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Abstract. Improved firemanagement of savannas and openwoodlands requires better understanding of the fundamental
connection between fuel heterogeneity, variation in fire behaviour and the influence of fire variation on vegetation
feedbacks. In this study, we introduce a novel approach to predicting fire behaviour at the submetre scale, including

measurements of forest understorey fuels using ground-based LIDAR (light detection and ranging) coupled with infrared
thermography for recording precise fire temperatures.We used ensemble classification and regression trees to examine the
relationships between fuel characteristics and fire temperature dynamics. Fire behaviour was best predicted by

characterising fuelbed heterogeneity and continuity across multiple plots of similar fire intensity, where impacts from
plot-to-plot variation in fuel, fire and weather did not overwhelm the effects of fuels. The individual plot-level results
revealed the significance of specific fuel types (e.g. bare soil, pine leaf litter) as well as the spatial configuration of fire.

This was the first known study to link the importance of fuelbed continuity and the heterogeneity associatedwith fuel types
to fire behaviour at metre to submetre scales and provides the next step in understanding the complex responses of
vegetation to fire behaviour.
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Introduction

Savannas are often dependent on frequent fire to maintain their
physiognomy and these ecosystems, when frequently burned,

are of global importance in sustaining biodiversity (Bond et al.

2005). They also are critical in maintaining ecosystem services,
such timber, and fuel for energy and grazing (McPherson 1997).

The productivity and aerial extent of these ecosystems are
significant, accounting for 30% of terrestrial global primary
production (Grace et al. 2006). Understanding the management

of fire in these systems is critical to their ecological services.
Predicting the consequences of fire management of these

fire-dependent systems requires that we clearly understand the
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connection between fuel heterogeneity, variation in fire behav-
iour and the influence of fire variation on feedbacks in vegeta-
tion and thus fuels (Mitchell et al. 2009). The dynamics between

this heterogeneous fuel environment and the regulation of
future vegetation by fire have been referred to as the ecology
of fuels (Mitchell et al. 2009). This concept emphasises the

importance of fuels as a link between the combustion environ-
ment and vegetation response. Specifically, it targets a need for
better understanding of the ecological significance of fine fuels

and quantifying fuels and fire behaviour at the appropriate scale
in frequent-fire-dependent ecosystems (Hiers et al. 2007;
Mitchell et al. 2009). The appropriate scale is ultimately
determined by the spatial range of inherent variation of both

fuels and fire behaviour (Hiers et al. 2009; Loudermilk et al.

2009). This is characterised by the spatial distribution and
arrangement of vegetation fuel types, fuel structure, biomass

and condition (e.g. moisture content) as well as the variability
associated with neighbourhood relationships (e.g. fuel connec-
tivity). Fuelbeds – defined here as the understorey vegetation

and surface fuels that carry fire (DeBano et al. 1998) – in
frequent-fire systems have previously been described as homo-
geneous (Ottmar et al. 2007).We have recently shown however,

that they vary significantly at submetre scales (Loudermilk
et al. 2009) and fire varies at the same scale (Hiers et al. 2009),
thus pointing to a need for finer-scale fuel and fire measure-
ments to elucidate the process behaviour of fire. Ground-based

LIDAR (Light Detection and Ranging) data provide finer-
scale spatial data (at high spatial resolutions) on fuel structure
and type than traditional (point intercept) fuel measures

(Loudermilk et al. 2009). Infrared (IR) thermography also
provides a technological solution to increasing finer-scale
measurements of fire behaviour (Kennard et al. 2005). Com-

bining these emergent technologies provides great promise in
measuring fuels and fire in novel ways that may promote greater
understanding of relationships and mechanisms of controls.
Recent advances in statistics, in the realm of data-mining,

facilitate analysis of such large ecosystem datasets with com-
plex non-linear, high-order relationships (Prasad et al. 2006;
Seni and Elder 2010).

The objective of this study was to accurately measure data on
fuels and fire at a finer scale than previously possible and to
analyse relationships between fire and fuel characteristics using

statistical ensemble trees. The goal was to explore the extent that
variation in fuels can explain significant variation in fire
behaviour at the submetre scale in frequently burned longleaf

pine woodlands.

Methods

Study site

The site was at Ichauway, an 11 000-ha reserve of the JosephW.
Jones Ecological Research Center in Georgia, USA, classified

within the Plains and Wiregrass Plains subsections of the
Lower Coastal Plain and Flatwoods section (McNab and Avers
1994). The longleaf pine (Pinus palustris) sites have a history of

dormant-season prescribed fires for at least 70 years every 1 to
3 years. The understorey consisted of wiregrass (Aristida
stricta), many forb and prairie grass species and hardwood
shrubs. The study area had not burned for 1 year.

