
A REGIONAL CLASSIFICATION OF UNREGULATED STREAM FLOWS: SPATIAL
RESOLUTION AND HIERARCHICAL FRAMEWORKS

RYAN A. MCMANAMAY,a* DONALD J. ORTH,a CHARLES A. DOLLOFFb and EMMANEUL A. FRIMPONGa

a Department of Fisheries and Wildlife Sciences, Virginia Tech, Blacksburg, Virginia, USA
b USDA Forest Service, Department of Fisheries and Wildlife Sciences, Virginia Tech, Blacksburg, Virginia, USA

ABSTRACT

River regulation has resulted in substantial losses in habitat connectivity, biodiversity and ecosystem services. River managers are
faced with a growing need to protect the key aspects of the natural flow regime. A practical approach to providing environmental flow
standards is to create a regional framework by classifying unregulated streams into groups of similar hydrologic properties, which
represent natural flow regime targets. Because spatial resolution can influence the structure of regional datasets, it may be
advantageous to relate datasets created at different scales in order to establish hierarchical structure and to understand how the
relative importance of variables change with regard to scale. The purpose of this study was to classify unregulated streams within an
eight-state region into groups in order to provide environmental flow standards for managers and to relate that dataset to frameworks
created at larger scales. Using USGS daily stream gauge information, we used 66 hydrologic statistics to classify 292 streams in groups
of similar hydrologic properties. We isolated six flow classes in a sub-region of the Southeastern US that ranged from extremely stable
to highly variable to intermittent. We developed classification trees to reduce the number of hydrologic variables for future
classifications. By comparing flow classes in our study to those of the entire US, we found that hierarchical structure did exist and that
the divergence of flow classes will largely depend on the spatial resolution. Copyright # 2011 John Wiley & Sons, Ltd.
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INTRODUCTION

River regulation has resulted in substantial losses in natural

flow variability, habitat integrity, and consequently, species

diversity (Poff et al., 1997; Vitousek et al., 1997; Pringle

et al., 2000; Poff et al., 2007). The natural flow regime

(magnitude, frequency, duration, timing and rate of change

in flow events) is essential for creating and maintaining

habitat in river channels, transporting sediment, and

connecting rivers and their floodplains (Poff et al., 1997).

Hydrologic disturbances create and maintain habitat

heterogeneity (Trush et al., 2000) and stabilize food webs

(Wootton et al., 1996; Cardinale et al., 2005). Dams alter

the frequency and duration of floodplain-inundation (Nislow

et al., 2002), which decreases bankfull area and lateral

migration while also increasing riparian encroachment

(Gordon and Meentemeyer, 2006). Substantial withdrawals

have either left rivers without any water or dramatically

reduced flows to the extent that river ecosystem function

is lost (Poff et al., 2003). The ‘homogenization’ of natural

flow variability across geographic scales (Poff et al., 2006a;

Poff et al., 2007) has resulted in the decline of species whose

life history strategies are adapted to the natural variation in

flow regimes (Bunn and Arthington, 2002; Poff et al., 1997).

With over 82 000 dams in the US (USACE, 2009) and

water rights battles across the country (Poff et al., 2003),

river managers are faced with a growing need to protect the

key aspects of the natural flow regime. However, managing

for the specific needs of every river and their associated

biotic community is easier said than done. The interaction

between social, economic, political, and finally, ecological

demands results in simple and general flow rules that ignore

the complexity of flow variability responsible for sustaining

river systems (Arthington et al., 2006). One practical

approach to providing environmental flow standards is

to form classes of rivers with similar hydrologic properties

across regions from which standards for managing flow

needs can be developed (Poff, 1996; Arthington et al., 2006).

Each flow class then becomes a hydrologic unit for

management rather than managing for the individuality of

each and every river system. The assumption is that rivers

within similar hydrologic units are also similar ecologically,

in terms of community composition, functional groups and

responses to flow variability. Also, broad generalizations

concerning the impacts of flow regulation on multiple

groups of riverine biota has only recently received attention

(Poff and Zimmerman, 2010); thus, a regional framework
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to evaluate biotic responses to flow regulations would be

advantageous.

The other main approach to developing environmental

flow standards is by using instream-flow-needs (IFN)

techniques that relate flow to ecological targets. IFN

approaches range from simple relations between hydrologic

indices and aquatic habitats (i.e. weighted usable area) to

more complex hydrodynamic models, which may or may

not be linked to approaches that relate flow variability to

many components of the river ecosystem (Tharme, 2003;

Anderson et al., 2006). PHABSIM models have been used

extensively in the US and worldwide (Spence and Hickley,

2000; Tharme, 2003) and have been used with success in

providing potential ecological responses to flow alterations

(Gallagher and Gard, 1999). However, they are limited in

that they are applicable to only the reach under study (Moir

et al., 2005), biased by site location (Williams, 2010), and

are generally expensive in terms of time and money (Spence

and Hickley, 2000). Another limitation is that PHABSIM

models generally develop suitability criteria for one up to

several target biota rather than the entire river community.

