisted of cutover forest land with low stocking (Kilgo and Blake,
2005). The old fields and cutover forests were planted with loblolly
pine (Pinus taeda L.), longleaf pine (Pinus palustris Mill.) and slash
pine (Pinus elliottii Engelm. var. elliottii; planted outside of its nat-
ural range).

2.2. Fuel measurements and stand values

Fuel values were measured on 629 inventory plots systemati-
cally placed across the landscape. Surface fuels constitute the bio-
mass of: duff and litter; 1-h timelag, 10-h timelag, 100-h timelag,
and 1000-h timelag down woody debris; shrubs and small trees;
vines, forbs, grasses and grass-like plants. For details on the fuels
inventory see Parresol et al. (2012). From the inventory data, val-
ues for all fuel strata were imputed for each of the 6329 stands
on the landscape from the linkage variables forest type, age, site in-
dex, basal area and recent fire history. For details on the stochastic
based imputation process see Parresol et al. (2012).

2.3. Processing of fuel values to obtain surface fire behavior

The fuel characteristic classification system (Ottmar et al., 2007;
Sandberg et al., 2007) is a tool that uses inventoried fuelbed inputs
to predict crown and surface fire behavior (Andreu et al., 2012;
Hollingsworth et al.,, 2012). We processed the stand fuel values
through the FCCS under 97th-percentile fire weather conditions
and output the following fire behavior parameters: (1) surface fire
rate of spread in m min~! (ROS), (2) surface fire flame length in m
(FL), (3) shrub layer reaction intensity (heat load) in kj m~2 min!
(RI_Shrub), (4) non-woody layer reaction intensity in k] m~2 min~!
(RI_Nonwoody), (5) woody layer reaction intensity in k] m~2 min "
(RI_Woody), and (6) litter-lichen-moss layer reaction intensity in
k] m~2 min~' (RI_LLM).
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2.4. Cluster analysis

2.4.1. Data considerations

We examined the data for outliers. Outliers affect distance mea-
sures in clustering and should be removed (Everitt, 1980). It is nec-
essary to consider scaling or transforming the variables used in
cluster analysis because variables with large variances tend to have
a larger effect on the resulting clusters than variables with small
variances. Possibilities are standardizing the data, doing a linear
transformation (to transform the data into a within-cluster covari-
ance matrix) or rescaling the Rl variables. The idea behind rescaling
the RI variables is to bring them down to a dimensionality similar
to the remaining variables. Considering the units of measure for
ROS (m min~') and the RIs (kj m~2 min~!), taking the cubic root
of the RIs should reduced their dimensionality to that of ROS. Final-
ly, one should check for collinearity among the variables because
highly correlated variables tend to obscure clusters (Everitt, 1980).

2.4.2. Clustering techniques

The clustering was done with the hierarchical CLUSTER proce-
dure in SAS software (SAS, 2009) using two methods: (1) Ward’s
minimum-variance method, and (2) two-stage density linkage
with K=k nearest neighbors (nonparametric probability density
estimation). Density linkage applies no constraints to the shapes
of the clusters and, unlike most other hierarchical clustering meth-
ods, is capable of recovering clusters with elongated or irregular
shapes (SAS, 2009).

There are no completely satisfactory methods for determining
the number of population clusters for any type of cluster analysis
(Everitt, 1979; Bock, 1985; Hartigan, 1985). Two popular methods
are the pseudo F statistic, and the pseudo T? statistic. Normally one
looks for consensus among the statistics, that is, local peaks of the
pseudo F statistic combined with a small value of the pseudo T?
statistic and a larger pseudo T? for the next cluster fusion. For
two-stage density linkage the number of clusters is a function of
the smoothing parameter K. The number of clusters tends to de-
crease as the smoothing parameter increases, but the relationship
is not strictly monotonic. One useful descriptive approach to the
number-of-clusters problem is provided by Wong and Schaack
(1982). Density linkage is applied with varying values of K and
each value of K yields an estimate of the number of modal clusters.
If the estimated number of modal clusters is constant for a range of
K values, there is evidence of that many modes in the population. A
plot of the estimated number of clusters against K will show the
trend and be informative for choosing the number of clusters. As
a means of assessing the accuracy of a cluster analysis, that is,
the separation into clusters, we ran a discriminant analysis.

