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accomplished by manually collecting samples for labo-
ratory analysis, which requires at least 24 h. In other
words, no effort has been devoted to monitoring real-
time variations of DOC in a river due to the lack of
suitable and/or cost-effective wireless sensors. How-
ever, when considering human health, carbon footprints,
effects of urbanization, industry, and agriculture on
water supply, timely DOC information may be critical.
We have developed here a new paradigm of a dynamic
data-driven application system (DDDAS) for estimating
the real-time load of DOC into a river. This DDDAS
was validated with field measurements prior to its appli-
cations. Results show that the real-time load of DOC in
the river varied over a range from −13,143 to 29,248 kg/
h at the selected site. The negative loads occurred
because of the back flow in the estuarine reach of the
river. The cumulative load of DOC in the river for the
selected site at the end of the simulation (178 h) was
about 1.2 tons. Our results support the utility of the

1 Introduction

Naturally occurring dissolved organic carbon (DOC) is
an important constituent of stream water quality. It con-
tributes significantly to biological activities through the
absorption of light and providing a substrate for micro-
bial communities and to water chemistry through the
complexation of metals and production of carcinogenic
compounds with chlorine (Moore, 1989). DOC has been
linked to acidification processes and to heterotrophic
productivity and respiration in small streams, which
are important in influencing rates of C cycling and
CO2 emissions (Dalzell et al. 2005). In addition, by
forming organic complexes, DOC can influence nutrient
availability and control the solubility and toxicity of
contaminants. The occurrence of DOC in natural waters
has been known for at least a century (Krogh, 1933).
Because of the low pKa (3.5–5.5) of some DOC, its
importance in freshwater systems has been widely rec-
ognized (Eshleman and Hemond, 1985). DOC is known
to be a strong complexing agent for many toxic metals
such as iron, copper, aluminum, zinc, and mercury
(Eshleman and Hemond, 1985). DOC can also increase
the weathering rate of minerals (Eshleman and Hemond,
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1985, Drever, 1988) and increase the solubility and thus
the mobility and transport of many metals and organic
contaminants.

A variety of human activities and natural processes
have resulted in elevated concentrations of DOC in
streams. These include diverse inputs from throughfall,
stemflow, inappropriate animal waste applications and
disposal, forest clear cutting, agricultural practices, and
different land use patterns (Moore 1989; Ouyang 2003).
Furthermore, degradation, re-polymerization, and oxi-
dation of litter and soil organic matter are also major
sources of DOC (Dunnivant et al. 1992; Grant, 1997).

In the past, to determine surface water DOC and
other water quality parameters in a stream, it has been
necessary to collect samples and analyze them in a
laboratory. This method often requires in excess of 24
h. However, when human health issues arise or other
rapidly developing issues such as algal blooms are a
concern, timely water quality information is required.
Timely water quality information may also be less
expensive, making it useful for many other reasons,
including assessment of total maximum daily loads
and the effects of urbanization, industry, and agricul-
ture on a water supply. In response to the need for
timely and continuous water-quality information, the
US Geological Survey (USGS) has begun using an
innovative, continuous, real-time monitoring approach
for many US streams (http://waterdata.usgs.gov/nwis/
rt). These real-time water quality monitoring data nor-
mally include discharge, flow velocity, dissolved ox-
ygen, pH, temperature, conductance, and chlorophyll.
These data are valuable for monitoring of surface
water quality. However, there is currently little real-
time monitoring of DOC in surface waters due to the
lack of suitable and/or cost-effective wireless sensors
for this parameter. Knowledge of real-time DOC var-
iations is critical to estimating surface water-quality
status, carbon load, and CO2 emission. To achieve
this, a dynamic data-driven application system
(DDDAS) was developed. This DDDAS utilizes the
USGS real-time data for chlorophyll a (Chl a) and
river discharge; a structural thinking, experiential
learning laboratory with animation (STELLA; from
ISEE Sytems) model for prediction of real-time varia-
tions of DOC based on the relationships between Chl
a and DOC; a Visual Basic (VB) program for down-
loading the real-time data from the USGS website; and
the Windows Scheduled Tasks wizard for automatic
simulation (forecasting) control.

The concept of a DDDAS was probably first con-
ceived by the US National Science Foundation around
March 2000. Figure 1 shows a basic concept of a
DDDAS, which consists of the following three sym-
biotic components: real-time acquisition, real-time da-
ta computation, and real-time visualization. Similar
concepts can also be found in NSF (National Science
Foundation) (2000), Douglas et al. (2004), Darema
(2005), and Ouyang et al. (2007). Real-time computa-
tion includes application models, computational algo-
rithms, and all of the computing machines and their
connections. Real-time data acquisition involves
instantaneous data collection from remote sensing,
climatic monitoring, GIS map sources, and wireless
sensor measurements. Real-time visualization includes
supporting software and hardware for interactive visu-
alization, which help users to control the system
and in making decisions (NSF (National Science
Foundation), 2000).