Although holistic approaches may consider how a given

flow regime may influence multiple components of a

river ecosystem, Anderson et al. (2006) argues that these

approaches generally do not incorporate process-driven

ecological dynamics, especially internal feedback loops,

into analyses of the influence of flow on aspects of the

ecosystem. Ecological restoration should be founded upon

restoring the processes responsible for maintaining ecosys-

tems (Ward et al., 2001). However, empirical information on

the relationship between flow regimes and complex

ecological dynamics is extremely limited (Poff and

Zimmerman, 2010). Furthermore, forming environmental

flow standards by evaluating all the complex ecological

dynamics (population, community, spatio-temporal) and

then translating that scientific information into quantitative

demands to policy makers is unrealistic for every single

regulated river.

Regional flow classifications based on unregulated

rivers provide ecologically-relevant units, which are an

organized and less-complex framework for developing

environmental flow standards for management. Because

flow standards are developed using the natural flow regime

of unregulated rivers, prescriptions for flow regime

alterations are applicable to the entire river ecosystem not

just target biota. Future efforts to create sustainability

boundaries (Richter, 2010) require acceptable regional flow

classification. Flow classifications are also convenient in that

they can produce flow prescriptions quickly without time

intensive field work, developing flow-ecology relationships,

and high monetary costs. Lastly, the majority of current

understanding of the impacts of flow alterations on biota is

case-specific knowledge (Poff and Zimmerman, 2010); thus,

regional flow classifications may provide a framework to

generalize patterns of disturbance as additional investi-

gations proceed.

The classification of flows based on stream discharge

alone is not unprecedented. Poff (1996) classified natural

flow variability for 816 streams across the entire US into

10 flow categories using only flow records; however,

because of the coarse scale of that study, only three flow

classes were isolated for the area of interest of this

study (GA, KY, MD, NC, SC, TN, VA, WV). Because of

the variation in climate and watershed characteristics

found at the scale of our study, we believe that a higher

resolution classification is needed to adequately represent

flow classes with distinct hydrologic properties. It is

important to clarify that we are not campaigning for one

classification over another. In contrast, we believe that

coarse and fine resolution classifications are both essential to

management and facilitate the formation of hierarchical

datasets of flow variability at different scales. In addition,

relating datasets to existing regional frameworks can

increase our understanding of how ecosystem dynamics

are governed at multiple scales. We chose to focus our

classification within the Southeastern United States because

of the increasing water demand from multiple sources and

the need for a framework to develop sustainable water

management in the Southeast (Sun et al., 2008). Secondly,

for the states found in this region, the practice of making

environmental flow recommendations has been to apply

statewide criteria, treating all classes of flow types in a

similar way. Obviously, we find this inadequate for

protecting the variability in flow regimes that support

aquatic biodiversity.

The purpose of this study was to classify 292 unregulated

streams based on hydrologic data within an eight-state

region of the southeastern US in order to provide

environmental flow standards for regulated rivers. Classi-

fications are important to management in that they

consolidate large amounts of information into digestible

units. Because large amounts of variables can be over-

whelming, we also wanted to provide a reduced set

of hydrologic indices useful to managers in classifying

future streams. We also wanted to compare our dataset

to Poff’s US flow classification to determine the potential

for scale-dependent hierarchical flow classes. Specifically,

our objectives were to (1) classify 292 unregulated

streams within an eight-state region of the southeast into

distinct flow classes important for environmental flow

management, (2) provide a reduced set of hydrologic

variables that can be used as foundational indices for

future classifications and flow management and (3)

determine the hierarchical structure in the divergence of

flow classes between our study and that of the US flow

classification.
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METHODS

We accessed the USGS Realtime Water Data for the Nation

website (http://waterdata.usgs.gov) to find daily stream

gauge data and to judge the extent of regulation due to

impoundment or other hydrologic disturbances. Criterion

for relatively undisturbed flow status was determined if the

stream: (1) had at least 15 years of data, (2) had no upstream

impoundments (including tributaries), (3) did not have large

diurnal fluctuations due towithdrawals and (4) did not have a

significant amount of its drainage area made up of urban

areas, development, canals and pipelines. We used a four-

step process to determine relatively undisturbed status. First,

we selected gauges with at least 15 years of total data (some

gage records had missing data as long as at least 15 total

years were represented). Kennard et al. (2010a) concluded

that at least 15 years of record are suitable for estimating

variables that are used to detect differences in the spatial

variation in stream flows, such as flow classifications. The

study also concluded that discharge records should be

contained within a temporal window that allows 50%

overlap across records. We used the entire period of record

available to capture as much of the hydrologic variability

possible. However, because some records are from different

time periods, have some missing data and may not

sufficiently overlap, we attempted to examine any uncer-

tainty in hydrologic metrics overwhelmed any variation in

the classes that we formed. We discuss this further in the

Temporal Analysis section. In the second step, we used

USGS annual water reports to ensure that there were no

impoundments upstream of the gauge (including tributaries).

