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Fire in the Wildland–Urban Interface
D. Evan Mercer and Wayne Zipperer

Abstract
In this chapter we provide an overview of the socio-economic and ecological effects 
and trends of wildfire in the WUI, methods for assessing wildfire risk in the WUI,  
approaches to managing the wildfire problem including fuels management, home con-
struction and design, and community action programs. This overview is combined 
with two case studies analyzing wildfire risk and the use of prescribed fire to reduce 
that risk in the Florida wildland–urban interface.

The federal government’s expenditures for fighting wildfire more than tripled (in infla-
tion-adjusted dollars) between 1996 and 2007, increasing from $984 million in 1996 to $3 
billion in 2007 (U.S. Government Accountability Office, 2009) (Fig. 16–1). Between 1999 and 
2010, an average of 1179 residences, 1156 outbuildings, and 42 businesses were destroyed 
by wildfire annually (National Institute of Standards and Technology, 2010), and each year 
an average 21 firefighters die fighting wildfires (Rasker, 2009). One cause of the increasing 
costs associated with wildfire has been the rapid growth of the wildland–urban interface 
and the concomitant increase in the number of citizens and property in wildfire-prone 
areas. For example, the USDA Office of the Inspector General (2006) estimated that protect-
ing lives and property in the wildland–urban interface accounts for 50 to 95% of the costs 
of fighting wildfires.

Although the wildland–urban interface covers only 9% of the land in the 48 contigu-
ous states, it contains 39% of all houses (Hammer et al., 2008). With housing starts three 
times greater in the wildland–urban interface than in non-wildland–urban interface areas, 
the USDA Office of Inspector General (2006) predicted that there will be a 40% increase in 
the number of homes in the wildland–urban interface by the year 2030. Exacerbating the 
future wildland–urban interface wildfire problem is climate change, which is also pro-
jected to result in greater incidence of future wildfire (Bachelot et al., 2007; Westerling 
and Swetnam, 2003; Westerling et al., 2006). Furthermore, the USDA Office of Inspector 
General (2006) reported that many wildland–urban interface residents underinvest in mit-
igation actions, assuming government emergency services will protect them from wildfire 
and insurance or federal disaster assistance will cover any property losses. As a result, 
wildfire management in the wildland–urban interface has become a major focus of federal, 
state, and local government agencies struggling to develop policies, programs, and regu-
lations to reduce the growing costs of wildfire (USDA Office of Inspector General, 2006).
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The focus of this chapter is an examina-
tion of the issues associated with wildfire in 
the wildland–urban interface. We examine 
the socioeconomic and ecological effects and 
trends of wildfire in the wildland–urban inter-
face, methods for assessing wildfire risk in the 
wildland–urban interface, and approaches to 
managing the wildfire problem, including 
fuels management, home construction and 
design, and community action programs. We 
also provide two case studies from Florida 
that serve as examples of using wildfire pro-
duction function analysis to assess wildfire 
risk and optimize fuels management in the 
wildland–urban interface.

Effects of Wildfire in the  
Wildland–Urban Interface
The rapid growth of the wildland–urban inter-
face over the last few decades is the primary 
factor in the increasing costs associated with 
destruction of homes, property, and human 
life by wildfire. For example, wildland–urban 
interface fires have accounted for 9 of the 25 
most costly fires in U.S. history (Ahrens, 2010). 
Table 16–1 shows losses for the 10 most destruc-
tive wildland fires, all of which occurred in the 
wildland–urban interface. Five of the 10 costliest 
wildfires in the United States occurred during 
the 2000s and four in the 1990s. Damages from 
the 10 largest wildland fires grew from $3.98 
billion in the 1990s to $6.2 billion in the 2000s 
(National Fire Protection Association, 2009).

The total area burned by wildland fires has 
also increased during the last two decades. 
Figure 16–2 shows the number of wildland acres 
burned and the 5-yr rolling average of wildland 
acres burned between 1985 and 2009. Given the 
stochastic nature of wildfire, the area burned 
varies widely from year to year. However, the 
5-yr rolling average shows that the area burned 
by wildfire has exhibited a consistent increasing 
trend over the past 25 yr (Ahrens, 2010). Federal 
agencies responded to an average 79,000 wild-
fires annually, while local fire departments 
responded to an average of 356,800 brush, grass, 
and forest fires per year that burned 4800 build-
ings annually between 2004 and 2008 (Ahrens, 
2010). Wildfires occur primarily in the West and 
Southeast. For example, 75% of all acres burned 
by wildfire in 2007 occurred in 14 contigu-
ous Western states, while Florida and Georgia 
accounted for 16% of wildfire acres burned in 
2007 (Hammer et al., 2008).

Over much of the past century, wildland 
fire suppression, the primary policy for public 
lands, has caused a number of profound eco-
logical changes. Donovan and Brown (2007) 
identified three direct changes: (i) a shift in 
composition from fire-tolerant to less fire-toler-
ant species, (ii) an increase in stem density, and 
(iii) a subsequent shift in wildlife composition 
and structure. In addition, with a buildup in 
fuel loads, wildland fires became more extreme 
and intense, often killing not only the existing 
stand composition, but also the seed bank, thus 
limiting regeneration. In fact, fire suppression 
has been so successful that wildland fires have 
become more difficult and expensive to control 
(Donovan and Brown, 2007). Urban development 
has only added to the problem by compounding 
the difficulty of managing fire in an urbanizing 
landscape, which increases the cost of using fire 
to reduce risk. With development, fire suppres-
sion is critical to minimizing structural ignitions. 
As with wildlands, the outcome is an increas-
ing buildup of fuels adjacent to developed areas 
(Yoder et al., 2004).

Fire suppression and buildup of fuel loads 
are especially problematic in rapidly growing 
forests, such as those that occur in the Southeast, 
where treatment may need to occur every 3 to 
5 yr. It should be noted that the Southeast also 
has the highest density of interface lands in the 
nation (Radeloff et al., 2005). Consequently, fire 
managers are faced with a daunting challenge 
of trying to manage fire-prone ecosystems that 
have experienced decades of suppression and 
reducing risk to humans in interface communi-
ties (Donovan and Brown, 2007).

The extent of ecological change and the oppor-
tunity for restoration depends on the condition 
of the fire-dependent ecosystem. Schmidt et al. 
(2002) identified three conditions classes based 
on departure from historical fire regimes (Table 
16–2). Of particular interest to the interface is 
condition class 3 in which fire regimes are signifi-
cantly altered from their historic ranges. Because 

Fig. 16–1. Forest Service and Interior Department Wildfire 
Expenditures 1996–2007 in millions of dollars (2007) (U.S. 
Government Accountability Office, 2009)
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of the high probability of a catastrophic fire in 
condition class 3, mechanical or hand treatments 
are necessary before prescribed fire can be used 
to restore the fire regime. Unfortunately the cost 
of mechanical and hand treatments is expensive, 
as compared to prescribed fire (Donovan and 
Brown, 2007). Subsequently, because of the fire 
risk to humans, interface communities in condi-
tion class 3 and those communities that cannot 
employ prescribed fire to control fuel loads 
must rely on mechanical and hand treatments 
to reduce fire hazards. Unfortunately, these 
treatments can usurp a significantly greater 
proportion of a fire management agency’s fire 
fighting budget, thus leaving less funds to man-
age wildlands. A potential result may be an 
increased risk for catastrophic fires in the future. 
Furthermore, interface communities have their 
own suite of plant species that can influence not 
only biodiversity (see Chapter 6, Reed et al., 2012, 
this volume) but also fire behavior (White and 
Zipperer, 2010).