Data collection

In spring 2007, 20 georeferenced 4� 4-m plots were established
to measure fuelbed characteristics. Point-intercept (PI) fuel data
(169 samples, 0.33-m grid spacing) were recorded using a 5-mm

graduated dowel within each plot. At each PI sample, vegetation
types, maximum fuelbed and litter depth, and fuel presence or
absence were recorded. The georeferenced sampling captured

the spatial variation of the fuelbed found within a 16-m2 area
corresponding to the subcentimetre scale three-dimensional
(3D) laser data collected from the ground-based LIDAR.Within

2 weeks of field data collection, the Mobile Terrestrial Laser
Scanner (MTLS) was used to collect ground-LIDAR data on all
20 plots. Further details of the MTLS and field methods are in
Loudermilk et al. (2009) and Loudermilk (2010). Fire behaviour

was recorded using an FLIR (forward-looking infrared) digital
thermal imagery system (FLIR Inc. S60, Boston, MA, USA),
with details on data collection and specifications in Appendix 1

and Hiers et al. (2009).
Plots were burned during three controlled burns conducted at

an operational scale (,70 ha each) using strip head fires on

23 and 27 February and 16 March 2007. A strip head fire was
ignited 5m upwind of each plot with over 100m separating strip
heads from downwind strips when plots were ignited. Plots

within a burn unit were burned and sampled from downwind to
upwind. Each operational strip head fire was allowed to burn
through the plots undisrupted by additional lines of fire (Hiers
et al. 2009). Mean wind speed and temperature were similar

between days, ranging from 1.47 to 2.19m s�1 and 19.4 to
22.98C respectively. The mean plot level wind speed during the
fires ranged from 1.1 to 2.9m s�1. Relative humidity ranged

from 14.9 to 65.9% between days (Appendices 2, 3).

Data processing

The presence or absence data for fuel types collected in the field
(PI data) were represented as categorical binary variables

(1¼ present, 0¼ absent) for spatially explicit points (33-cm
spacing). These binary variables were used as (12) independent
metrics in the statistical analysis. Additionally, a fuel cluster

metric represented the spatial arrangement of the various fuel
types across plots (details of the analyses are found inHiers et al.
2009). The fuel cluster metric contained 11 clusters.

Processing the laser data entails merging the point clouds
from each scan into a common coordinate frame using the
Polyworks (InnonMetric, Quebec City, QC, Canada), Quick

Terrain Modeller (Applied Imagery, Silver Spring, MD, USA)
and TerraScan (Terrasolid, Jyvaskyla, Finland) software.
The subset of the point cloud that covers the region of interest
(4� 4-m plot) was isolated, with processing details found in

Loudermilk et al. (2009) and Loudermilk (2010). The spatial
resolution of all fuel and fire datasets corresponded to the PI data
on fuel types (i.e. 33� 33 cm). All datasets were scaled to 169

sample points per plot to coincide with the PI measurements,
which represented the entire plot, including edges. LIDAR
height (z) metrics calculated within each 33� 33-cm area (the

‘cell’) included mean, maximum, variance, kurtosis, skewness,
distribution ratio (mean/maximum), sum and spread (maximum
minus minimum). Laser point density and LIDAR intensity
values were normalised across all plots by dividing each cell’s
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value by the maximum value across all plots. LIDAR intensity
metrics included mean LIDAR intensity and three values that
coupled the interaction between volume of fuel (i.e. laser point

density) and type (leaf surface area) or condition (moisture) of
the fuel (i.e. LIDAR intensity), namely intsqrt, intqdrt and intlnr.
See Loudermilk (2010) and Appendix 4 for details.

The FLIR fire images were analysed using FLIR Systems’
ThermaCAM Researcher Pro version 2.7 software. The images
were rectified and georeferenced using image processing soft-

ware (Geomatica, PCI Geomatics, Alexandria, VA). Summary
statistics over time consisted of four fire behaviour metrics
(Tmax, maximum temperature; Q90, 90th quantile temperature;
T300, residence time above 3008C; and T500, residence time

above 5008C). Tmax was the highest temperature measured
within an area. Q90 filtered out the often short-term flaming
front and helped distinguish unburned patches from low-

temperature glowing-phase fire (Hiers et al. 2009). The two
residence time variables potentially segregated flaming-phase
fire-intensity measurements (T500) from the combined smoul-

dering and flaming phases (T300). Appendix 4 includes all
fuelbed and fire metrics used in this analysis.

Grouping of plots

Plots were grouped based on their fire behaviour metrics using
k-means clustering with SAS v9.1 (SAS Institute Inc., Cary, NC,
USA). This reduced discrepancies associated with local weather

or fuel condition variability. The number of clusters was chosen
based on the Cubic Clustering Criterion and pseudo F statistic.
There were three distinct clusters among the plots, representing

three levels of fire intensity. There was no distinction between
the three fire groups based on particular day of burn, plot-level
wind speed (range¼ 1.79–1.85m s�1) or ambient temperature
(19.4 to 22.98C). Although relative humidity was different

between days (i.e. variable within groups), there wasmost likely
little to no variability in relative humidity at the plot level for
influencing fire behaviour (i.e. 3–5-min fire duration). Details

are in (Loudermilk 2010) and Appendix 2,3.