For stream gauges with extensive records that had at least 15

years of pre-impoundment data, we selected data within

periods of time that had no regulated flow to include in our

analysis as ‘natural’ conditions. Thirdly, we used USGS

annual water reports to eliminate any gauges that had large

diurnal fluctuations due to withdrawals (wording in USGS

reports). Some stream gauges were selected that had slight

diurnal fluctuations caused by upstream withdrawals or

small mills. However, we assumed that slight diurnal

fluctuations would not influence the hydrologic statistics

that we used, which are influenced by trends across days and

months, not within a 24 h period. We also ensured that

withdrawals were not a significant proportion of daily

discharge as to influence seasonal patterns and low flow

conditions. To determine the extent of disturbance due to

urban development and fragmentation, we used the

hydrologic disturbance index created by Falcone et al.

(2010). The dataset entails 375 variables for 6785 USGS

stream gauges with at least 20 years of continuous data in the

US including gauge identification and location, basin

morphology, climate, topography, soils and anthropogenic

disturbance factors (disturbance index, population density

and land use). The disturbance index is a composite score for

USGS gauged streams based on eight factors for each entire

basin: major dam density, change in reservoir storage from

1950 to 2006, freshwater withdrawal, artificial paths (canals,

ditches and pipelines), road density, distance to major

NPDES (National Pollutant Discharge Elimination System)

sites and the fragmentation of undeveloped land. Becausewe

had eliminated streams that had upstream impoundments,

we adjusted the index to only take into account the other

six disturbance factors by deleting major dam density and

change in impoundment storage from the composite score.We

then used natural breaks (Jenks, 1966) to classify the score

distribution into three categories: low (4–12), moderate (12–

20) and high (20–27).We removed 18more streams from the

analysis that were in the high category leaving 292 streams

that were relatively low to moderate disturbance.

Mean daily and annual peak flow data for the 292 stream

gauges were downloaded from the USGS Realtime Water

Data for the Nation website. Hydrologic statistics were

calculated for each stream using the Hydrologic Index Tool

(HIT) software available through the USGS (Hendriksen

et al., 2006). Daily and peak flow gauge data were imported

into the HIT software, which calculates the 171 hydrologic

indices reported in Olden and Poff (2003). The indices are

summaries of the entire period of record. The indices are

grouped into five categories of flow: magnitude (n¼ 94),

frequency (n ¼ 14), duration (n¼ 44), timing (n¼ 10), and

rate of change (n¼ 9) with each category having low,

average, and high flow subcategories (Richhter et al., 1996;

Olden and Poff, 2003). Because of the large amount of

correlated variables, we reduced the dataset by evaluating

correlation matrices among variables within each subcate-

gory and removed variables with correlations of r> 0.75

and r<�0.75. For each pair of correlated variables, we

favored variables that were one of the Index of Hydrologic

Alteration indices (Richter et al., 1997) or used in Poff

(1996). If neither of these applied to the variables or both

were favored, then variables were removed on the basis of

order in the dataset, where variables listed later were

removed. We then combined all subsections together to

eliminate any other variables that were highly correlated

across different subsections. The final dataset resulted in 66

variables. We divided any variables related to magnitude by

the median daily flow in order to ensure that flow groups

were based upon trends in relative flow magnitude and

flow variability rather than being heavily influenced by river

size. We divided all variables by their respective maximum

value for all streams to standardize variables on a scale from

0 to 1. We did this to ensure that variables with a greater

extent of variability did not override our analysis. All

standardized variables were log(xþ 1) transformed. The

dataset is freely available and can be obtained by contacting

the corresponding author.
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We used a K-means cluster analysis to classify streams

into groups of similar hydrologic properties. K-means

cluster approaches require the investigator to specify a priori

the number of clusters, to which streams are then assigned.

Because we were uncertain of the appropriate number

of flow clusters, we re-ran the cluster analysis a series of

iterations with a different number of clusters in order to

determine the minimum number of clusters. The K-means

method yields a cluster assignment for each stream but

also a distance measurement of each stream to the centroid

of its respective cluster (i.e. residual). We then calculated

the sum-of-squares of the distances (SSD) for all streams

and grouped that value against the number of clusters. The

SSD will decline as the number of clusters increases. We

determined the minimal number of clusters at the point

where the rate of the decline in the SSD is small. High

numbers of variables (n¼ 66) in relation to the sample size

(n¼ 292) may increase the dimensionality of the data set,

which could lead to a higher number of clusters and

erroneous conclusions. Thus, to ensure that the number of

clusters was stable, we produced two reduced datasets

followed by iterative K-means clustering procedures. We

produced the first reduced dataset by conducting a PCA on

all 66 variables and isolating the first 15 principle

components, which explained over 90% of the correlations.

The second reduced dataset was formed by using forward

stepwise variable selection in discriminant function analysis

(DFA) to select 15 variables that explained the majority of

variability in the clusters assigned with 66 variables.

Another potential problem of K-means procedures is that

the cluster assignment can be sensitive to the order of

samples (streams) in the dataset (SAS, 2008). To attempt to

determine the probability of cluster assignment for each

stream, we randomized the dataset and re-ran the K-means

procedure for 10 more iterations. Unlike other cluster

procedures, K-means clusters do not have any spatial

structure (multivariate space); thus, clusters may be labeled

differently and may overlap with other clusters making it

difficult to compare the results following each iteration. One

way to avoid confusing labeling problems is to compare

average values of variables between clusters of different

analyses. We compared cluster means of 10 variables,

chosen using DFA, in the baseline dataset to cluster means

formed by each randomized dataset. Clusters that had the

smallest difference in mean values of variables were

assigned to similar clusters. Based on the result of 10

iterations, streams could then be assigned a dominant cluster

and a probability of cluster assignment could be calculated.