2.5. Fire behavior fuel models

If p points are embedded in an n-dimensional space, then the ¢
clusters established by the clustering algorithm can be summa-
rized by their respective centroids in that space. The centroid is
the average of all the p points in the cluster, that is, its coordinates
are the arithmetic mean for each dimension separately over all the
points in the cluster. The Euclidean distance or Euclidean metric is
the “ordinary” distance between two points. The Euclidean dis-
tance between points X = (X1,X2,...,X,) and y = (¥1,Y5,.--,¥n), I
Euclidean n-space, is defined as:

dox,y) = [X =yl = /(%1 =317 + (2 = Y22 + -+ + (X — Vo)

For each point (i.e., stand) in each cluster we computed the Euclid-
ean distance between the cluster centroid point x and the stand
point y.

Stands with the closest Euclidean distance to the centroid fuel
values are used to build the custom fire behavior fuel models that
are calibrated to critical FCCS parameters. The development is a
three step process. The first step is to create initial fuel models
from the Rothermel (1972) spread equation. The 12 parameters
are initialized from stands data close to cluster centroid values
and ancillary data on surface-area-to-volume ratios (SAV), mois-
ture of extinction, heat content, etc. The second step is to obtain
fire behavior calibration weather and fuel moisture information.
The Savannah River Remote Automated Weather Station (RAWS)
data from February 20, 1993 to April 20, 2009 were analyzed to de-
velop an array of fuel moisture and wind conditions for calibration.
We developed three scenarios of dead and live fuel moisture repre-
senting moderate, high, and extreme conditions (Table 1). Each of
these was combined with three mid-flame wind speeds, 1.6, 4.8,
and 9.7 km h™', to develop nine calibration points. The final step
is using the nine calibration data points to adjust the initial fuel
model parameters so that fuel-model predicted fire behavior
matches FCCS-predicted fire behavior.

3. Results
3.1. Cluster analysis

Through trial and error with many cluster runs, we determined
that data standardization and linear transformation were not as
effective as rescaling the RI variables for determining and delineat-
ing clusters. What follows are the results based on using the re-
scaled reaction intensity variables. First we graphically examined
variable values looking for outliers. Finding none, we computed
correlations on the six variables to look for collinearity problems.
A strong correlation is defined as r>0.8. We see in Table 2 that
FL is strongly correlated with ROS (r=0.893) and RI_Shrub”
(r=0.792). Based on having two substantive correlations on FL,
we excluded it from the cluster analysis.

Both clustering approaches resulted in 7 clusters. For Ward’s
method, the pseudo F statistic had a local peak at 4 clusters and
the pseudo T? statistic pointed to 4, 7, and 11 clusters as possibilities
(Fig. 1). The R? value for 7 clusters is 0.73. For the density method,
Fig. 1 displays the number of clusters versus values of Kand indicates
7 clusters are optimal. The R? for 7 clusters with the density method
is 0.65. We examined cluster membership from both methods and
looked at graphs of the clusters in canonical space. The clusters were
more readily interpretable (Table 3) and exhibited less overlap spa-
tially (i.e., the clusters were more distinct) (Fig. 2) with Ward’s
method. Also, the clustering using Ward’s method resulted in a high-
er R? value, so we chose to work with the clusters from Ward’s meth-
od to build the fire behavior fuel models. In Table 4 we give the
output from a discriminant analysis of the clusters using the FCCS
fire behavior parameters (excluding FL) as independent variables
in the linear discriminant function.