Regression-tree modelling

Regression-tree modelling provides an alternative approach to
multiple regression, designed specifically for complex non-

linear relationships (Breiman et al. 1984). The CART (Classi-
fication and Regression Tree) software (v. 5.0, Salford Systems,
San Diego, CA) partitions variation in a binary recursive

approach. This iteratively creates relatively homogeneous (low-
deviation) terminal nodes, which then define their predictive
ability (Grunwald et al. 2009). Recent advances in data mining
include ensemble tree methods, which optimise target and pre-

dictor variable fitting (Seni and Elder 2010). We found other
linear ordination methods (e.g. correlation matrix, linear
regression) ill-suited for describing the multifaceted associa-

tions between fine-scale fuels and fire behaviour. CART has the
ability to overcome the deficiencies of traditional linear
methods and often provides superior results, especially when

multiple cross-validation procedures are used (Lewis 1992).
Many environmental datasets are complex, with high-order
interactions that may not be easily modelled using traditional
multiple regression analysis. Ensemble trees are specifically

designed for handling these problems (Breiman et al. 1984;
Prasad et al. 2006).

The LIDAR metrics and fuel types were analysed using each

of the four fire behaviour metrics with least-squares regression-
treemodelling inCART.CART analysiswas run for each grouped
dataset (mid-range (nine plots), high-range (five plots) and low-

range (six plots)) characterised by distinct differences in fire
behaviour and three randomly chosen plots within each group
(three plots). Spatial coordinates (x, y) were incorporated into

one fire metric model within each of the three individual plots to
assess the influence of spatial configuration of a plot-level fire. A
total of 27 CART simulations were run. Using the ensemble tree
methodology, committees trees (CT) inARCingmode (Adaptive

Resampling andCombining)were used inCART. The strength of
running the CT in ARCing mode is its ability to run multiple
(often hundreds of) regression trees and learn from each tree,

based on probability of bootstrap selection. This ultimately
builds a stable CT model where predicted values are averaged
across multiple versions of the predictors. Detailed descriptions

of each regression-tree methodology, including statistical
aspects, are found elsewhere (Breiman et al. 1984; De’ath and
Fabricius 2000; Prasad et al. 2006; Grunwald et al. 2009).

One hundred trees were run per CT simulation, while
employing the 10-fold cross-validation procedure in CART to
test prediction performance and optimise tree size (i.e. control
overfitting). The cross-validation approach is in essence a

‘repeated independent validation’ of the model where 10% of
the data is withheld for testing (model verification) and the
remaining 90% is used to predict the response variable. This

process is repeated and average error metrics are calculated for
prediction performance. This multiple continuous cross-
validation procedure minimises biases resulting from a single-

validation procedure (Lewis 1992; Power 1993; Rykiel 1996;
Sargent 2005). All trees are pruned and thus optimised (mini-
mum cross-validation relative error) to avoid overfitting,
because the strategy is to find a parsimonious tree that predicts

well, with the fewest input variables (Breiman et al. 1984). No
variables were removed from any models in our optimisation
approach, allowing a comparative analysis between fire models

with the same set of fuel variables both across (grouped) and
between (individual) plots. For each model, the coefficient of
determination (R2), root-mean-square error (RMSE), residual

prediction deviation (RPD), cross-validation relative error
(CVRE), resubstitution relative error (RRE) and number of
terminal nodes (Tn) (De’ath and Fabricius 2000; Grunwald

et al. 2009; Vasques et al. 2009) were recorded.
The CART relative importance rankings (importance value

(IV)) were used to assess the ability of the fuel metrics to predict
each of the firemetrics across the 27model runs.Whereasmodel

fit and error statistics provided overall model evaluation, these
IVs allowed us to assess the relative explanatory power (ranging
from 0 to 100) of the metrics in a heterogeneous fire

environment.

Results and discussion

Fire intensity groups

Relationships between fine-scale fuelbed and fire behaviour
characteristics were strong, especially when the fire environment
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was categorised a priori using fire intensity groups (Table 1,
Fig. 1). Other studies have used ground (Hopkinson et al. 2004;
Loudermilk et al. 2009) and aerial LIDAR (Lefsky et al. 1999;

Hall et al. 2005) as well as intensive field inventory data (Brown
1974, 1981) to characterise forest fuels and structure, but this
analysis is the first to relate complex fuelbed structure and types

to specific fire behaviour attributes at submetre scales.
Grouped fire models (low-, middle- and high-range data)

performed well (R2¼ 0.78 to 0.88, RPD¼ 2.11 to 2.92, Table 1,

Fig. 1) and often better than individual plot models (R2¼ 0.60 to
0.84). Grouped fire models exhibited strong model fit, with high
R2 values (R2¼ 0.78 to 0.88), low error (e.g. RRE¼ 0.051 to
0.141) andRPDvalues above 2 (RPD¼ 2.11 to 2.92). Reduction

in dimensionality through fire behaviour grouping allowed
optimised predictions of the response variables (Tmax, Q90,
T300 and T500). The three groups separated variability of fire

behaviour, therefore optimising variability of fuel characteris-
tics within each group. Modelling the collective dataset (all 20
plots) demonstrated weaker relationships (Appendix 5) than

when separating by fire behaviour intensity (Table 1).
The T300 and Q90 were especially strong variables in

middle- and high-range fire groups (T300 RPD¼ 2.40, 2.92;