Temporal analysis and cluster assignment

To ensure that records from different time periods did

not cause uncertainty in cluster assignment, we used six

stream gages from different clusters with long-term records

(> 68 years of record). For each stream gage, we broke

up the records into 3–4 discrete 15-year time periods. We

re-calculated all 66 hydrologic metrics using the HIT

software for each 15-year time period. We calculated the

absolute difference between 15-year metrics to metrics

calculated using the entire time period (used for the

classification). We then averaged all absolute differences

between all 15-year time periods and the entire time period.

We compared those differences to the inter-quartile range

(IQR) and entire range of each stream’s respective cluster.

We assumed that if the difference between metrics

calculated for different time periods exceeded the IQR,

then cluster assignment may be influenced.

Assessment of hydrologic properties

We isolated nine hydrologic indices supported by

literature that are known to influence various life stages

and occurrences of macroinvertebrates, fish and riparian

vegetation. We compared the average values and variation of

the hydrologic indices among the different clusters in order

to assign clusters ecologically meaningful class names,

which would be important for management. We also plotted

each stream by its respective cluster on a map of the

southeastern US with physiographic provinces in ARCmap

9.2. Physiographic provinces, originally mapped by Fenne-

man and Johnson (1946) were downloaded from the USGS

website and used for mapping because of simplicity (only

5 provinces in our study area) and less ambiguity in

representation.

Hydrologic classification tree

Our goals in developing a hydrologic tree was to provide a

subset of key variables responsible for the divergence of

natural flow classes that can be used as an initial foundation

for environmental flow managers and a useful tool for

classifying streams in the future without having to use a

large suite of hydrologic indices. We used the rpart package

in the program R to develop classification trees that can be

used to classify a stream into a flow class. All 66 hydrologic

variables along with their respective flow classes were

imported into R. The rpart package in R uses recursive

partitioning, which includes some of the same ideas

developed in the CART software (Therneau et al., 2010).

Trees are built in a two-step procedure. The first step

involves splitting the data on the initial node using the ‘best’

variable that minimizes the risk of misclassification. This

procedure continues throughout subsequent nodes until the

subgroups reach a specified minimal size or no further splits

can be made (Therneau et al., 2010). Because trees can

become very complex, the second step involves a pruning

procedure that minimizes the number of nodes, the cost
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complexity factor and the cross validation error. The cost

complexity factor takes into account minimizing misclassi-

fication while also increasing the complexity of the tree. We

then evaluated the cross validation versus tree size plot to

determine how to prune the tree. The tree is pruned at the

number of nodes that minimize the cross validation error to

avoid over-fitting the data. After the trees were completed,

we were able to calculate a misclassification error to assess

the accuracy to which the subset of variables could classify

flow groups.

Hierarchical structure

Oneway to determine if there was a hierarchy among flow

classifications created at different scales was to compare our

clusters to those created for the entire US by Poff (1996). We

obtained the US classification dataset through direct

communication with Leroy Poff. The dataset contains 816

stream gauges, their respective flow classes, GPS locations

and the variables used to create the clusters. We isolated

common gauges between the two datasets using the USGS

gauge number. Because of differences in the number of total

clusters represented and cluster sample sizes, using a

statistical procedure to directly compare datasets ‘as is’

would be uninformative.We decided to compare the datasets

in two ways. First, we assumed that different classes that

share similar hydrologic properties at the scale of our study

may cluster together when the overall variability of the

dataset increases (e.g. larger scales). Thus, we clumped

similar flow classes in our study together and compared to

the US classes by evaluating the percentage of streams

misclassified. We also plotted our clumped classes on a map

along as well as the US classes to visually evaluate similar

geographical affiliation. The second way we wanted to

compare datasets was to determine how well variables used

in the US classification could predict the US flow classes

relative to our classes using discriminant function analysis

(linear, common covariance method). We assume that the

datasets may share similar structure if variables used in US

classification accurately predict our flow classes. We then

used a plotted the first two canonical scores of streams to

understand how our clusters may be embedded in the

clusters created for the entire US in multivariate space. We

also show the biplot rays of the direction of variables in

canonical space to show how the hierarchical relationship

was governed by the hydrologic variables.

RESULTS

All together, 292 gages were used in our flow classification.

Over 80% of our gages had records that spanned from 1969–

2009 (40 years). After accounting for any missing data, 86%

of the streams had 30 or more years of data and 60% had

50 or more years of record for the entire dataset. Less

than 8% of the gauges had chunks of missing data that

comprised more than 30% of the entire record. Thirty-four

of the 292 gages had pre-impoundment data that we used in

the analysis. Of these, 24 gages had over 30 years of data.