When a DDDAS is initiated, the dynamic compu-
tation infrastructure will start to run the application
models and/or computational algorithms. Meanwhile,
the real-time data acquisition infrastructure will start to
collect the real-world data and insert them into the
dynamic computation infrastructure for simulations.
This DDDAS has the ability to dynamically employ
simulations to guide the real-time measurements, and
to determine when, where, and how it is best to gather
additional data. In reverse, the DDDAS can also
dynamically steer the simulations based on the real-
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Fig. 1 A schematic diagram showing the basic concept of a
dynamic data-driven application system
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time measurements. This automatic steering of simu-
lations and measurements with the ability to switch
between the two infrastructures can be viewed through
the dynamic visualization infrastructure. The dynamic
visualization infrastructure is achieved through the
software and hardware supports. Overall, the infra-
structures are controlled and managed by the users.
A specific example of a DDDAS applied to watershed
contamination monitoring and predictions is found in
NSF (National Science Foundation) (2000), Darema
(2005), and Ouyang et al. (2007).

Chl a often is used to estimate algal biomass, with
blooms being defined as Chl a concentration exceed-
ing 40 μg L−1 (Stanley et al. 2003). During the last
several decades, some studies have demonstrated a
strong correlation among Chl a, total phosphorus
(TP), and total nitrogen (TN) concentrations in north-
temperate lake waters from around the world (Aizaki
et al. 1981; Ahlgren 1980; Sakamoto 1966) and in
Florida lakes (Huber et al. 1982; Canfield 1983). Can-
field (1983) demonstrates that in Florida lakes, Chl a
is significantly correlated with both TP and TN. Phos-
phorus is typically the limiting nutrient when the TP
concentration is below 100 μg L−1, whereas the N is
the limiting nutrient when the TP is above 100 μg L−1.
However, very little effort has been devoted to inves-
tigating the correlation between Chl a and DOC.
Legendre and Michaud (1999) used Chl a to estimate
the particulate organic carbon (POC) available as food
to large zooplankton population in the euphotic zone
of oceans. These authors found that there is a good
correlation between POC and Chl a.

STELLA is a user-friendly, commercial software
package for building a dynamic modeling system. It
uses an iconographic interface to facilitate construc-
tion of dynamic system models. The key features of
STELLA consist of the following four tools: (1)
stocks, which are the state variables for accumulations.
They collect whatever flows into and out of them; (2)
flows, which are the exchange variables and control
the arrival or the exchanges of information between
the state variables; (3) converters, which are the aux-
iliary variables. These variables can be represented by
constant values or by values that depend on other
variables, curves or functions of various categories;
and (4) connectors, which are to connect among mod-
eling features, variables, and elements. STELLA
offers a practical way to dynamically visualize and
communicate how complex systems and ideas really

work (Isee Systems, 2006). STELLA has been widely
used in biological, ecological, and environmental scien-
ces (Hannon and Ruth 1994; Peterson and Richmond
1996; Costanza et al. 2002; Aassine and El Jai 2002;
Ouyang 2008; Ouyang et al. 2010a, b). A detailed
description of the STELLA package can be found in
Isee Systems (2006).

The goal of this study was to design a DDDAS for
indirectly estimating the real-time load of DOC in the
St. Johns River. The specific objectives were to: (1)
evaluate the relationships between Chl a and DOC
through regression using a long-term dataset from a
regular (i.e., non-real-time) surface water-quality mon-
itoring; (2) download the USGS real-time Chl a data
from a monitoring station to a personal computer
using a Windows-based VB program; (3) develop a
STELLA model for predicting the real-time load of
DOC in the river based on the real-time Chl a data and
the relationships obtained from objective 1 as well as
river discharge data; (4) create a batch file for linking
the VB program and the STELLA model; (5) set up a
Windows Scheduled Tasks wizard to guide the
DDDAS on when to download the data, perform the
STELLA simulation, display the simulations on the
computer screen, and end the real-time forecasting for
scheduling; (6) validate the DDDAS for estimating
real-time variations of DOC using independent data;
and (7) apply the DDDAS to forecast the real-time
loads of DOC in the surface water ecosystem.