Q90 RPD¼ 2.16, 2.86, Table 1, Fig. 1). In the low-range group,
Tmax was the strongest model (RPD¼ 2.43). In this group,
temperature variability and intensity were lower (data not

Table 1. Results of CART analysis for each grouped dataset using the

10-fold cross-validation procedure

Residence times (T300, T500) are in number of 4-s intervals. Response

variables are the fire metrics, namely Tmax, maximum temperature (8C);

Q90, 90th quantile temperature (8C); T300, residence time above 3008C;

T500, residence time above 5008C. Tn, number of terminal nodes; CVRE,

cross-validation relative error; RRE, resubstitution relative error; R2, coeffi-

cient of determination; RMSE, root-mean-square error; RPD, residual

prediction deviation

Response variable Tn CVRE RRE R2 RMSE RPD

High-range fire group (five plots, n¼ 845)

Tmax 136 0.57 0.10 0.80 23.52 2.25

Q90 132 0.42 0.08 0.88 24.24 2.86

T300 95 0.18 0.05 0.88 0.97 2.92

T500 122 0.32 0.08 0.83 0.60 2.41

Mid-range fire group (nine plots, n¼ 1521)

Tmax 236 0.54 0.11 0.78 26.85 2.14

Q90 218 0.52 0.12 0.79 22.54 2.16

T300 219 0.40 0.08 0.83 0.91 2.40

T500 243 0.60 0.14 0.78 0.50 2.08

Low-range fire group (six plots, n¼ 1014)

Tmax 128 0.46 0.11 0.83 33.30 2.43

Q90 140 0.28 0.08 0.86 8.80 2.30

T300 152 0.32 0.09 0.80 0.90 2.18

T500 150 0.43 0.09 0.79 0.37 2.11

R 2 � 0.88
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Fig. 1. Regression-tree results using CART (classification and regression trees) for Q90 (90th quantile temperature) and T300

(residence time (4-s intervals) above 3008C) using the high-range fire group (five plots, n¼ 845, (a), (c)), and individual plots within the

high-range fire group (n¼ 169, (b), (d)). Note the change in scale for the individual plots.
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shown). Modelling Q90 may be most appropriate when analys-
ing plots with similar fire characteristics, where there is suffi-
cient, yet distinguishable variability in temperature and fuel

attributes. The T500 models may be best suited for higher
intensity fires (e.g. high-range fire group T500, RPD¼ 2.41),
where there are adequate samples (i.e. 33� 33-cm cells)

flaming at or above 5008C.
Each CART model was unique in terms of sensitivity to

particular fuel types and characteristics, often varying between

fire intensity groups. Mean fuelbed depth (LIDAR height) was a
significant driver for all models (including grouped and individ-
ual plot models) (Table 2). Twenty-one of the 27 models had
mean LIDAR height within the top-five ranked variables. Other

height and fuelbed metrics varied by group in response to
changes in fuelbed continuity. Variability in fuelbed depth
was a strong predictor for the middle- and low-range fire

models, whereas sum of heights, point densities and fuel clusters
were more prominent in the high-range fire models. The
skewness and kurtosis metrics reflected fuels that were distrib-

uted towards the shorter or taller vegetation or those that were
excessively peaked (or lacking a peak) around the mean height
respectively. Disruption in fuelbed continuity (Fig. 2) causes

variability in radiative and convective heat transfer rates
between neighbouring fuels at small horizontal scales (,1m),
influencing fire intensity values (DeBano et al. 1998). As fuel
becomes more spatially uniform (Fig. 2), so do heat-transfer

mechanisms driving small-scale fire intensity.
Maximum height values were more important for tempera-

ture than residence time within all fire groups. Maximum

fuelbed height within cells (amount of fuel available to burn)
directly impacts fire temperature (Whelan 1995). Residence
time is influenced by bulk density and specific fuel types, such

as downed woody debris that may cause extended smouldering.
Temperatures may be similar with or without the downed
woody debris, but residence time increases substantially
(Mitchell et al. 2009).

LIDAR intensity metrics were important drivers among
models. Mean intensity was the most important metric (no. 1
in IVs) for T300 and Tmax in the high- and low-range fire

groups respectively (Table 2). The intsqrt and intqdrtmetrics were
significant drivers for T500 (no. 3 IV, middle-range group) and
T300 (no. 4 IV, low-range group). Otherwise, all intensity

variables had moderate IVs with no distinct trends between
models or groups. The difficulty in using LIDAR intensity
values in relation to fuels is that intensity values represent target

surface reflectance coupled with size of the intercepted surface.
These are difficult to separate and quantify (Riaño et al. 2004).
The point-intercept fuel-cluster metric was a significant model
driver among all fire group models. Within the high-range fire

group, the fuel-cluster metric was the most significant driver for
Q90 (no. 1 IV) and for T300 (no. 3 IV) (Table 2). Their
considerable model strength (RPD¼ 2.86–2.92) coupled with

their significant correlation with the fuel clusters supports the
findings inHiers et al. (2009) that Q90wasmore sensitive to fuel
clusters than the other fire metrics. A stronger fuel distinction

represented variability in fire behaviour, particularly smoulder-
ing effects. Conversely, the fuel clusters were more predictive
for Tmax than Q90 in the middle- (nos 7 and 14 IV) and low-

range (nos 5 and 14 IV) fire groups. Impacts of fuelbed
continuity were diminished in lower-intensity groups and the
fuel clusters coupled with structure influenced temperature
variability. The categorical fuel-cluster variables were signifi-

cant among the fire group models and often outperformed many
of the continuous LIDAR variables.