Wildfire Risk Assessment  
in the Wildland–Urban Interface
Wildfire risk, the expected net value change 
resulting from future wildfire, is calculated by 
multiplying the probability of a fire at a specific 
intensity and location by the resulting net pres-
ent value of the change in financial, ecological, and 
social value (e.g., Bachmann and Allgöwer, 2001; 
Brillinger, 2003; Finney, 2005). In addition to the 
expected damages from wildfire, the expected 
effects of weather, ecological conditions, wild-
fire suppression, fuels management, and other 
mitigation activities should also be included in 
calculating the expected net value change for ana-
lyzing wildfire risk (Agar et al., 2006).

Federal, state, and local governments have 
made significant efforts to identify, quantify, and 
prioritize communities at risk from wildfire (e.g., 
Glickman and Babbitt, 2001; Governor’s Wildfire 
Response and Mitigation Review Committee, 
1998; Steelman and Kunkel, 2004; USDA Forest 
Service, 2000, 2004). At the community level, fire 

Table 16–1. The Top 10 costliest wildland fires in the United States (National Fire Protection Association, 2009).

Rank Event
Loss in year fire 
occurred

Loss in 2008 
dollars Lives lost

Homes 
damaged

1 Oakland Fire Storm 1991
Oakland, CA

$1.5 billion $2.3 billion 25 3354

2 The Southern California Firestorm 2007,
San Diego County, CA

$1.8 billion $1.9 billion 9 1500

3 “Cedar” Wildland Fire 2003
Julian, CA

$1.1 billion $1.2 billion 15 2232

4 “Cerro Grande” Wildland Fire 2000
Los Alamos, NM

$1.0 billion $1.2 billion 0 400

5 “Old” Wildland Fire 2003
San Bernardino, CA

$975 million $1.1 billion 6 993

6 Southern California Wildfires of November 2008
Sacramento, CA

$800 million $800 million 0 900

7 “Laguna Beach Fire” 1993
Orange County, CA

$528 million $777 million 0 441

8 Florida Wildland Fires 1998
Central and Northeast Florida

$395 million $519 million 0 340

9 Forest Fire 1918
Cloquet, MN

$35 million $496 million 453 52000

10 “Paint Fire” Goleta 1990
Santa Barbara, CA

$237 million $386 million n/a n/a

Fig. 16–2. Number of wildland 
acres burned in fires under jurisdic-
tion of federal agencies, 1985–2009 
(Ahrens, 2010).
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risk has been evaluated in terms of the spatial 
context of the community to provide detailed 
information on spatial patterns of fire breaks, 
treated and untreated areas, and structural 
density, proximity of wildland fuel types and 
loads, and accessibility for fire fighting equip-
ment. These data layers are joined to create fire 
hazard maps. For instance, Menakis et al. (2003) 
created a fire hazard map by layering three GIS 
data layers: Potential Fire Exposure Map, which 
mapped fire intensity of the vegetation; Extreme 
Fire Weather Potential, which identified poten-
tial extreme weather conditions, and Housing 
Density which mapped potential fire losses in 
the event of a wildland fire. Similarly, Theobald 
and Romme (2007) combined wildland fire haz-
ard data layers, housing density, and land-cover 
data sets to create vulnerability maps to identify 
high risk areas.

Although fire hazard maps provide essen-
tial information to identify areas of risk, we 
currently do not have models that project how 
fires spread through a wildland–urban inter-
face community. In fact, the interface is a unique 
intersection of natural and anthropogenic fuels 
that alter wildland fire dynamics. An examina-
tion of existing fire models illustrates this point. 
BehavePlus, FLAMMAP, and other fire models 
do not account for structures or their density in 
predicting fire spread and behavior (Mell et al., 
2010). Likewise, models of structural fires do not 
account for vegetation. To fully comprehend fire 
dynamics in the interface, models of wildland 
fires need to intersect with models of struc-
tural fires. A program at the National Institute 
of Standards and Technology is focusing on 

creating a physics-based model to capture the 
nuances of fire dynamics in the interface (Mell 
et al., 2010). The model links topography, local 
meteorology, three-dimensional distribution 
of natural and anthropogenic fuels, and their 
properties.

While significant progress has been made 
in assessing wildfire risks at fine spatial scales 
(e.g., the Florida Fire Risk Assessment System; 
McLellan and Brenner, 2003), few risk assess-
ments include the crucial social and economic 
factors influencing wildfire risk in the wildland–
urban interface. Solving the wildland–urban 
interface wildfire problem requires identifying 
linkages among ecological, social, and physi-
cal factors affecting wildfire and understanding 
how social policies and socioeconomic condi-
tions alter those linkages at different spatial 
and temporal scales (Zipperer, 2002). Wildfire 
economists use wildfire production functions 
(WPFs) to estimate these linkages empirically 
(Prestemon et al., 2008).

Wildfire production functions are quantita-
tive models that predict the spatial and temporal 
variability in wildfire extent and intensity, given 
different ecological, social, and economic con-
ditions and management inputs. Wildfire 
production function modeling allows empiri-
cal analysis of the relative impacts of human 
and nonhuman factors on wildfire. The results 
are used to forecast wildfire risk under vary-
ing conditions and evaluate tradeoffs between 
alternative wildfire intervention programs and 
policies. Thus, WPFs can provide critical infor-
mation for determining the most efficient and 
effective allocation of resources between wildfire 

Table 16–2. Fire regime current condition class descriptions (Schmidt et al., 2002).

Condition class Fire regime Example management option
Condition class 1 Fire regimes are within a historical range, and the risk of 

losing key ecosystem components is low. Vegetation 
attributes (species composition and structure) are intact 
and functioning within an historical range.

Where appropriate, these areas can be 
maintained within the historical fire 
regime by treatment such as fire use.

Condition class 2 Fire regimes have been moderately altered from their 
historical ranges. The risk of losing key ecosystem com-
ponents is moderate. Fire frequencies have departed from 
historical frequencies by one or more return intervals 
(either increasing or decreasing). This results in moderate 
changes to one or more of the following: fire size, inten-
sity, and severity, and their landscape patterns. Vegetation 
attributes have been moderately altered from their his-
torical range.

Where appropriate, these areas may need 
moderate levels of restoration treat-
ments, such as fire use and hand or 
mechanical treatments to be restored to 
historical fire regime.

Condition class 3 Fire regimes have been significantly altered from their 
historical range. The risk of losing key ecosystem com-
ponents is high. Fire frequencies have departed from 
historical frequencies by multiple return intervals. This 
results in dramatic changes to one or more of the follow-
ing: fire size, intensity, and severity, and their landscape 
patterns. Vegetation attributes have been significantly 
altered from their historical range.