The pine-dominated cluster 1 with its high litter and down
woody debris biomass (relative to the other clusters) contains
2815 of the 6329 stands or 44% of the stands. The hardwood and
pine stands with no shrub layer make up cluster 2 and account
for 534 or 8.5% of the stands. The hardwood-dominated cluster 3
with its relatively high non-woody and woody biomass and low
shrub biomass contains 1578 or 25% of the stands. The pine and
hardwood stands with relatively high grass and forb biomass and
containing a substantial shrub layer and down woody debris make
up cluster 4 and account for 636 or 10% of the stands on the SRS.
Cluster 5 consists of a combination of pine and hardwood stands,
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Table 1

Dead and live fuel moisture scenarios (values in percent).
Fire danger 1 h timelag fuel 10-h timelag fuel 100-h timelag fuel Live herbaceous Live woody
Moderate 7 10 15 80 140
High 6 9 14 70 130
Extreme 5 7 12 60 110

Table 2

Pearson correlation matrix on the six FCCS variables. Entries are correlation coefficients, n=6329. All correlations are significant (P < 0.0001) except FL versus RI_Woody"*

(P=0.34).

ROS FL RI_Shrub* RI_Nonwoody" RI_Woody" RI_LLM*

ROS 1.0 0.8930 0.5319 —-0.2588 —-0.2834 0.1462
FL 0.8930 1.0 0.7918 —0.2369 0.0119 0.2961
RI_Shrub” 0.5319 0.7918 1.0 -0.1125 0.2648 0.1695
RI_Nonwoody" —-0.2588 —-0.2369 -0.1125 1.0 0.2871 -0.2471
RI_Woody"” —0.2834 0.0119 0.2648 0.2871 1.0 0.1837
RI_LLM"* 0.1462 0.2961 0.1695 -0.2471 0.1837 1.0

ROS is rate of spread in m min~"'. FL is flame length in m. The prefix RI means reaction intensity in k] m~2 min~"'. LLM is the litter-lichen-moss layer. The RI variables have

been rescaled by taking the cubic root.
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Fig. 1. Graphs for determining the number of population clusters. (a) For Ward’s
clustering method, the pseudo T? statistic indicates 4, 7, or 11 clusters are viable
choices. (b) For the density method the number of clusters versus values of K
indicates 7 clusters are optimal.

and when compared to the other clusters, has considerable shrub
and litter biomass, and a moderate amount of grass and forb bio-
mass. This cluster contains 597 or 9.5% of the stands. The pine-
mixed hardwood stands with relatively moderate litter biomass,
low shrub biomass and little other fuel make up cluster 6 which
has 131 or 2% of the stands. Finally, there is a 7th small cluster,
very distinct in Fig. 2, resulting from swamp conditions on the
SRS. This cluster 7 consists of baldcypress-tupelo (Taxodium
distichum-Nyssa aquatica) stands, which typically have a very high

Table 3

shrub biomass component, and accounts for only 38 or about 1% of
the stands. For averages and ranges of fuel loadings in these stands
see Parresol et al. (2012). In Table 4 we see that the overall
classification error rate is 9% or that 91% of the 6329 stands were
correctly classified by the linear discriminant function. The dis-
criminant analysis tells us that the clusters are indeed unique
groups that are easily distinguishable based on their fire behavior
characteristics. The error results from clusters overlapping slightly
along their surfaces. Visual confirmation is provided by Fig. 2.

3.2. Fire behavior fuel models

From the clusters, centroid fuel values were computed (Table 5).
Data from the stands with the closest Euclidean distance (Eq. (1)) to
the centroid values, along with the ancillary data, were used to
parameterize the Rothermel (1972) spread equation to create the
7 initial FBFMs. The calibration procedure required 63 FCCS runs
(9 calibration points x 7 models) where ROS, FL, and fireline inten-
sity (FLI) outputs were used to adjust the custom FBFM parameters.