Fuel types were distinguishable between the fire groups. The

most prominent fuel-type metrics within each model ranged in
IVs from 5.4 to 27.0 in the fire groups. Wiregrass was a
comparatively stronger driver in the high-range fire groups

(maximum IV¼ 21.6). Bare soil was a dominant fuel-type
metric for Tmax for both high- (IV¼ 9.0) and middle-range
(IV¼ 13.3) fire groups as well as T500 (IV¼ 6.4, low group).
Residence time was more sensitive to areas of bare soil than

Table 2. Top five importance value (IV) rankings of input variables from CART analysis at the grouped-level analysis

Residence times (T300, T500) are in number of 4-s intervals. Complete list of input variables (metrics) is found in Appendix 4. Tmax, maximum temperature

(8C);Q90, 90th quantile temperature (8C); ht, height; ht dist. ratio, height distribution ratio (mean/maximum); intlnr, sumof normalisedLIDAR intensity values;

intqdrt and intsqrt, sum of normalised intensity values scaled by the quadratic and square root function

Response variables Top five ranked fuel metrics (IV)

High-range fire group (five plots, n¼ 845)

Tmax Spread of hts (100), max ht (96.3), sum of hts (81.2), mean ht (81), point density (75.5)

Q90 Fuel clusters (100), mean ht (73.3), point density (61.7), sum of hts (54.8), spread of hts (53.8)

T300 Mean LIDAR intensity (100), ht dist. ratio (66.5), fuel clusters (66.3), intlnr (40.8), intqdrt (39.4)

T500 Sum of hts (100), mean ht (97.9), ht dist. ratio (96.7), point density (69.4), max ht (66.0)

Mid-range fire group (nine plots, n¼ 1521)

Tmax Mean ht (100), ht variance (96.5), sum of hts (82.1), ht kurtosis (81.9), ht skewness (78.3)

Q90 Spread of hts (100), max ht (85.3), ht variance (79.1), ht dist. ratio (74.4), ht skewness (74.2)

T300 Mean ht (100), ht variance (78.2), ht kurtosis (71.0), ht dist. ratio (45.6), spread of hts (42.6)

T500 Mean ht (100), ht variance (96.8), intsqrt (88.4), mean LIDAR intensity (82.8), spread of hts (80.2)

Low-range fire group (six plots, n¼ 1690)

Tmax Mean LIDAR intensity (100), mean ht (72.1), ht skewness (72.1), spread of hts (68.5), Fuel clusters (64.8)

Q90 Ht variance (100), max ht (86.3), spread of hts (83.6), mean ht (81.1), ht dist. ratio (59.8)

T300 Ht kurtosis (100), ht skewness (86.0), mean ht (78.5), intqdrt (76.1), sum of hts (72.9)

T500 Mean ht (100), ht variance (73.2), max ht (73.0), spread of hts (70.1), sum of hts (62.9)
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temperature. Maximum temperature readings could be influ-
enced by bare soil in especially high-intensity fire areas, where

fluctuations in temperature were most likely higher. Although
pine litter was a less significant driver, it was notable that the

litter and perched litter abundance was directly related to the
associated fire group. For instance, the abundance of pine litter

and perched pine litter was highest in the high-range fire group
(e.g. 69 and 47%, compared with 38 to 50% and 32 to 34% for
other groups). The variability in pine litter was likely less
influential in groups because the variability was dissipated by

clustering the plots by fire intensity. Interestingly, pine litter
abundance was more influential at the collective level
(i.e. modelling all plots together; data not shown, but see

Loudermilk 2010). Relative to other fuel types, pine-litter
abundance and distribution dominantly impact fire intensity
within this system, with their high surface area-to-volume ratio

and high resin content (Hendricks et al. 2002). This fuel type,
however, cannot be accurately measured with LIDAR instru-
mentation because of its implicit structure within the fuelbed
and compaction near the ground. As surface leaf litter, it is

virtually indistinguishable from LIDAR returns of the ground.
Similarly, perched pine needles are draped over plants, becom-
ing a part of their architecture. The clustering of fuels was the

most effective approach to capturing the complex heterogeneity
in fuel types for fire behaviour analysis.

Individual plots

Individual plot analysis of fine-scale fire events, minimally
influenced by local weather or fuel state, was useful. The mean
wind-speed values within the three individual plots ranged

between 1.2 and 2.0m s�1. All models were strong (R2¼ 0.60 to
0.84, RPD¼ 1.58 to 2.27, Table 3). The individual high-range
plot (Table 3, Fig. 1) generally performed better than themiddle-
or low-range group, similarly to the grouped data findings.