Where appropriate, these areas may need 
high levels of restoration treatment, 
such as hand or mechanical treatments, 
before fire can be used to restore the 
historical fire regime.
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awareness programs, fuel treatments, prepared-
ness (pre-suppression), and suppression.

Most importantly, wildfire production analy-
sis provides an approach to empirically answer 
questions such as: Where are wildfires most likely 
to occur? How are the extent and intensity of 
wildfires distributed within the wildland–urban 
interface? Which wildland–urban interface char-
acteristics (ecological, economic, demographic, 
and social) are more likely to be associated with 
wildfire? Which communities in the wildland–
urban interface are most at risk from wildfire. 
Table 16–3 presents an overview of the four gen-
eral categories of wildfire production function 
models, including references to published stud-
ies. The brief descriptions of the models below 
are derived from Mercer and Prestemon (2005) 
and Prestemon et al. (2008).

Fire Event Models
Wildfire event models typically relate ignitions 
(counts or occurrences over time and/or space) 
as a function of the conditions surrounding the 
ignition point. Wildfire ignition processes can 
be modeled in several ways. Most common are 
the Poisson approaches (e.g., Poisson, negative 
binomial), which relate the observed counts of 
ignitions to a set of spatially arranged covari-
ates based on a Poisson process (Greene, 1997). 
Point process models shrink the size of wildfires 
to specific ignition points to estimate the rela-
tionship between ignition points and spatially 
arranged covariates. When used to identify sites 
with high wildfire risk and develop probability 
of ignition maps, fire event models can provide 
critical information for improving initial attack 
success rates by optimizing the prepositioning 
of suppression resources before the fire season.

Table 16–3. Typology of wildfire production function models (Mercer and Prestemon, 2005)

Model
Dependent 
variable(s) Common types Advantages Disadvantages Examples

Fire event 
models

Ignitions Statistical:
Probit/logit
Poisson
Negative bino-

mial
Point process
Nonparametric
Survival models

Can incorporate spatially and 
temporally dependent or 
autoregressive relationships.

Useful when suppression 
includes costs associated 
with ignitions.

Can identify time and location 
of high wildfire risk.

Low statistical 
power.

Underdeveloped 
statistical 
methods.

Cox (1972)
Donoghue and Main (1985)
Gill et al. (1987)
Garcia et al. (1995)
Pye et al. (2003)

Individual fire 
extent

Area burned 
or not 
burned by a 
single fire

FARSITE
BEHAVE
Statistical:
Distance function 

(multi-output)
Least squares 

(single output)

Useful for evaluating influence 
of suppression resources, 
fuels levels, and weather on 
burned area.

May be unsuitable 
for statistical 
analyses.

Often ignore 
spatial and 
temporal 
spillovers 
of resource 
decisions.

Davis and Cooper (1963)
Finney (1998)
Andrews and Bevins (1999)
Finney and Andrews (1999)

Aggregate fire 
extent

Area burned 
or not 
burned by 
multiple 
fires

Statistical:
Principal compo-

nents
Canonical correla-

tion
Least squares

Can be a collective risk model.
Useful for evaluating impact 

of large-scale management 
on wildfire.

Can be used to quantify pre-
suppression resource needs.

Not applicable 
for economic 
optimization 
models at 
fine spatial or 
temporal scales.

Barnett and Brenner (1992)
Armstrong (1999)
Westerling et al. (2002)
Prestemon et al. (2002)

Fire effects Intensity
Damage
Fuel con-

sumed
Severity

Statistical:
Ordered logit/

probit
Least squares

Most useful when combined 
with other model types.

Can statistically relate fire 
intensity to area burned.

Can create total damage 
or aggregate heat output 
functions.

Discrete nature of 
some measured 
effects leads to 
low powered 
statistical models.

Rideout and Omi (1990)

Combination
models

Wildfire 
area given 
successful 
ignition

Statistical:
Heckman
Tobit
Extreme value
Pareto distribu-

tions
Least squares

Able to combine event and 
extent models.

Useful for size-frequency 
distribution analysis.

Useful for forecasting wildfire 
extent for spatial-temporal 
units.

Provides more complete 
characterization of 
aggregate wildfire activity.

Large data 
requirements.

May be difficult 
to identify 
influences of 
covariates.

Spatiotemporal 
population 
of fires may 
be difficult to 
identify.

Strauss et al. (1989)
Malamud et al. (1998)
Li et al. (1999)
Keeley et al. (1999)
Holmes et al. (2004)
Cumming (2001)
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Individual Fire Extent Models
Individual fire extent models relate the area or 
change in area burned per unit time for a single 
wildfire to a wide range of explanatory variables. 
Alternatively, they can be used to analyze how 
the area burned within a time frame (e.g., a day) 
is related to variables expected to affect the rate 
of wildfire spread. Individual fire extent models 
provide information for evaluating the influ-
ences of suppression resources, weather, and 
fuels on the extent of areas burned by wildfire 
and for identifying the effectiveness of wildfire 
suppression resources and fuel conditions on 
wildfire extent. When used to statistically relate 
the daily change in area burned to available sup-
pression resources, weather, fuels, and other 
covariates, the results can be an important input 
for larger-scale suppression effectiveness models 
and for optimization modeling of wildfire sup-
pression at the individual fire level (Donovan 
and Rideout, 2003).

FARSIGHT (Finney, 1998; Finney and Andrews, 
1999) and BEHAVE (Andrews and Bevins, 1999) 
are examples of simulation models that provide 
insights and predictions of how factors such as 
fuel, wind, topography, and moisture affect indi-
vidual fire behavior. These models have enabled 
a deep understanding of fire behavior and have 
been useful in tactical applications, evaluating 
the effects of suppression inputs and nonpur-
chased inputs (weather, fuels, landscape features) 
on the spread of individual fires. FARSIGHT and 
BEHAVE are based on many of the same factors 
as wildfire risk models. However, the short run 
nature of these simulation models restricts their 
usefulness in identifying the broad spatial and 
long temporal scale dynamic effects of fire, fire 
suppression, vegetation management, weather 
patterns, and socioeconomic conditions on wild-
fire risk.

Aggregate Extent Models
These models generalize the individual fire 
models spatially and temporally and utilize 
many of the same variables. Typical covariates 
include quantities of suppression resources, 
weather and climate, ecological conditions, 
and fuel loads aggregated over space and time. 
Aggregate extent models can be used as collec-
tive risk models by expressing the dependent 
variable (e.g., area burned) as a proportion of 
the size of the spatial unit being considered. 
Collective wildfire risk and aggregate extent 
models are useful for evaluating how large-
scale management activities affect observed 
amounts of wildfire and measuring tradeoffs 

between different approaches to wildfire man-
agement. Models that include forecastable 
independent variables can be used to predict 
collective risk or aggregate extent, which can 
then be used to improve preparedness plan-
ning, firefighting resource allocations, and 
wildfire mitigation activities such as fuels man-
agement and home defense.