Cluster analysis

We found that for the original 66-variable datasets, the

SSD minimized at 8 clusters (Figure 1). We reduced

the variables in the dataset using PCA and forward stepwise

DFA. The first 15 PCs isolated explained over 90% of the

total variation in the dataset. The 15 variables isolating using

stepwise DFA had a misclassification error of 7.6% (22/292

misclassified), which suggests that the variables were fairly

accurate in explaining the majority of variability in clusters

Figure 1. Comparisons of the sum-of-squared distances within groups
relative to the number of clusters following iterative K-means clustering
procedures to determine the appropriate number of clusters and whether
variable number increased the dimensionality of the data set. Cluster
analysis was conducted for all 66 variables, 15 principle components
and 15 variables selected using forward stepwise procedure in discriminant

function analysis
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formed using all 66 variables. Interestingly, for both reduced

datasets, the SSD minimized around 8 clusters, which

was very similar to the analysis conducted with 66 variables

(Figure 1). Thus, we assumed that the 66 variables did not

erroneously create ‘new’ clusters but actually did a better

job of describing and assigning streams to their appropriate

flow group.

After randomizing the dataset and re-running the

K-means procedure, we found that only 11 out of the 292

gauges (3.8% error rate) were assigned to a different class

than the baseline K-means procedure. Six of the eight

classes had greater than 22 streams (Figure 2). Class B had

only 2 streams and class D only had 1 stream. Thus, for

all practical purposes, these 3 streams could be lumped

into similar classes. Seven of the eight classes had mean

probability of class membership greater than 85%; however,

flow class A had a mean class membership of 71%. Over

80% of all gauges had greater than a 0.8 mean probability of

class membership, suggesting that most gauges had a fairly

strong affinity for their assigned flow class (Figure 2).

Temporal analysis and cluster assignment

We compared the inter-quartile range (IQR) and entire

ranges of 15-year time periods of 6 streams to that of each

stream’s respective cluster. We found that, on average, the

IQR for each cluster was 18 times the absolute difference

between 15-year metrics and metrics calculated for the

entire time period. On average, less than 5metrics per stream

had differences in values that exceeded the IQR of the

respective cluster. On average, the entire range for each

cluster was 140 times that of the absolute difference between

15-year metrics and metrics for the entire time period. Only

one hydrologic index (RA6) in one stream had an average

absolute difference that was greater than the range of its

respective cluster, which was primarily due to its extremely

low average value for the cluster (mean RA6¼ 0.114).

Assessment of hydrologic properties

We assigned classes ecologically relevant names by

qualitatively evaluating differences in nine key hydrologic

variables (Table I, Figure 3). Two of the eight flow classes

only had 1–2 streams. Thus, for management purposes, we

would recommend incorporating those classes into a similar

larger cluster. However, for statistical purposes, we show all

eight classes. The eight flow classes differed in terms of

the magnitude and variability in low flows, the frequency of

high flow events, the duration of flow events, the

predictability and constancy of flows, and the rate of change

in flow (Figure 3). Intermittent flashy (IF) streams had a

high number of zero flow days per year, high variability,

high frequency of high flow events, low predictability and

fast rise rates. The coastal/swamp intermittent (CSI) flow

class is characterized by some intermittency with 6 of the

streams having a high number of zero flow days (mostly

swamps). The majority of the class, however, has no zero

flow days, has low variability, low frequency of high

flow events, high duration of high flow events and very low

rise rates. The Black River (BKR) near Tomahawk, NC

(USGS guage 02106500) has a very high seasonal

predictability of non-flooding (not shown) or a very high

proportion of each year consists of flows greater in

magnitude than the 5-year low flow magnitude. Otherwise,

the BKR is similar to CSI streams in all other respects.

Perennial runoff streams (PR 1 and 2) had moderate

variability in daily flows, low to moderate baseflow levels,

low duration of high flows, moderate predictability and

moderate rise rates. Unpredictable perennial runoff streams

(UPR) were similar to PR streams except that they had a

large range in monthly flows and had low predictability.

Figure 2. The mean probability of class membership for each flow class
(cluster) and the cumulative proportion of gauges under various class
membership probabilities. Numbers indicate the sample size in each flow
class. Letters for each flow class are assigned ecologically relevant names,

as indicated in Figure 3

Copyright # 2011 John Wiley & Sons, Ltd.

R. A. MCMANAMAY ET AL.1024

River Res. Applic. 28: 1019–1033 (201 )

DOI: 10.1002/rra

2



Stable high baseflow streams (SBF 1 and 2) had low

variability in daily flows, higher baseflows and minimum

flows, moderate frequency of high flow events, high

predictability and moderate rise rates. SFB2 differs from

SFB1 in that it has a lower duration of high flow events

(Figures 4 and 5).