(a)

(b)

(c)

Fig. 2. Changes in fuelbed continuity among the three plots (4� 4m)

modelled individually, namely (a) the high-range plot (maximum height:

1.5m); (b) the middle-range plot (maximum height: 1.5m); and (c) the low-

range plot (maximum height: 3.9m). Note the loss in horizontal and vertical

connectivity and increase in patchiness of fuels from the high-range to low-

range plot ((a) to (c)). The colour gradient represents vegetation height

distribution, which aids in visualisation of the 3D vegetation structure.

Table 3. Results of CART analysis for individual plots (n5 169 each)

within the three fire groups, including those with x, y coordinates

included as inputs

Residence times (T300, T500) are in number of 4-s intervals. Tmax,

maximum temperature (8C); Q90, 90th quantile temperature (8C); Tn,

number of terminal nodes; CVRE, cross-validation relative error; RRE,

resubstitution relative error; R2, coefficient of determination; RMSE, root-

mean-square error; RPD, residual prediction deviation

Response variable Tn CVRE RRE R2 RMSE RPD

High-range individual plot

Tmax 27 0.46 0.06 0.81 23.08 2.27

Q90 25 0.51 0.12 0.80 17.74 2.26

T300 24 0.40 0.11 0.68 0.64 1.78

T300 (x, y) 25 0.44 0.11 0.74 0.58 1.95

T500 29 0.60 0.10 0.76 0.44 2.03

Middle-range individual plot

Tmax 25 0.57 0.12 0.74 27.95 1.95

Q90 22 0.65 0.13 0.64 30.34 1.66

Q90 (x, y) 21 0.52 0.16 0.72 27.10 1.86

T300 25 0.48 0.11 0.60 1.54 1.58

T500 27 0.44 0.12 0.61 0.72 1.59

Low-range individual plot

Tmax 25 0.40 0.10 0.79 37.02 2.20

Tmax (x, y) 25 0.32 0.09 0.84 33.20 2.45

Q90 19 0.41 0.09 0.75 7.80 1.71

T300 24 0.61 0.19 0.70 0.74 1.81

T500 13 0.67 0.28 0.76 0.33 2.01
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Results were less consistent than between the grouped models,
and model fit was often worse than for the grouped data: only

five of the model runs had RPD values above 2. This may be
explained by the model sensitivity to extreme values. When
other plots had comparable outliers, especially within a char-

acteristic fire group, then the variability was smoothed,
improving predictive models. Stronger statistical models were
found using grouped fire-trait data, whereas model strength of
individual plots varied considerably depending on the local fuel,

weather and fire environment.
Variability between plots was evident when examining the

predictive power of the fuel metrics (Table 4). Mean fuelbed

depth (LIDAR height) was one of the strongest drivers. In the
low-range plot, it ranked within the top three IVs for all
models. Point density was a strong driver for all models in

the high-range fire plot (within top five ranked IVs), similarly
to the grouped results. Point density (and sum of heights) was
stronger in the lower-intensity plots than within the grouped

results. This finding suggests that fuelbed continuity may be
more sensitive at the plot level. The two models for T500 were
consistent with the middle and low ranges in relation to point
density and height distribution metrics. The high-range plot

displayed fuels that had few disruptions in fuelbed structure
and heights across the plot (Fig. 2a). The fuelbed was patchier
within the middle-range plot (Fig. 2b), whereas large varia-

tions in height and patchy fuels were found in the low-range
plot (Fig. 2c). This provides further support that fine-scale
spatial fuelbed structure significantly influenced fire behaviour

within and between plots.
LIDAR intensity metrics were moderate to high predictors

across all plots (Table 4), signifying their utility as a fuel
metric for fire behaviour modelling. Seven of the twelve

individual models (without x, y) had at least one LIDAR metric

within the top five IVs, but mechanistic explanation of the
LIDAR intensity associations needs additional development.

Bare soil (,1% abundance of all fuel types) was important
for residence time, which was only distinguishable in the
grouped-level analysis using the PI fuel-cluster metric. For the

high-range plot, the bare-soil metric (no. 8 IV) was especially
strong for T300, outperforming various LIDAR height metrics.
The 10- and 100-h fuel metrics were more influential at the
plot level, also demonstrating significance of both Q90 and

residence time.
Spatial configuration was an important predictor of fire

behaviour (Table 3, initial RPD¼ 1.66 to 2.20 without geo-

graphic coordinates and improved RPD¼ 1.86 to 2.45 with
geographic coordinates). The improvement from including fuel
spatial positions was largest for initially weaker models (e.g.