Effects Models
Wildfire production function effects models 
relate the effects of wildfire, such as intensity, 
damage, fuel consumed, severity, or ecological 
benefit to physical, ecologic, weather, manage-
ment actions, and socioeconomic condition. For 
example, effects models can relate average fire 
flame length (e.g., 0.5, 1.0, or 2.0 m) to hypoth-
esized explanatory variables. When time is used 
as a numeraire, the models are able to relate 
measured rates of wildfire effects to variables 
of interest. The spatial and temporal limitations 
of effects models result in many of the same 
problems inherent in individual fire event mod-
els. For this reason, effects models are probably 
most useful in combination with other kinds of 
WPFs. For example, one approach would be to 
aggregate wildfire effects across large spatial 
and temporal scales and relate them to similarly 
aggregated explanatory variables.

Combination Models
Combination models incorporate elements of at 
least two of the four categories of wildfire pro-
duction functions. For example, a wildfire spread 
model combines an event model with an individ-
ual fire extent model to predict the size of a wildfire, 
given a successful ignition or start. Alternatively, 
given data on the sizes and numbers of wildfires 
within a spatial-temporal aggregate, a probability 
density function (pdf) of fire sizes (size-frequency 
distributions and extreme value functions) can be 
created. Replicating this across spatial–temporal 
units, allows one to use auxiliary regressions and 
multivariate statistical techniques to compare the 
estimated parameters of the size-frequency dis-
tribution (slope and intercepts) or the extreme 
value function to variables of interest. Another 
example of a combination model is individual 
or collective wildfire damage extent models that 
incorporate elements of both wildfire character 
and extent. These models can be estimated for 
individual fires or for large spatial-temporal units, 
relating the amount of damage to a set of hypoth-
esized covariates. Combination models are used 
primarily for forecasting aggregate wildfire area 
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burned or expected damages over space and time. 
They can also be used to develop more complete 
characterizations of aggregate wildfire activity 
spatially and temporally. For example, size–fre-
quency distribution models can be used to predict 
how management alternatives affect a range of 
wildfire damage (from low to catastrophic).

Case Study I: Wildfire Risk  
Analysis in the Florida  
Wildland–Urban Interface
In this section, we use a Florida case study 
to provide examples of applying production 
function analysis to assess wildfire risk and 
how wildland–urban interface characteristics 
influence wildfire activity.  This case study was 
derived from Mercer and Prestemon (2005). 
The case study compares a fire event model of 
wildfire ignitions, an aggregate fire extent model, 
and a combined fire effect and aggregate extent 
model estimated with a cross-sectional, county 
level, time series panel data set from 1995 to 2001. 
The results are used to develop insights into how 
physical, managerial, and socioeconomic factors 
affect fire occurrence, area burned, and damages 
across broad spatial and temporal scales in the 
wildland–urban interface in Florida.

The fire event and aggregate extent models 
relate total wildfire ignitions and acreage burned 
per county per year to 12 yr of previous wildfire 
extent, weather variables (the sea surface tem-
perature anomalies El Niño and North Atlantic 
Oscillation), 3 yr of past prescribed burns, and 
wildland–urban interface related socioeconomic 
factors (population, poverty rates, unemploy-
ment, housing density, and number of police). 
Mathematically they are defined as:
Fire extent model: 
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The fire extent and aggregate fire effect mod-
els only differ in the definition of the dependent 
variable. For the fire extent model, the depen-
dent variable is the natural log of the acreage 
of wildfire in county i in year t (Wi,t) as a pro-
portion of the total forested area (acres) in the 
county (Fi). Similarly, the dependent variable in 
the fire effect model is the natural log of wildfire 
intensity-acres (Xit) relative to Fi. (The intensity-
acres variable was constructed by multiplying 
the number of acres burned at different fireline 
intensities by those intensity levels, summing 
these, and then dividing by the total forest area 
in county i in year t. Fireline intensity is defined 
as the rate of heat energy released per unit 
time per unit length of the fire front [Kennard, 
2004].) Wit-j is the areal extent (acres) of wild-
fire in county i in fire year t-j; the di values are 
dummies for the various counties; Bi,t-k is the 
total area (acres) of prescribed burning permits 
issued in county i in year t-k; Et is the Niño-3 sea 
surface temperature (Niño-3 SST) anomaly (see 
Brenner, 1991; Barnett and Brenner, 1992); E1998 
is a dummy variable to allow separate analysis 
of the effect of the Niño-3 SST anomaly for 1998 
(given its extreme “Super El Niño” characteris-
tics); Gt is the sea surface temperature anomaly 
in degrees centigrade for the North Atlantic 
Oscillation (NAO); Hi,t, Ui,t, Pi,t, and Oi,t are the 
housing density, unemployment rate, poverty 
rate, and number of police officers, respectively, 
in county i in year t; and w i,t is a randomly dis-
tributed error term.

Data
The Florida Division of Forestry (FDF) pro-
vided detailed records for all silvicultural burn 
permits issued by the State of Florida and all 
wildland fires on non-federal lands reported to 
the FDF between 1981 and 2001. Data on wild-
land fires on federal lands were obtained from 
the USDA Forest Service, U.S. Fish and Wildlife 
Service, and the U.S. Park Service. Climate data 
were obtained from the National Oceanic and 
Atmospheric Administration (2003a, b). Data for 
annual housing counts and population for the 
estimation period were provided by the Florida 
Bureau of Economic and Business Research 
(2002), poverty data by the U.S. Census Bureau 
(2002), police data by the Florida Department of 
Law Enforcement (2002, unpublished data, avail-
able upon request), and unemployment data by 
the U.S. Department of Labor Bureau of Labor 
Statistics (2002).
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Results
The parameter estimates for the three models 
are displayed in Table 16–4. All three models are 
broadly significant, with most parameter esti-
mates significant at the 1% level and most signs 

in the expected directions. The impacts of pre-
scribed burning and wildfire are similar in all 
models, at least for the first few years. The effect 
of past wildfire on current wildfire acreage and 
intensity is longer lasting than on ignitions. Past 

Table 16–4. Maximum likelihood estimates of three wildfire production/risk functions (event, area, and effect). Statistically 
significant results are in italic type (Mercer and Prestemon, 2005).