Hydrologic classification tree

We evaluated the cross validation plots to determine the

appropriate size of the hydrologic and watershed classifi-

cation tree. For the hydrologic tree, the cross validation

minimized around 6 nodes (branches), or around a cp (cost

Table I. Class ID’s, class names, drainage areas and standard deviation for flow classes found in this study and those of Poff (1996) found in
our study region

Class ID n Class name Drainage area (km2) SD

BKR 1 Black River near Tomahawk, NC 1751 –
CSI 22 Coastal, Swamp and Intermittent 2307 2334
IF 26 Intermittent Flashy 228 285
PR1 84 Perennial Runoff 1 2547 5081
PR2 72 Perennial Runoff 2 673 906
SBF1 33 Stable High Baseflow 1 1500 3010
SBF2 52 Stable High Baseflow 2 1701 3755
UPR 2 Unpredictable Perennial Runoff 70 14
US flow classes (Poff, 1996) found in current study region
GW 22 Groundwater 775 968
IR 1 Intermittent Runoff 751 –
PR 62 Perennial Runoff 885 1040

Figure 3. Comparisons of 9 ecologically relevant variables among different flow classes. Letters in the first box and whisker plot are given in order to compare
letters in Figure 2 with the flow-class names. � indicates that variable was standardized by dividing by median daily flow. For class codes, see Table I
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complexity factor) of 0.05 (Figure 6). The tree was pruned

to that value and represented six of the eight flow

classes (Figure 7). The BKR and UPR classes were not

represented because the cost of representing 1 and 2 streams,

respectively, was too high compared to the gain in variation

explained. The hydrologic classification tree isolated five

primary variables that accurately classified 85% of the

gauges to their assigned flow class. The first four competing

variables are also listed in order of accuracy under each

primary splitting variable. Most classes were accurately

assigned to their respective flow class (� 80% or higher)

except the SFB1 class, which only had 66% of gauges

accurately assigned.

The vertical distance of the tree branches are an indication

of the amount of variability explained by each variables.

Thus, the first two primary variables, mean September

flows and minimum July flows explained a great deal

of variation in the entire dataset. Lower September

flows separated PR1 from the rest of the dataset and

re-emerged as a primary splitting variable separating SBF 1

and 2 stream classes. Higher minimum July flows separated

SBF 1 and 2 classes from the remainder of the dataset.

Maximum November flows separated CSI streams from

IF and PR 2 streams, which were separated by daily flow

variability.

Hierarchical structure

Eighty-five streams were found in both our dataset and

that of the US classification. Six of our eight flow classes

were represented in the dataset, excluding UPR and BKR

flow classes. Three flow classes were represented in the US

classification dataset: groundwater streams (GW), perennial

runoff streams (PR), and one intermittent-runoff stream

(IR). By comparing the grouping between our dataset with

the US classification, we found that SBF1 and SBF2 streams

tended to primarily be classified as GW streams while PR1,

PR 2, IF and CSI streams tended to classify with the PR

streams (Table II). The one IR class grouped with the CSI

streams. Initially, we combined the SBF1 and SBF2 classes

into a ‘GW’ class and combined the PR1 and PR2 classes

together into a ‘PR’ class while leaving the IF and CSI

classes separate. After comparing the combined classes to

the US classification, we found that 75% of the streams were

grouped similarly, with 11% of the error coming from the

CSI and IF classes. We then combined the CSI and IF classes

with the PR class and compared the new classes to the US

classification and found that 86% of the streams were

grouped similarly. The map of our new flow classes and the

US flow classes showed similar geographical affiliation of

classes with similar hydrology (Figure 8).

Figure 4. Geographic distribution of three of the eight flow classes across physiographic provinces in the eight-state region. Physiographic provinces created by
Fenneman and Johnson (1946)

Copyright # 2011 John Wiley & Sons, Ltd.

R. A. MCMANAMAY ET AL.1026

River Res. Applic. 28: 1019–1033 (201 )

DOI: 10.1002/rra

2



Discriminant function analysis showed that the 13 vari-

ables used in the US classification misclassified 4.76% of

streams to their actual US flow classes. The 13 variables

misclassified 3.57% of their streams to our six flow classes.

The biplot of canonical scores showed that our six

flow classes were embedded in multivariate space of

their compatible US flow classes, suggesting hierarchical

structure (Figure 9). For example, SBF1 and SBF2 classes

were centralized around the GW class where PR1, PR2, IF

and CSI classes were centralized around the PR class. Our

six flow classes also tended to capture a greater extent of the

dimensionality of the dataset than the US classes at the scale

of this analysis (85 streams). We show 7 of the 13 variables

with the strongest loadings. The biplot rays showed that the

SBF streams had a higher baseflow index but SBF2 streams

had a lower low flow predictability (Figure 9). IF streams

diverged from PR streams based on daily variability whereas

PR streams diverged from one another based on low flow and

daily predictability. CSI streams diverged from PR streams

based on flood duration and the number of zero days.

DISCUSSION

We isolated six flow classes (eight statistically) in the eight-

state region that differ in the magnitude, frequency, duration,

Figure 6. Cost-complexity plot for the hydrologic classification tree com-
paring the cross validation error to the tree size (number of nodes) in order to
determinewhere the tree should be pruned. Trees are generally pruned at the
cost-complexity factor where at the minimum number of nodes that also

minimize the cross validation error (indicated by arrow)

Figure 5. Geographic distribution of five of the eight flow classes across different physiographic provinces in the eight state region. Physiographic provinces
created by Fenneman and Johnson (1946)
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timing and rate of change in flow and provide a reduced

set of hydrologic indices to use in future classifications.