It should be noted that the USGS real-time moni-
toring station was close (<400 m distant) to the water-
quality monitoring (or non-real-time) station used to
develop relationship between Chl a and DOC and to
validate this relationship. As stated above, most of the
USGS real-time monitoring stations do not measure
DOC in surface water ecosystems due to the lack of
suitable and/or cost-effective wireless sensors. There-
fore, it is impossible to directly estimate the real-time
load of DOC based on the USGS real-time monitoring
stations without independent water quality data.

2 Materials and Methods

A schematic diagram for the DDDAS in this study is
presented in Fig. 2. This diagram shows the following
five major components of the DDDAS: (1) a wireless
sensor from a USGS real-time monitoring station; (2)
a USGS real-time database website; (3) a STELLA
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model for simulating the real-time load of DOC in the
river; (4) a computer for downloading the real-time
data and performing simulations; and (5) a monitor for
displaying simulation results. Details of these compo-
nents are presented below.

2.1 Data Acquisition

The first step in developing the DDDAS is to select a
study site (i.e., watershed) and a USGS monitoring
station from the USGS website. This station should be
close to a regular (non-real-time) monitoring station that
has a long-term data set for DOC. In other words, both
of these monitoring stations should be strongly auto-
correlated. Once the real-time monitoring station is se-
lected, a Windows-based computer program in Micro-
soft VB.NET is constructed for downloading the data to
a personal computer. In this study, we selected USGS
real-time monitoring station #02244040 (lat. 29°35′46″,
long. 81°41′00″) located at the St. Johns River basin
near Satsuma, Putnam County, Florida, USA (http://

wa t e rda t a . u sg s . gov / f l / nw i s / uv / ? s i t e_no 0
02244040&PARAmeter_cd000400,00095,00010). In
close proximity to this real-time station, there is a regu-
lar water quality (i.e., non-real-time) monitoring station
(29°35′43″, 81°40′45″) located <400 m to the upstream.
This station is currently managed by the St. Johns River
Water Management District (SJRWMD), Florida. All
sampling activities for this station were conducted in
accordance with the SJRWMD and US Environmental
Protection Agency's standard operating procedures for
the collection of water quality samples and field data.
Both stations represent the same watershed drainage
area. However, the USGS station measured the real-
time data on river flow characteristics and some water
quality parameters such as Chl a but not DOC, whereas
the regular station collected most of the water quality
parameters including DOC and Chl a but were not the
real-time data and did not measure river discharge. The
DOC data collected during 1993 to 2003 from the regular
monitoring station were used to obtain the relationships
(Fig. 3) between Chl a (mg/m3) and DOC (mg/L)

USGS Website
(Real-Time Data)

STELLA Model
(DOC species )

Wireless
Sensor

(Computer)

Screen Display
(Simulation Outputs)

Downloading Simulating

Forecasting

Data
Transmitting

A

B

N

Fig. 2 a Location of the
USGS real-time and regular
monitoring stations near
Satsuma, Putnam County,
Florida, USA. The distance
between the two stations is
<400 m. b A schematic dia-
gram showing a DDDAS
framework for estimating
real-time variations of DOC
in a surface water ecosystem
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resulting in the following equation:

DOC ¼ �4:026Ln Chl að Þ þ 27:735

R2 ¼ 0:3885p ¼ 0:005
� �

ð1Þ

This equation was used to predict the real-time
variations of DOC contents based on the real-time
variations of Chl a from the USGS monitoring station.
The real-time load of DOC can then be calculated
using the following equations:

LoadDOC ¼ 0:10194 � Discharge � DOC ð2Þ
where discharge is the river discharge rate (ft3/s or
101940 L/h) at the real-time monitoring station and
the Load denotes the mass of DOC loading from the
station to down stream (kg/h).

2.2 STELLA Model

The first step in the modeling process was to develop a
basic structure to capture the processes described above
using STELLA. In Fig. 4, the rectangles are stocks that
graphically represent the masses of nutrients. The flow
symbols (represented by double lines with arrows and
valves) represent the rates of nutrient discharge into or
out of the stocks. The other variables are converters
(represented by empty circles) that denote the rules or
conditions controlling the stocks and flows through the
connectors (represented by single lines with arrows). As
shown in Fig. 2, the model first received the real-time
Chl a and discharge data from the USGS station; then
calculated DOC using Eq. (1); and finally estimated
DOC load using Eq. (2).

After the basic STELLA structure was developed,
the second step was to assign the initial values for

stocks, equations for flows, and input values for con-
verters. The STELLA modeling code showing the
equations and input parameter values is given in
Fig. 4. This code was automatically generated with
STELLA once its structure was established. It should
also be noted that the STELLA software has an “In-
terface” module that can display simulation outputs
instantaneously.