Independent variables
Event (ignitions) Area (ln area) Effect (ln intensity)

Coefficient P value Coefficient P value Coefficient P value
Wildfire lag 1 −0.386 0.00

Ln Wildfire lag 1 −0.282 0.00 −0.336 0.00

Wildfire lag 2 −0.500 0.01

Ln Wildfire lag 2 −0.266 0.00 −0.230 0.00

Wildfire lag 3  −0.990  0.25

Ln Wildfire Lag 3 −0.201 0.00 −0.227 0.01

Wildfire lag 4  −0.804 0.74

Ln Wildfire Lag 4 −0.217 0.00 −0.254 0.01

Wildfire lag 5  −2.448  −0.37

Ln Wildfire lag 5 −0.213 0.00 −0.153 0.08

Wildfire lag 6 −7.234 0.00

Ln Wildfire lag 6 −0.199 0.00 −0.308 0.00

Wildfire lag 7  −1.954  0.17

Ln Wildfire lag 7  0.165 0.77 0.176 0.04

Wildfire lag 8 2.589 0.12

Ln Wildfire lag 8 0.103 0.11 0.144 0.13

Wildfire lag 9 −2.054 0.17

Ln Wildfire lag 9 −0.132 0.04 −0.096 0.28

Wildfire lag 10 1.392 0.17

Ln Wildfire lag 10 −0.136 0.02 −0.205 0.01

Pres. Burn current −1.515 0.00

Ln Pres. Burn current −0.199 0.03 −0.389 0.00

Pres. Burn lag 1 −0.644 0.01

Ln Pres. Burn lag 1  −0.102  0.356 −0.217 0.17

Pres. Burn lag 2  −0.247  0.23

Ln Pres. Burn lag2 −0.509 0.00 −0.658 0.00

Housing Density (dwellings/
for. ac)

−1022.68 0.05 −7224.31 0.00 −6006.95 0.03

Unemployment rate (%) −7.103 0.00 −9.937 0.06 −29.032 0.00
Poverty rate (%) −2.122 0.00 3.654 0.07 4.640 0.10
Population 7.953 0.01 33.639 0.00 5.166  0.70
Police −1.795 0.01 −1.89 0.41 6.978 0.10

Niño-3 SST anomaly (°C) −0.334 0.00 −0.310 0.01 −0.658 0.00
NAO anomaly (°C) 0.294 0.00 0.883 0.00 1.149 0.01
1998 dummy 0.979 0.00 2.200 0.00 3.753 0.00

Log-likelihood −1359.79 −275.62 −387.72

Observations 297 289 289

Wald test statistic 1800.82 2611.98 1261.7

Wald significance 0.00 0.00 0.00
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wildfire reduces current rates of igni-
tions for only 5 yr compared to 10 yr for 
wildfire acreage and intensity.

Almost all of the wildland–urban 
interface variables (population, pov-
erty, unemployment, housing density, 
and police) were highly significant in 
all three models. Table 16–5 compares 
the direction of the impacts of the wild-
land–urban interface variables for each 
model. Higher rates of unemployment, 
housing density, and population are all 
associated with statistically significant 
higher risks of ignition and area burned 
by wildfire. Unemployment and housing den-
sity are also correlated with increased wildfire 
intensity. Poverty rates and number of police in 
the county produce opposite impacts on igni-
tions and wildfire area and intensity. Poverty 
rates are negatively related to ignitions but 
positively related to area burned and wildfire 
intensity. The higher the poverty rate, the lower 
the probability of ignition, but once ignited the 
resulting wildfires tend to be larger and more 
intense in poorer counties. Likewise, the num-
ber of police in a county are correlated with 
reduced ignitions, but the resulting wildfires in 
those counties, although smaller, tended to be 
are more intense and therefore likely to cause 
more damage.

The confounding results between the vari-
ous models may be explained in part by the 
findings of Butry et al. (2002). They used GIS to 
characterize and compare fire-affected zones in 
Florida by population demographics, road den-
sity, forest stand attributes, forest fragmentation, 
and sources and frequency of wildfire ignition. 
Butry’s group found that more prescribed burn-
ing and lower amounts of wildfire are associated 
with counties with younger, less educated, and 
lower income populations. These areas occur 
predominately in rural areas with predominately 
slash pine forest stands managed for timber pro-
duction. Counties with less prescribed burning 
and more wildfire, however, tended to be dom-
inated by privately owned, highly fragmented 
bald cypress–water tupelo forests located on 
more valuable properties in counties dominated 
by older, wealthier populations and higher 
housing prices—the wildland–urban interface. 
Indeed, 75% of all wildfires in Florida occurred 
in wildland–urban interface areas in which no 
prescribed burning permits had been issued in 
recent decades.

All three of the WPF models predict that 
counties with high unemployment and lower 

economic activity experience fewer wildfire 
ignitions and lower amounts of area burned at 
lower intensities by wildfire. These tend to be 
in the rural areas of the Panhandle and North 
Central Florida dominated by forests managed 
for timber production with high rates of pre-
scribed burning. In contrast, wildland–urban 
interface counties with lower unemployment 
and higher economic activity, tend to have less 
prescribed burning and more wildfire. These 
wildland–urban interface counties also tend 
to have higher populations which are corre-
lated with more ignitions, wildfire acreage, 
and more intense wildfire. Densely populated 
urban areas (as opposed to the less densely 
populated wildland–urban interface areas) 
tend to have less risk of wildfire as evidenced 
by counties with higher housing density hav-
ing fewer ignitions and fewer wildfires with 
lower intensities.

In summary, the more poverty in a county, 
the lower the rate of wildfire ignitions but the 
larger the subsequent area of acreage burned 
once ignited. Fewer fire fighting resources avail-
able for initial attack in poorer counties is the 
likely cause of the increased area burned in 
poorer counties. The result that counties with 
more police experience fewer wildfires has two 
potential explanations. First, counties with large 
cities and urban populations tend to have more 
police and also less wildfire. Second, police in 
the wildland–urban interface play an important 
role in reducing arson related wildfire ignitions 
(Donoghue and Main, 1985), the most common 
cause of wildfire ignition in Florida (Florida 
Protection Bureau, 2004). However, since the 
wildland–urban interface areas of Florida tend 
to have less prescribed burning, once an ignition 
occurs, the resulting wildfires tend to be more 
intense due to higher fuel loads.

Table 16–5. Direction of impact of wildland– urban interface variables 
on wildfire ignitions, acreage, and intensity (from Mercer and 
Prestemon, 2005).

Wildfire  
ignitions

Wildfire  
area

Wildfire 
intensity–area

Population + + +
(insignificant)

Poverty – + +
Unemployment – – –
Housing density – – –
Police – –

(insignificant)
+
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Managing Wildfire in the 
Wildland–Urban Interface
To effectively reduce fire hazards, homeowners, 
planners, and firefighters should conduct risk 
assessments across multiple scales ranging from 
a single residential lot to an entire landscape. At 
the residential lot level, extensive work has been 
done, and homeowners have a variety of tools 
to assess risk. The most frequently visited inter-
net sites include Firesafe (www.firesafecouncil.
org), Firefree (www.firefree.org), Firewise (www.
firewise.org), and Firesmart (www.partnersin-
protection.ab.ca) (International Code Council, 
2008). In their report, International Code Council 
(2008) identified several key messages to home-
owners. First, wildland fires are natural and have 
ecosystem functions. The second message is edu-
cational. Individuals must recognize the potential 
dangers associated with living in fire-prone areas. 
In addition, homeowners need to learn differ-
ent mitigation techniques to reduce risks. Often, 
mitigation techniques are the focus of internet 
sites with respect to reducing fire risk to home-
owners and recognizing the potential dangers. 
Third, there needs to be some type of incentive 
to motivate people. For instance, Bend, OR has a 
free program for wildland–urban interface home-
owners to dispose of their flammable yard waste 
(www.firefree.org). Often, these actions must be 
done collectively by a homeowner and his/her 
neighbors, hence, the importance of a community 
approach to reducing fire risk.