We developed a custom spreadsheet application that imple-
ments Rothermel’s surface fire spread model. The spreadsheet
was designed to include calibration and adjustment factors for tun-
ing the initial fuel model parameter values in order to get the sim-
ulations to match the FCCS data. The backbone of this tool is a set
of three charts—one each for ROS, FL, and FLI—and a table of cali-
bration/adjustment factors. Examples of the charts are given in
Fig. 3 for cluster 1 or custom FBFM SRS-1. On the charts in Fig. 3
one can see the simulated behavior of the custom fuel model for
a range of midflame wind speeds and all three fuel moisture sce-
narios. Superimposed on these lines are the nine calibration data
points, with points for the same fuel moisture set connected by a
line. The goal of the calibration exercise is to adjust fuel model

Basic description of each cluster from Ward’s minimum-variance hierarchical clustering method.

Cluster Description Fire behavior fuel model
1 Pine dominated - more litter than other clusters and high DWD biomass relative to other clusters SRS-1
2 Combination of hardwood and pine stands - low to moderate reaction intensities, no shrub layer SRS-2
3 Hardwood dominated - relatively low shrub biomass and cluster with the most non-woody and DWD biomass SRS-3
4 Combination of pine and hardwood stands - relatively high non-woody biomass, substantial shrub and DWD biomass SRS-4
5 Combination of pine and hardwood stands - relatively high shrub and litter biomass, moderate non-woody and low DWD biomass SRS-5
6 Pine-mixed hardwood stands - relative to other clusters, moderate litter, low shrub, and little or no non-woody and DWD biomass SRS-6
7 Baldcypress-tupelo stands - compared to other clusters, very high shrub, low litter and very little non-woody and DWD biomass SRS-7

Non-woody means grasses and forbs; DWD means down woody debris.
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Fig. 2. Scatter plot of clusters in canonical space.

parameters to get the simulations to be as close as possible to the
FCCS calibration runs. Each custom model was adjusted in turn,
one at a time, manually. Goodness of fit was determined visually,
not by any sort of least-squares measure. During calibration it be-
came clear that no custom fuel model could be produced to match
both ROS and FL/FLI at the same time while still matching the
shape of the fire behavior response to wind speed. When ROS
was good across a range of wind speeds and fuel moistures
(Fig. 3a), FL and FLI were too high, compared to the FCCS outputs,
by a factor of about two (Fig. 3b and c). In Rothermel’s model, get-
ting less FLI for the same ROS requires a shorter burning duration.
Duration is a function solely of characteristic SAV ratio. Making the
fuel particles finer (higher SAV ratio) results in shorter duration
and consequently lower fireline intensity for the same ROS. Unfor-
tunately, the large SAV ratio required to get ROS and FLI in the
proper range drastically, and undesirably, changes the shape of
the wind speed response of the fuel model. We could do either
FLI or ROS well, or both very poorly. We chose the former option,
and abandoned the idea of creating a single fuel model to replicate

Table 5

Centroid values for the clusters.
Cluster ROS RI_Shrub RI_Nonwoody RI_Woody RI_LLM
1 6.6 2990.4 202.2 187.6 1861.3
2 4.4 3.1 193.8 271 1286.6
3 4.6 731.2 704.4 197.9 1194.2
4 6.3 3013.1 616.6 135.6 9334
5 14.0 4596.7 259.2 62.0 1547.7
6 6.3 736.0 5.3 0.5 1247.7
7 31.1 9869.5 1.3 0.6 511.0

ROS is rate of spread in mmin~'. The prefix RI means reaction intensity in
k] m~2 min~'. LLM is the litter-lichen-moss layer.

FCCS-simulated FLI and ROS at the same time. All calibrations were
initially made to make FLI (and consequently FL) match as closely
as possible (see Fig. 3e and f). When that was completed for all 7
fuel models, we computed the ratio of FCCS-simulated ROS to
fuel-model simulated ROS (for high fire danger, 9.7 km h~! mid-
flame wind speed) and used this as a separate adjustment factor
by which to get ROS calibrated. In Rothermel’s model this can be
simulated by multiplying all fuel loads and fuelbed depth by this
same adjustment factor. This blind second calibration to ROS
worked very well. All ROS calibrated fuel models were created in
this fashion. The result of this procedure is two sets of 7 fuel mod-
els—one for accurately replicating FCCS FL and FLI, the other for
accuracy in replicating FCCS ROS—and a set of adjustment factors
that can be used in FARSITE, NEXUS, and other programs for getting
both ROS and FL/FLI right in a single simulation.