Secondly, we show that datasets created at different scales

can be related and may exhibit hierarchical structure. Thus,

the divergence of flow classes may be relevant to the scale

of management.

One of the challenges in managing for flow diversity is the

inherent complexity and the variability of river systems

(Poff et al., 2003; Arthington et al., 2006). Our purpose is

to not undermine the importance in the individuality of

river systems. On the contrary, flow classifications should

reduce the complexity of ‘managing’ by providing a starting

Figure 7. Classification tree using 5 hydrologic metrics as primary splitting variables along with the 4 corresponding competing variables to classify six of the
eight flow classes. The left branchmeets the conditions of the equation on each node. The matrix below the tree shows the proportion of gauges in the actual flow
class (columns) classified to each flow class using the tree (rows). The proportion of each actual flow class accurately assigned by the tree is shown in gray boxes.

For class codes, see Table I
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baseline from which regional flow standards and criteria

can be developed. Flow classes provide ecologically-

relevant management units that reduce the complexity of

managing for the natural flow regime of every individual

river while also protecting the key elements that make

river flow distinct (Arthington et al., 2006). We also believe

that using this framework sets the stage for adaptive

management. For example, after flow standards and criteria

are developed and implemented based on ‘natural’ flow

classes, they also should be able to be modified based on the

individual needs of each river system. Therefore, treating

river flows as ecosystem-scale experiments is a necessary

aspect of river management (Poff et al., 2003) and a less-

explored area of ecology (Palmer and Bernhardt, 2006; Poff

and Zimmerman, 2010).

We found that 8% of stream gauges had probabilities

of class membership greater than 0.8, which suggests that

most gauges had a relatively strong affiliation to their

respective flow class. Also, results of the three different

clustering procedures indicated that the number of flow

classes (8) was fairly stable. Considering that 80% of our

gauges spanned the last four decades (i.e. substantial

overlap), we believe that assessing the uncertainty in using

15-year records is a worst-case scenario. Regardless, the

time period assessment revealed that 15-year records of

different time periods had substantially lower differences

compared to the inter-quartile range and entire range of

their respective clusters.

Table II. Comparison of the proportion of streams within each of
the flow classes created in this study compared to classes created
for the entire US. Classes for US found in Poff (1996). n refers to
number of streams within each flow class in this study. For class
codes, see Table I

US classes Flow classes (this study)

CSI IF PR1 PR2 SBF1 SBF2

n 9 3 21 25 12 15
GW 0.22 — — 0.04 0.66 0.73
IR 0.11 — — — — —
PR 0.66 1.00 1.00 0.96 0.33 0.26

Figure 8. Geographic distribution of our combined flow classes and the US flow classes (Poff, 1996) found within the eight state region. For class codes see
Table I
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Comparisons of hydrologic variables showed a great

deal of divergence among different flow classes. Thus, over-

generalized, static flow rules are inappropriate for managing

for the variability in flow of these ecosystems (Arthington

et al., 2006). Because we observed strong divergence in

flow classes, state agencies should re-consider existing

approaches for recommending environmental flows in the

permitting process. Management strategies for protecting

environmental flows will require policy reform, which

abandons static allocations to ranges of numbers that protect

the inherent variability in river flows (Richter et al., 1997).

Ultimately, managers and stakeholders must move away

from ‘water-allocation’ strategies and adopt ‘sustainable-

boundary’ approaches, which are viewed similar to water

quality protection in that they provide social goods and

services and create a sustainable, long-lasting resource

(Richter, 2010).

Classifying streams with similar hydrologic properties

has progressively received more attention in peer-reviewed

literature. Stream classification has been conducted

across the entire US (Poff and Ward, 1989; Poff 1996),

Australia (Kennard et al., 2010b) and even at global scales

(Poff et al., 2006b). Classifications have not just been

limited to theoretical frameworks but have been imple-

mented in management and flow policies. For example, with

the recent advent of state-wide water use management plans,

flow classifications have been developed for New Jersey,

Missouri and Oklahoma as standards for implementing flow

rules (Kennen et al., 2007; Kennen et al., 2009; Turton et al.,

2008). One area of needed research is to determine if rivers

within similar flow classes respond to regulation similarly

(Arthington et al., 2006).

Assessment of hydrologic properties

To provide names for flow classes, we chose a set of

ecologically relevant hydrologic variables that would allow

us to easily distinguish groups and that would make intuitive

sense to managers. Flows classes showed a great deal of

divergence among the hydrologic variables. Stable high

baseflow streams (SBF 1 and SBF 2) had characteristics of

stable flow (low variability, high predictability and higher

baseflows). However, they differed from one another in

terms of high flow duration. Intermittent –flashy streams (IF)

were primarily classified based on the high number of zero-

flow days (intermittency) and highly variable flows (flashy).