The International Code Council (2008) report 
and Firewise (www.firewise.org) also recognize 
that the community is critical to reducing fire 
risk to homeowners. In fact, the community links 
neighbors into a comprehensive plan with the 
acknowledgment that a strong community risk 
plan is only as good as the weakest participant. In 
collaboration with communities, local and state 
agencies also play a critical role through future 
land-use planning, development of building 
codes and standards, as well as environmental 
standards, and the framework for disaster pre-
paredness (International Code Council, 2008). 
Firewise Communities (www.firewise.org) can 
provide the most updated information on risk 
mitigation, coordinate activities so that home-
owners can work as a communal unit toward a 
common goal, create incentives, and maintain 
continuity from year to year.

A number of mitigation strategies and proto-
cols have been developed for different regions 
of the United States, and it is not the purpose 
of this chapter to review all of them or to report 
their content. Instead, we report some of the 

commonalities across strategies. There are two 
zones to assess for a residential lot with respect 
to fire hazard: context and content. Context refers 
to the location of the residential lot with respect 
to the natural vegetation and within the subdivi-
sion. Context basically defines the wildland fuel 
component and includes the disturbance regime, 
weather patterns, topography, and site history 
(Long and Randall, 2004). Similarly, it begins 
to define the type of wildland fire (e.g., surface 
or crown fire), the seasonality, and whether it 
is likely to burn through a community. Context 
also includes housing density. A burning home 
generates significantly more heat than burning 
vegetation and can emit large pieces of burn-
ing material that may ignite neighboring homes 
(Mell et al., 2010). Higher housing densities have 
a greater potential for structure to structure igni-
tions, but at this time we do not know what the 
threshold may be for an increased probability of 
a structure ignition from embers generated by a 
structural fire.

Content refers to the residential lot itself and 
is known as the home ignition zone. The home 
ignition zone accounts for flammable items on 
the lot and around the house (www.firewise.org). 
It includes such items as the trees, shrubs, orna-
mental beds, grass, out buildings, decks, fences, 
and fire woods—items that can burn and/or carry 
a fire. The home ignition zone also includes the 
structure itself, particularly construction materi-
als such as wood shingles and siding, open soffits, 
vinyl soffits, and attached wood decks and fences 
(Long and Randall, 2004). Construction material 
plays a particularly important role with respect 
to types of ignition.

There are three ways a home can ignite: fire-
brands or embers, direct flame contact, and 
radiant heat. Firebrands are floating embers gen-
erated by burning vegetation or structures that 
can land on flammable items and ignite them. 
Manzello et al. (2009) observed that just a sin-
gle 50-mm ember can ignite a dry cedar shingle 
and determined that airflow and the trapping 
of firebrands in small crevices played a critical 
role in ignition. Based on ignition tests, the criti-
cal fuel-bed angle for ignition is between 90 and 
135° (Manzello et al., 2009). Similarly, radiant 
heat can ignite, melt, or damage materials (e.g., 
vinyl soffits, siding, and windows), which may 
expose other flammable materials to possible 
ignition (Long and Randall, 2004). For instance, a 
burning shrub, outside a vinyl window with sin-
gle-pane glass, may cause the window to break 
or melt, thereby enabling embers to enter the 
house increasing the probability of an ignition.
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To minimize likelihood of home ignition, a 
homeowner must eliminate the potential for igni-
tion and interrupt the path of a wildland fire as 
it approaches his/her home. A homeowner does 
this by creating a defensible space (Table 16–6). 
Research by Cohen (2000) suggests a minimum 
distance of 9.1 m (30 ft) from natural vegetation 
on level surfaces and possibly greater than 30.5 
m (100 ft) for house slopes. Aesthetically, it is not 
necessary to remove all vegetation from residen-
tial lots. Ornamental beds should be separated 
by areas that will not burn (e.g., managed grass); 
plants should be pruned regularly and dead 
material removed to reduce fire ladders; plants 
themselves should be isolated and not overlap-
ping, and beds and plants should be at least 1.5 
m (5 ft) from any structure or flammable mate-
rial (e.g., firewood) (Long and Randall, 2004). 
Selection of plant material for an ornamental 
bed should be based on a plant’s flammability 
characteristic (White and Zipperer, 2010). For 
instance, plants with low flammability could be 
placed in beds 1.5 m from the house, whereas 
plants with high-flammability characteristics 
would be placed in beds at greater distances 
from the house (e.g., 9.1 m). In other words, a 
homeowner can create an aesthetically pleasing 
landscape yard but must be aware that it takes 
only one weak point for ignition to occur during 
a wildland fire (Long and Randall, 2004).

The creation of a defensible space for a home-
owner and a community is primarily behavioral, 
based on “rules of thumb,” with the funda-
mental belief that if homeowners change their 
behavior toward reducing fire hazards, wildland 
fire risks will be reduced. Recently, Maranghides 
and Mell (2009) conducted a post-fire assessment 
to evaluate structural ignitions of a wildland–
urban community during the Witch and Guejito 
fires in California. They reported that more than 
50% of the structures were ignited within 3 h 
after the main fire front hit the community; 67% 
of the homes were ignited directly or indirectly 
by embers; 40% of the structures destroyed were 
on the perimeter, as compared to 25% in the inte-
rior of the community; and defensive actions 
were effective in reducing losses from more than 
37% to 30% (Maranghides and Mell, 2009). Even 
with detailed analyses, Maranghides and Mell 
(2009) were unable to determine whether embers 
from the wildland fire or structural fires ignited 
homes. Further, they were unable to determine 
the reach of the wildland fire into the community 
itself; however, limited data did indicate that the 
wildland fire ignited structures 0.2 km from the 
perimeter. Their analyses point out the impor-
tance of conducting post-fire studies, laboratory 

and field experiments on ember ignition, and the 
need for models to capture not only fire behavior 
but also local differences due to terrain, weather, 
vegetation types, and housing density.

Federal and state agencies have implemented 
strategies to reduce fire hazards in wildlands 
through different management techniques—
prescribed fire, mechanical thinning, which 
includes mastication, chipping, mulching and 
biomass removal, and hand thinning to increase 
crown heights (International Code Council, 
2008). These techniques are used to decrease 
the spread rate, intensity, and flame length of 
the fire, thus making the fire more controllable 
and less likely to spread into developments and 
communities (Mell et al., 2010). The efficacy of 
these treatments in altering wildland fire behav-
ior for a range of environmental conditions still 
needs to be established (Carey and Schumann, 
2003). In addition, the use of prescribed fires in 
wildland–urban communities is becoming lim-
ited as housing densities increase. The seasonal 
window of conducting prescribed fires is lim-
ited, and the implementation costs are becoming 
prohibitive. Consequently, the amount of area 
actually treated at one time may be less than 
management objectives (Yoder et al., 2004).