Q90, RPD improved from 1.66 to 1.86 andR2 from 0.64 to 0.72),
where wind direction or neighbourhood fuel combustion prop-
erties could influence fire behaviour more than fuel structure

and type alone. The spatial metric was found in the top five IVs
for all three (x, y) models (Table 4), which changed the
predictive ability (IVs) of some other variables. This caused a
‘spatialmasking’ of certain fuel characteristics. For instance, the

significance of bare soil in the T300 model decreased in the
T300 (x, y) model (i.e. bare soil IV changed from no. 8 (35.8) to
no. 15 (19.9)). This also caused interactions with other fuel

characteristics. Deciduous oak litter was not a predictor for Q90
without including x, y values (i.e. IV ranking changed from no.
17 (0) to no. 12 (17.1)), becoming the most significant fuel-type

metric. The same occurred for forbs in the Tmax (x, y) model.
Similarly, some LIDAR metrics, such as height variance in the
T300 model, significantly increased in importance. Some
metrics were more consistent (e.g. point density and intqdrt for

T300, mean LIDAR intensity for Q90). These results signify

Table 4. Top five importance value (IV) rankings of input variables from CART analysis at the individual plot level

Temperatures (Tmax, Q90) are in 8C. Residence times (T300, T500) are in number of 4-s intervals. Complete list of input variables (metrics) is found in

Appendix 4. ht, height; ht dist. ratio, height distribution ratio (mean/maximum); intlnr, sum of normalised LIDAR intensity values; intqdrt and intsqrt, sum of

normalised intensity values scaled by the quadratic and square-root function

Response variables Top five ranked fuel metrics (IV)

High-range plot (n¼ 169)

Tmax Point density (100), intsqrt (81.8), intlnr (81.3), sum of hts (60.1), intqdrt(57.6)

Q90 spread of hts (100), sum of hts (87.2), ht dist. ratio (77.2), point density (76.8), intlnr (66.8)

T300 Point density (100), intlnr (91.8), intqdrt (85.9), intsqrt (82.8), mean ht (46.4)

T300 (x, y) Ht variance (100), point density (97.3), intqdrt (89.9), spread of hts (79.9), y coordinate (78.9)

T500 Ht dist. ratio (100), ht kurtosis (86.7), point density (79.6), mean ht (67.9), ht variance (67.5)

Mid-range plot (n¼ 169)

Tmax Sum of hts (100), mean ht (91.3), ht skewness (66.2), point density (64.9), ht variance (44.9)

Q90 Max ht (100), mean LIDAR intensity (93.9), mean ht (88.3), spread of hts (79.4), sum of hts (77.7)

Q90 (x, y) y coordinate (100), mean LIDAR intensity (90.7), ht skewness (71.6), max ht (68.3), spread of hts (66.1)

T300 Ht dist. ratio (100), point density (96.3), spread of hts (82.4), mean ht (76.4), intlnr (74.3)

T500 Ht variance (100), ht dist. ratio (76.0), ht skewness (74.4), ht kurtosis (71.2), spread of hts (65.7)

Low-range plot (n¼ 169)

Tmax Mean ht (100), spread of hts (87.0), max ht (77.9), ht kurtosis (69.0), ht skewness (60.6)

Tmax (x, y) x coordinate (100), ht kurtosis (58.8), ht skewness (57.7), spread of hts (49.2), intlnr (48.8)

Q90 Mean ht (100), point density (65.5), ht variance (62.8), sum of hts (59.7), max ht (57.8)

T300 Mean ht (100), sum of hts (67.4), mean ht (62.6), intsqrt (60.1), intqdrt (56.1)

T500 Ht skewness (100), mean ht (98.4), ht kurtosis (76.0), mean LIDAR intensity (61.9), ht dist. ratio (53.0)
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sensitivity to the spatial configuration of firemovement between
fuels. We also modelled the spatial autocorrelation of the
residuals; however, very weak spatial autocorrelations were

found, warranting no further modelling of spatial autocorrela-
tion patterns.

Constraints of the analyses

The non-linear approach used in this study, though novel, has

constraints. Common fuel measurements (e.g. fuel moisture and
biomass) often used in relating fuels to fire behaviour were not
used in this study. In all likelihood, fuel moisture was relatively
constant during the 3- to 5-min fires, eliminating the need to

incorporate within-plot fuel moisture conditions. The fuel-
cluster metric, used in the fire group models, accounted for
variation in fuel moisture content between similar fire-intensity

plots. In addition, certain LIDAR metrics may represent bio-
mass; a particular fuel’s laser point-density is likely proportional
to volume and highly correlated with biomass and leaf area

(Loudermilk et al. 2009).Testing the significance of biomass
and other environmental variables may be useful. LIDAR does
not directly distinguish between vegetation types. Height

thresholds have been used to classify the understorey and
overstorey (Riaño et al. 2003). Tree species have been differ-
entiated by individual tree canopy shape and size or when
coupled with remotely sensed imagery (Popescu et al. 2004).

LIDAR intensity values have been used to distinguish between
fuel types by variation in leaf area and vegetation height (Su and
Bork 2007; Wing et al. 2010), but vegetation types within the

surface fuelbed cannot be easily determined. Despite these
potential caveats, this statistical approach is promising for
addressing fuel–fire relationships at this scale that are otherwise

difficult to assess empirically.
IR thermography was critical for enabling us to capture

spatially explicit fire behaviour to link with fuel structure and
type. Whereas flame characteristics are frequently used as

dependent variables in fire behaviour analysis, the system we
used only records temperatures of surfaces, i.e. living and dead
vegetation and soil. The system does not capture flame char-

acteristics well; in fact, emission from the surfaces of particles
entrained in combusting gases is the main source of IR radiation
detected by the S60. If we had chosen to capture flame

characteristics such as flame length, we would have had to rely
on subjective and error-prone visual estimates. As our ultimate
goal was to link fuels to fire behaviour and eventually fire

effects, we focussed on capturing the temperatures of fuel
surfaces and non-combusting vegetation and soil, which are
variables closely linked to both fire behaviour and fire effects.
Although inaccuracy could have been introduced by the camera

position and the impacts of atmospheric absorption and trans-
mittance, the S60 IR wavelengths greatly reduce errors from
atmospheric emission and absorption. Soot particles dominate

flame IR emission in this system and errors associated with
flame emission would also be relatively minor as flames flicker
and soot becomes diluted rapidly with distance from the fuel