Coastal/swamp intermittent (CSI) streams were stable and

unresponsive (opposite of flashy), similar to SBF streams,

but differed in that they had sustained lower flows. Of the

CSI streams, swamps were the only water bodies showing

intermittency. Swamps may be highly sensitive to drought

conditions making them intermittent yet can be stable in

all other aspects. Most intermittent flashy (IF) streams

were located in the piedmont and had small drainage

areas, which suggests that small watersheds in combination

with piedmont type soils may result in flashy, highly variable

flows. The values of hydrologic variables of perennial runoff

streams (PR 1–2) generally were moderate in comparison

to the stable and highly variable extremes. For example,

PR streams had higher variability and lower baseflow than

Figure 9. Canonical plot of the streams found in both our study and that of
the US flow classification (Poff, 1996). Plot is based on the 13 variables used
in Poff (1996) to discriminate amongst the flow classes created in this study.
Ellipses represent flow classes from this study and were created using the
linear, common covariance discriminant method and show the 95% con-
fidence region. Point markers represent US flow classes. Biplot rays show
seven variables that exlain the most variability in flow classes (see Poff
(1996) for variable names). For class codes see Table I. This figure is

available in colour online at wileyonlinelibrary.com/journal/rra
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stable streams yet had lower variability and higher baseflows

than PF and IF streams. PR streams also had moderate

predictability, constancy and frequency of high flow events

relative to the other classes. PR streams had broad

geographical ranges across the five provinces. Interestingly,

we found a higher density of PR streams in the northern

section of the region. This suggests that climate, evapo-

transpiration and soil type may vary considerably with

latitude within the same physiographic province and lead

to differences in flow regimes.

Hydrologic classification tree

Providing flow rules from a large suite of hydrologic

indices can be overwhelming. Thus, we wanted to provide a

reduced set of hydrologic variables to provide managers

with two useful tools: (1) a set of variables to classify future

streams into one of the eight flow classes and (2) a

foundation of key indices to develop environmental flow

standards. The classification tree produced five variables that

were able to correctly classify 85% of the gauges in this

study.

Interestingly, monthly flows dominated the primary

splitting variables in the hydrologic classification tree.

However, in general, the tree supported the results of our

qualitative assessment using hydrologic variables alone to

describe flow classes. For example, stable high baseflow

streams (SBF 1 and 2) were separated from the other classes

based on higher summer flows (minimum July flows).

Although IF streams and PR 2 streams were isolated from

CSI streams primarily based on maximum November flows,

rise rate (responsiveness) and variability were represented as

competing variables that could separate the classes. Also,

IF streams were separated from PR 2 streams on the basis

of variability, which makes intuitive sense. The error

assessment also suggested that there was some overlap

among flow classes (Figure 7). For example, the SFB 1 class

was misclassified primarily as SFB 2 streams but also

misclassified to some degree in the other classes, except IF

streams. In general, this suggests that flow classes, in some

cases, may share some attributes of other classes, which

would make clear partitioning in a tree prone to error. Thus,

flow classes should not be viewed by their mean value but the

range of variability that they represent.

Hierarchical structure

The spatial scale at which flow regimes are evaluated

greatly influences the resolution to which ecologically

relevant differences can be isolated and then used in

management. Poff and Ward (1989) and Poff (1996)

conducted a flow classification of the entire US; however,

only three flow classes were isolated in the region of interest.

Our flow classes formed ‘sub-classes’ within the US classes

suggesting there was a hierarchical structure to flow

variability. Furthermore, our flow classes encompassed

more of the dimensionality of the dataset suggesting that as

the spatial resolution under consideration increases, the

divergence of more classes may be needed to adequately

represent variability at that scale.

The number of flow classes (e.g. clusters) is largely a

statistical artifact and a balance between sample size and the

variability of the entire dataset. In a clustering procedure, a

stream that is found in the margins of a cluster boundary will

obviously be more likely to join a different cluster if

more streams of a similar flow regime are included in the

dataset. Oppositely, if the variability of the entire dataset is

substantially increased (e.g. expanding the spatial scale

across multiple regions), then classes at smaller scales may

be lost. Thus, classifying flow regimes at various spatial

scales can be useful in forming hierarchical classification

systems (Poff et al., 2006b). The hierarchical classes may be

advantageous in that managers can then prioritize manage-

ment strategies based on the strengths of class divergence

and the specific application. For example, flow classes that

are divergent over large spatial scales should never be

managed similarly whereas flow classes that are divergent at

finer scales may or may not be managed similarly depending

on the whether management is conducted over inter or intra-

regional scales.

CONCLUSION

We classified 292 streams of an eight-state region of the

Southeast into six distinct flow classes that represent unique

flow regimes and differ in terms of the magnitude,

variability, frequency, duration and rate of change in flow

events. We believe that these flow classes can be used as

management units to develop environmental flow standards

that can be used setting regional flow standards and criteria,

providing guidelines for relicencing agreements and with-

drawal permitting, while also setting the stage for adaptive

management of flow restoration. We also provide a

subset of hydrologic variables that can be used to classify

streams in this region while also providing a reduced set of

relevant indices that are building blocks in developing

flow standards. We show that classifications conducted at

different spatial resolutions display hierarchical structure

and if underlying variables are available for analysis,

hierarchical analyses can be informative and useful for

management.
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