Case Study 2: How Much 
Prescribed Fire is Optimal?
Next, we present a case study for applying eco-
nomic models to analyze the tradeoffs involved 
in using fuels management to reduce wild-
fire risk in the wildland–urban interface. The 
case study is derived from Mercer et al. (2007) 
and develops a dynamic stochastic program-
ming and Monte Carlo simulation to evaluate 

Table 16–6. Ten tips often used to encourage homeowners 
to reduce fire risk.†.

1 Define your defensible space.
2 Reduce flammable brush around your home and under 

nearby trees.
3 Prune or remove trees.
4 Keep grass and weeds cut low.
5 Clear wood piles and building materials away from your 

home.
6 Keep your yard and roof clean.
7 Keep address signs visible.
8 Choose fire-resistant building materials and lawn furniture.
9 Recycle yard debris—avoid burning.
10 Be prepared to respond to wildfire.

† http://www.firefree.org/images/uploads/dcp_firefree-
brochure_web.pdf
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the tradeoffs between fuels management (pre-
scribed fire) and resulting economic damages 
from wildfires. This approach is directed at stra-
tegic decision-making for wildfire management: 
how to allocate fuels management resources to 
maximize societal welfare in the long run.

In general, determining the publicly optimal 
amount of prescribed burning requires solv-
ing a stochastic dynamic optimization problem. 
Therefore, to find the optimal levels of prescribed 
fire (or other vegetation management) inputs for 
wildfire risk reduction, the sum of expected cur-
rent and future net present value of welfare is 
maximized as follows:
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where A is the maximization criterion (a welfare 
measure), V is the net value change per unit area 
of wildfire, Wt is area (acres) burned by wildfire4 
in year t. (Wt could, alternatively, be expressed 
as a quantity measure of resources “saved” by 
applying resource inputs. In that case, V would 
be a positive number, reflecting positive values. 
As currently expressed in Eq. [1], V would be a 
negative value per unit, measuring damages 
per unit of wildfire realized.) v is a vector of the 
costs per unit area of suppression, presuppres-
sion, and vegetation management inputs. (The 

“price” to the economy would be the net welfare 
change arising from the diversion of resources 
to vegetation management and away from other 
economically productive activities in the econ-
omy; in other words, this is the opportunity cost 
of foregone uses of these resources in the econ-
omy.) x = (xt,xt+1,…,xT) is a vector of the amount 
of suppression, presuppression, and vegetation 
management inputs for year t through T (the 
planning horizon), xt-k is a vector of k lags of pre-
scribed burn area, Zt are exogenous inputs to 
wildfire production including stochastic climate 
variables, and Wt-j is a vector of j lags of wildfire 
area, and r is the discount rate.

Solving this optimization problem produces 
a T́ 1 vector of optimal input quantities, x, and 
a T́ 1 vector of wildfire quantities, Wt, over time. 
The uncertainty associated with random events 
(e.g., errors in prediction of weather) means that 
W(∙), is known only with error, complicating the 
solution process. In the presence of such error, 
simulation techniques may be used to identify, 
for example, the amounts of prescribed burning 

most likely to maximize the welfare criterion. 
Optimization models like Eq. [3] may involve as 
many choice variables as periods in the simula-
tion, making them difficult to solve. Alternatively, 
the problem can be simplified to identifying the 
single optimal (stationary) policy from the set of 
possible policies that yields the highest expected 
net welfare benefits and which is consistent with 
any utility function that demonstrates nonin-
creasing marginal utility.

The Simulation Model
Identifying the long-run expected impact of 
prescribed fire requires accounting for variable 
weather and the uncertainties associated with 
the “true” form of Eq. [1]. While Eq. [3] was esti-
mated using historical data on fire output and 
wildfire production inputs, observed wildfire 
output always differs from that predicted by an 
empirical model because of the random nature 
of the phenomenon and the imprecision of 
model specification. To identify the “best” level 
of prescribed fire to apply in a fire-prone land-
scape, Mercer et al. (2007) first estimated two 
versions of Eq. [3]—one expressing wildfire out-
put in area burned and one in intensity-weighted 
area burned. (Tables 16–1 and 16–2). Research has 
shown that wildfire intensity is closely related 
to the resulting damages to forests (Kennard, 
2004), so measuring how prescribed fire affects 
the intensity of wildfire output should provide 
a more accurate prediction of the impacts of pre-
scribed fire on wildfire damages.

Next, the results from the empirical estimates 
of Eq. [3] were used to forecast the expected dam-
ages from wildfire under different prescribed fire 
scenarios for Volusia County, which was represen-
tative of the fire-prone wildland–urban interface 
landscape of Florida. Forecasts of annual wildfire 
activity were made for 100 yr into the future. The 
100-yr realization of wildfire output was done by 
(i) selecting a fixed level of prescribed fire to apply 
every year, (ii) randomly selecting the values of 
two climate variables found to influence wildfire 
in Florida (a measure of El Niño and a measure 
of the North Atlantic Oscillation), (iii) randomly 
selecting a forecast error for wildfire area burned 
and wildfire intensity-weighted area burned 
from the historical distribution of weather fac-
tors and from prediction errors, and then (iv) 
calculating the total annual expected wildfire 
damages and suppression costs and the annual 
cost of applying the fixed amount of prescribed 
fire to the county. The final step was to vary the 
amount of prescribed fire chosen in the first step 
and then repeat the following steps. This process 
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was continued, starting from 2023 ha (5000 acres) 
prescribed burned per year, up to about 40,500 
ha (100,000 acres) per year (out of 127,000 ha 
[313,000 acres] of forest in the county). After all 
of these simulations were completed, the total, 
long-run discounted cost plus losses associated 
with wildfire and prescribed fire were compared 
across all levels of prescribed fire to identify the 
level of prescribed fire where the costs and losses 
were smallest.

Models were estimated for fire at the county 
level. Two county fixed-effects time series models 
were estimated: Model 1, intensity-weighted area 
burned; Model 2, area burned. (A “fixed effects” 
time series regression model assumes that dif-
ferences across units (counties in our 
case) can be captured in the constant 
term.) The dependent variables for the 
two models were: Model 1: intensity-
weighted acres per acre of forest area 
in the county in the year; Model 2: total 
wildfire area burned per acre of forest 
area in the county.

The losses associated with wildfire 
were calculated based on the 1998 wild-
fires (Butry et al., 2002). Two versions 
of losses were generated: One version 
assembled timber and housing losses 
and suppression expenditures in terms 
of market values—prices times quanti-
ties. Another version assembled losses 
in terms of social welfare—consumer 
plus producer. Due to data limitations 
suppression expenditures were not 
included in the social welfare analysis.

Results
The original statistical models, relat-
ing fire area burned and fire inten-
sity-weighted area burned, show that 
prescribed burning at the county level 
has a large, statistically significant effect 
on both intensity-weighted area burned 
and on area burned in the county. The 
elasticity of intensity-weighted area 
burned with respect to prescribed fire 
was −0.9 in the short-run (0–2 yr) and 

−0.31 in the long-run (>2 yr). The elastic-
ity of wildfire area burned with respect 
to prescribed fire was −0.72 in the short 
run and −0.28 in the long run.