We developed a spreadsheet application to facilitate compari-
son of the 7 custom Savannah River Site FBFMs. In Fig. 4 we see
how these fuel models simulate fire behavior over a range of wind
speeds (measured at a height of 6 m) using the high fire danger fuel
moisture conditions (Table 1). In Fig. 4a we see the variation in ROS
among the fuel models, with SRS-6 having the highest ROS and
SRS-1 and 2 having the lowest and nearly identical ROS. In
Fig. 4b we see the variation in flame length among the fuel models.
FBFM SRS-1 exhibits the lowest FL ranging from about 0.3 to 1 m,
very gradually increasing with wind speed. In contrast, SRS-6
exhibits fairly high FL increasing from 1 to 3.6 m across wind
speed. Fuel models SRS-3, 4, and 5 behave similarly in regard to
FL. Finally, in Fig. 4c we see the variation in FLI behavior with wind
speed. Fuel models SRS-4 and 5 are very close and SRS-3 runs a lit-
tle higher. Fuel model SRS-1 has the lowest FLI and SRS-6 has the
highest FLI that rises sharply with wind speed.

Table 4
Discriminant analysis result giving number of observations (top) and percent classified (bottom) into each cluster, and the classification error percent for each cluster.
From cluster To cluster
1 2 3 5 6 7 Total
1 2580 0 66 164 0 5 0 2815
91.65 0.00 2.34 5.83 0.00 0.18 0.00 100.00
2 0 509 9 0 0 16 0 534
0.00 95.32 1.69 0.00 0.00 3.00 0.00 100.00
3 22 61 1378 99 0 18 0 1578
1.39 3.87 87.33 6.27 0.00 1.14 0.00 100.00
4 69 0 2 540 25 0 0 636
10.85 0.00 0.31 84.91 3.93 0.00 0.00 100.00
5 91 0 0 3 486 3 14 597
15.24 0.00 0.00 0.50 81.41 0.50 2.35 100.00
6 0 0 0 0 5 126 0 131
0.00 0.00 0.00 0.00 3.82 96.18 0.00 100.00
7 1] 0 0 0 0 0 38 38
0.00 0.00 0.00 0.00 0.00 0.00 100.00 100.00
Error 8.35 4.68 12.67 15.09 18.59 3.82 0.00 9.03
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Fig. 3. Example calibration of fire behavior fuel model SRS-1 to FCCS fire behavior. The fuel model calibrated to FCCS rate of spread shows close correspondence to, (a) FCCS-
predicted rate of spread, but lack of correspondence to, (b) FCCS-predicted flame length, and (c) FCCS fireline intensity. The fuel model calibrated to fireline intensity shows
lack of correspondence to, (d) FCCS-predicted rate of spread, but close correspondence to, (e) FCCS-predicted flame length, and (f) FCCS-predicted fireline intensity.

4. Discussion and conclusions
4.1. Prediction

Cruz and Alexander (2010) and Cruz and Fernandes (2008) re-
port a potential under prediction of surface fire behavior by the
Rothermel (1972) wildland fire behavior model that relates to its
sensitivity to the compactness of horizontally oriented surface
fuels. The reformulation of the Rothermel model for FCCS

addresses the issue of the variable compactness of different surface
fuel layers by separating litter, which is typically much more com-
pact, from the other surface fuels in most of the calculations re-
lated to surface fire behavior. In part, this was done to
ameliorate the potential underprediction problem. The FCCS docu-
mentation (Prichard et al., 2011) points out that the main differ-
ence between the FCCS modeling approach and the Rothermel
model is the treatment of more complex fuelbeds with four surface
fuel strata. The litter, lichen and moss (LLM) stratum is generally
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Fig. 4. Comparison of custom fire behavior fuel models for: (a) rate of spread, (b)
flame length, and (c) fireline intensity over a range of wind speeds under high fire
danger fuel moisture conditions (see Table 1).