2.3 DDDAS Framework

A batch file “RealTime.bat” was created by linking the
following two executable files together: “USGS.exe”
and “STELLA-DOC.exe”. The “USGS.exe” was writ-
ten with Microsoft VB.NET for instantly downloading
the real-time data every 15 min from the USGS web-
site. This dataset was saved in a Microsoft Excel file.
The “STELLA-DOC.exe” was composed with the
STELLA package for modeling DOC load and dis-
playing the real-time predictions on a computer
screen. The “STELLA-DOC.exe” file reads the Excel
file to obtain the real-time inputs of Chl a and river
discharge. A Microsoft Windows Scheduled Tasks
wizard “RealTimeRun” in Windows XP was set up
to include the “RealTime.bat” file and directed this
batch file when to begin and end running of the
“USGS.exe” and “STELLA-DOC.exe ” files as well
as the running time intervals.

In other words, the DDDAS developed in this study
consisted of the following four files; (1) “USGS.exe”,
(2) “STELLA-DOC.exe”, (3) “RealTime.bat”, and (4)
“RealTimeRun”. To implement the DDDAS, users
just need to click on the “RealTimeRun”.

3 DDDAS Application

3.1 DDDAS Validation

Prior to using the DDDAS for estimating the real-time
load of DOC in a river, its applicability must be
validated. The validation is a process of comparing
the DDDAS predictions with the field observations
within a given time period. In this study, an attempt
was made to validate the DDDAS predictions using an
independent set of field observations collected from
2004 to 2009. Since no river discharge data were
collected from the regular monitoring station, only
the DOC data from the regular monitoring station

Fig. 3 Relationships of DOC and Chl a obtained from field
measured data
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were used for validation of the DOC concentration
prediction.

Comparison of the field measured and DDDAS
predicted DOC contents as a time series plot is
shown in Fig. 5. With a linear regression equation
of DOCpredicted00.9427*DOCmeasured, R200.9313,
mean error0−0.86 mg/L, mean square error0
17.26 mg/L, and mean absolute error03.39 mg/L,
we concluded that a good agreement between the
field measurements and the DDDAS predictions
was obtained.

3.2 DDDAS Application

To obtain a better understanding of the real-time
load of DOC in a river, a simulation scenario was
performed in this study. This scenario investigated
the real-time load of DOC in response to real-
time variations of river discharge over a 1-week
period. Input values for the real-time river dis-
charge and Chl a contents every 15 min were
downloaded from the USGS station (#02244040).
The prediction began on October 27, 2010 and

DOC LoadDOC Discharge

~

Chlorophyll

DOC Concentration

~

Discharge

Converted
Discharge

A

B

Fig. 4 STELLA modeling map (a) for evaluating DOC load and its code (b) showing the equations and graphic input data from the
USGS station
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ended on November 2, 2010. It should be pointed
out that USGS only provides the most current 60-
day real-time data for this station with an interval
of 15 min. A week of real-time data was selected
in this scenario for efficiency and simplicity al-
though it is easy to modify the DDDAS for a 60-
day simulation period.

Real-time variation and the accumulation of DOC
load in the river as predicted from the DDDAS are
shown in Fig. 6. It should be emphasized that although
this figure demonstrates the variations of DOC load
for the entire simulation period (i.e., 7 days), in reality,
the DDDAS was run every 15 min and the variations
of DOC load at that particular time were displayed
immediately on the computer screen. The users can
then estimate the surface DOC status in a timely
manner. The simulation ended at 2:09 pm on Monday,
November 3, 2010.

Figure 6 shows that the load of DOC varied from
positive to negative with a range from −13,143 to
29,248 kg/h DOC. The negative loads implied that
the DOC flowed back to upstream, caused by the
negative (back) flow of river (Fig. 6). The back flow
of the river at the monitoring stations selected in this
study was due to the tidal and ocean level influence as
the stations were located within an estuarine system.
The cumulative load of DOC increased as time
elapsed and fluctuated due to the impacts of river
discharge (Fig. 6). At the end of the simulation (178
h), the cumulative load of DOC for this station was
about 1.2 tons.

4 Summary

In this study, we have developed a DDDAS for fore-
casting the real-time load of DOC in the St Johns
River. The DDDAS was validated using independent
field data with very good agreement between the pre-
dictions and the measurements.

A forecasting scenario was chosen to demonstrate
the real-time load of DOC in an estuarine surface
water ecosystem. Results showed that river discharge
strongly affects the real-time load of DOC.

Our results revealed that the DDDAS developed in
this study was feasible for estimating the real-time
variation of DOC in the river. This approach may also
be useful in predicting the real-time loads of other
water quality parameters in surface water ecosystems.

Fig. 5 Comparison of the DDDAS predictions with the field
measurements for DOC
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