Mercer et al. (2007) also estimated 
a model found for the supply of pre-
scribed fire services (i.e., the human and 
capital inputs required for performing 
prescribed burns), which showed that 

prescribed fire services had a long-run elasticity 
of about 0.54. This indicates that the cost of pre-
scribed fire per acre would increase twice as fast 
as the increase in the areal increase in prescribed 
fire. This extra cost associated with higher levels 
of prescribed fire was included in the cost plus 
loss simulations.

The simulations (Fig. 16–3 and 16–4) showed 
that the optimal levels of prescribed fire depend 
on whether wildfire is measured in terms of 
area burned or in intensity-weighted acres. 
Figure 16–3 shows the impact of prescribed 
fire on both wildfire intensity-weighted acres 
and on the losses and costs associated with 
wildfire and prescribed fire applied to achieve 

Fig. 16–4. The simulated schedule of input-output combinations derived 
from the areal risk model; amounts of prescribed burning yielding the 
maximum of net value change minus cost (symbols shaded black) are 
14,000 acres/year for the quasi-net welfare analysis and 15,000 acres/
year for the market value analysis. (from Mercer et al., 2007).

Fig. 16–3. The simulated schedule of input–output combinations derived 
from the intensity-weighted risk model. The amounts of prescribed 
burning yielding the maximum of net value change minus cost (symbols 
shaded black) are 19,000 acres/year for the quasi-net welfare analysis 
and 20,000 acres/year for the market value analysis. (from Mercer et 
al., 2007).
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these levels of losses and costs. Figure 16–4 
shows the same, but in terms of area burned 
related losses instead of intensity-weighted 
area burned related losses. Figure 16–1 shows 
that the expected value of losses plus costs is 
minimized when prescribed fire is set at about 
19,000 acres per year in Volusia County, Florida. 
Figure 16–2 shows that the prescribed fire area 
of 14,000 acres per year minimizes net value 
change plus costs. From 1994 to 2001, Volusia 
County averaged about 5260 ha (13,000 acres) 
per year, which is close to the amount justified 
based on the area burned effect of prescribed 
fire. But, this is about 30% less than the amount 
that would be justifiable based on the intensity-
weighted area burned measure.

Summary
In this chapter we provided an overview of 
the socioeconomic and ecological effects and 
trends of wildfire in the wildland–urban inter-
face, methods for assessing wildfire risk in the 
wildland–urban interface, approaches to man-
aging the wildfire problem including fuels 
management, home construction and design, 
and community action programs. This over-
view is combined with two case studies 
analyzing wildfire risk and the use of pre-
scribed fire to reduce that risk in the Florida 
wildland–urban interface.

Each year, federal agencies respond to about 
79,000 wildfires and local agencies respond to 
about 356,800 brush, grass, and forest fires. The 
costs in terms of life, property, and resources 
are devastating. For example, in an average year 
wildfires kill 21 firefighters, destroy 1179 resi-
dences, 1156 outbuildings, and 42 businesses 
and result in $3 billion in federal outlays to 
fight wildfires. Furthermore, the costs of wild-
fire have increased dramatically over the past 
few decades. Nine of the 10 most costly wildfires 
occurred since 1990 and have resulted in a total 
of about $10 billion in damages, 10,000 homes 
damaged, and the loss of at least 55 lives. As a 
result, managing wildfire has become a central 
focus of federal, state, and local land manage-
ment agencies.

The number of wildfires, area burned, and 
resulting damages have continued to grow over 
the past 25 years. Several factors are responsi-
ble for this, but the two most important factors 
under human control are wildfire suppression 
policies and development in fire-prone ecosys-
tems. The success of federal wildfire suppression 
efforts during the 20th century has created a 

series of ecological changes that have actually 
increased the risk of wildfire and made control-
ling them more difficult and expensive. But, the 
rapid growth of the wildland–urban interface is 
actually the single most important factor for the 
increased costs associated with wildfire.

Solving the wildland–urban interface wild-
fire management problem requires a series of 
efforts at a number of levels. We need to improve 
our ability to assess the risk of wildfire facing 
communities across the nation, but particularly 
in the West and Southeast, and use this informa-
tion in local and regional planning to protect the 
current at-risk communities and reduce the num-
ber of homes in areas with high risk of wildfire. 
Efforts to mitigate wildfire damages through cre-
ating defensible spaces around homes and other 
structures, and reducing fuel loads through pre-
scribed fire and other vegetation management 
techniques need to be enhanced. In addition, we 
need to do a better job of allocating scarce wild-
fire management resources among suppression, 
prevention, and mitigation activities.

The two case studies in this chapter serve as 
examples of empirically estimating wildfire risk 
as a function of nonhuman (weather, climate, ecol-
ogy) and human (wildfire management, economic 
and social conditions) and using the results of the 
risk analysis to determine the optimal prescribed 
burning policies in the Florida wildland–urban 
interface. The case studies suggest that (at least 
in Florida) the more rural the wildland–urban 
interface, the fewer wildfire ignitions and result-
ing acreage burned. This is probably because the 
more rural areas of the wildland–urban inter-
face in Florida are dominated by highly managed 
forests, where prescribed burning is common 
and where managerial inputs to production for-
estry tend to lower risks of catastrophic wildfire. 
Moving along the wildland–urban interface con-
tinuum to more densely populated areas with 
more valuable properties located near water 
resources, the forests are less intensively man-
aged, prescribed burning is rare, and the number 
of ignitions and the area burned per unit of space 
and time are higher. Examining the tradeoffs 
between prescribed fire treatments and damages 
from wildfire, the second case study shows that 
fuels management (prescribed fire in this case) is 
a good investment, at least in Florida. At the pre-
scribed fire levels being applied by public and 
private landowners in Volusia County, Florida, 
the long-run benefit/cost ratio of prescribed fire is 
close to or greater than unity.

One overall implication is that it is crucial 
that analyses of wildfire risk for regions with 
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high populations and varying economic indica-
tors include socioeconomic (human) in addition 
to physical (nonhuman) factors. Omissions of 
socioeconomic conditions can lead to mischar-
acterizations of the factors underlying wildfire 
risk and result in inefficient allocation of scarce 
wildfire management resources. In addition, 
fire managers and decision makers should rec-
ognize the critical role that humans play in 
affecting wildfire risk. Humans set fires, put 
out fires, allow fuels to accumulate around their 
homes and property, and construct barriers to 
fire spread (e.g., roads). The socioeconomic 
economic conditions in which humans live 
affect the degree to which these kinds of inten-
tional and unintentional interventions into fire 
regimes are manifested. For example, unem-
ployment and poverty are indicators of the 
resources available for wildfire management, 
the effectiveness of fire awareness programs, 
the frequency of arson, and economic activi-
ties that might be linked to accidental ignitions 
(e.g., rail and automotive traffic). Policymakers 
seeking ways to minimize damages and restore 
ecosystems in or near the wildland–urban 
interface should be aware of these effects and 
take into account the many ways that people 
affect wildfire risk.
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