much more densely packed and constitutes a different combustion
environment than the other surface fuels (shrubs, non-woody
fuels, and woody fuels). For this reason, the LLM stratum is treated
separately from the other surface fuels. Therefore the FCCS model
resolves the fire behavior contribution of heterogeneous mixtures
of fuelbed categories within strata and mixtures of strata within
surface layers, which addresses the criticism of Cruz and Fernandes
(2008) and Cruz and Alexander (2010). Future field research should
be conducted to compare the fuel and fire behavior characteristics

of our fuel model clusters to measured fuel characteristics and ob-
served fire behavior. However, that type of field assessment was
outside the scope of our current study.

4.2. Fire spatial modeling

Geospatial fire modeling systems commonly used in fire plan-
ning and incident management, FARSITE and FlamMap, require
FBFMs for use in the Rothermel (1972) surface fire spread model.
Managing for fire hazard and treatment objectives often requires
detailed site specific data. Because collection of field data requires
significant time, methods for developing custom fire behavior fuel
models from vegetation inventory data will help managers reduce
costs while potentially improving modeling outputs. By clustering
the stands (or ecological unit) using their fire behavior parameters,
the resulting custom FBFMs can be mapped back to the landscape.
This is a trivial GIS exercise because each stand on the landscape
has one of the custom fuel models uniquely associated with it.

A major result of this study is that robust statistical methods
can be applied to utilize a large number of fuel observations in or-
der to characterize fire behavior, and that highly complex fuel con-
ditions can be objectively reduced to a minimum tractable set of
custom fire behavior models (Table 3 and Fig. 4) to facilitate land-
scape fire modeling. Results indicate that the custom models cre-
ated from real data fall within the range of the standard fuel
models typically used, but the predicted fire behavior of the area
using the custom fuel models under extreme conditions is less
than that of the standard models. These relationships are consis-
tent with the measured fuelbed structures. Some of the variation
can be related to differing fuel loads and stand structural
differences.

4.3. Concluding remarks

The FCCS is a user-friendly and efficient platform for creating
custom fuelbeds from inventory data that can then be used to char-
acterize surface fuel components on a local or landscape scale and
to generate fire behavior parameters that relate directly to the
measured fuel values from the inventory (Ottmar et al., 2007;
Andreu et al., 2012). Because cluster analysis had been successfully
used to model fuels with reasonable precision over large areas (e.g.,
Poulos et al., 2007), it was logical to assume that fire behavior
could also be handled in a similar manner. This study shows the
validity of that assumption, as we were able to reduce ecologically
variable and complex surface fuels to a tractable set of 7 FBFMs cal-
ibrated to FCCS point data for wind and fuel moisture conditions of
the area. The FCCS has a proven track record of providing reason-
able estimates for point fire behavior analysis (Ottmar and
Prichard, 2012), in evaluating changes in fuelbeds and fire
potentials (e.g., Youngblood et al., 2008; Zhang et al., 2010), and
in particulate matter assessment (Munchak et al.,, 2011). Cluster
analysis separated the data into distinct fire behavior fuel models
(Fig. 2) that were readily interpretable (Table 3).

The methodology of the FCCS platform coupled with cluster
analysis utilized for this project is applicable to a broader scale
than the southeast US. Wildland fire is global in extent as are the
issues and decisions faced by natural resource managers on fire
hazard mitigation. This research establishes that large numbers
of complex fuel structures can be arrayed within a manageable
framework and reduced to create dynamic fire behavior models.
Custom fire behavior landscapes can thus be created and fire
potential evaluated in FlamMap or other similar type systems
(Hollingsworth et al., 2012) to help determine risk and guide deci-
sions in mitigation work. Future investigations with more detailed
data, especially on fire behavior, are needed to modify and improve
the current suite of tools used for fuels and fire analysis.
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