(Dupuy et al. 2007). Unburned fuels between the camera and fire
would also introduce error, but the angle view of the camera
(408) and the grassy fuels with scattered shrubs minimised this
error. Furthermore, the position of the camera upwind and

perpendicular to the flaming front also reduced the potential
for unburned fuels blocking burning fuels. The cumulative
effects of these errors would only minimally reduce the predic-

tive power of the models. Although no measurement system is
perfect, we argue that the spatially explicit measurements made
possible by IR thermography are superior to any currently

available technology. Thermocouples and temperature-
sensitive paints and other currently available methods are even
more error-prone and cannot capture fine-scale spatial data

effectively (Kennard et al. 2005).
Qualitative observations indicate that differences in fire

behaviour among fuels cells diminish at higher intensities.
Gusty winds were observed to change both the intensities that

some fuel cells burned at and the behaviour of the fireline among
neighbourhoods of different cells. Determining whether the
relationship between fire intensity and fuel characteristics is

continuous or shows a threshold response would be a useful
avenue of research.

Implications

This study is another step in understanding the complex

responses of vegetation to fire behaviour and establishing the
concepts of the ecology of fuels (Mitchell et al. 2009) and
wildland fuel cells (Hiers et al. 2009). Both concepts address the
inability of past approaches to fully connect fuel heterogeneity

to fire behaviour and fire behaviour to fire effects.
Forest vegetation dynamics of fire-dependent systems, par-

ticularly longleaf woodlands, are a function of competition and

fire (Pecot et al. 2007; Loudermilk et al. 2011). Both processes
regulate the types, amounts and spatial distribution of fuels
(Mitchell et al. 2009). We have previously shown that small-

scale variation in vegetation impacts fuel types and amounts
(Loudermilk et al. 2009), and the variation in fuel cells influ-
ences the spatial patterns in fire (Hiers et al. 2009). Hiers et al.
(2009) found that fuel and fire heterogeneity were similar at

these fine scales, where discrete patches of each could be
determined (using the IR imagery and ground-based LIDAR),
and discussed the complexity of their relationships at this scale.

The present work advances the previous study (Hiers et al. 2009)
significantly by directly linking specific fine-scale fuel char-
acteristics, e.g. fuel depth, fuel type, spatial configuration, to

particular fire behaviour attributes within and between individ-
ual fires (i.e. 4� 4-m plots).

This study also has implications for ecosystem management

and ecological forestry silvicultural prescriptions. Fine fuels, in
this case pine-needle litter, drive fire dynamics within a longleaf
pine system by supplying a continuous flammable fuelbed.
Timber extraction disrupts (among other things) the subsequent

distribution and abundance of pine litter, contributing to nega-
tive feedbacks between fuel continuity and fire behaviour. The
responses to the small-scale heterogeneity in the fuelbed are

relatively unknown and could be examined through these
techniques. Natural pine regeneration response to subsequent
vegetative competition (i.e. established hardwoods) in newly

created forest gaps (i.e. from individual or group-selection
techniques) is critical. The competitive (or possible facilitative)
interactions between established pine seedlings and hardwood
sprouts may be determined by the spatial and temporal changes
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in fuels (impacted by overstorey removal) that ultimately drive
changes in fire behaviour (Mitchell et al. 2006; Pecot et al.
2007). This fine-scale assessment of fuel and fire variability has

often been ignored; first, because of measurement constraints
and second, because of a misconception that low-intensity fires
occurring under similar weather conditions and general fuel

traits in these systems are relatively homogeneous and within-
plot variability was insignificant for driving fire effects.
Although this may be true at a particular scale beyond plot

level, the finer-scale variability has been neglected and its
implications at other scales need to be investigated.

These low-intensity surface fuel–fire concepts are scale-less
and can be applied to any-size fire where fuel composition and

structure may drive combustion and smouldering characteris-
tics associated with low-intensity wildland fires. Although low-
intensity controlled burns are often applied when wind speeds

are low (,0.5–1.5m s�1) and other environmental variables are
optimal (temperature, relative humidity, wind direction; Wade
et al. 1989), the natural fire regime in these pinelands is

characteristically high-frequency low-intensity, where these
surface fuel–fire concepts are relevant. These low-intensity
fires are characteristic of south-eastern USA pinelands (Smith

et al. 2009) and shape savanna systems globally (Bond et al.

2005).

Conclusions

This study was the first integration of high-resolution LIDAR
and thermal imagery to assess fine-scale relationships between

fuelbed variation and heterogeneity in fire behaviour. Grouping
the plots based on similar fire intensities provided the best
models in terms of fit and predictive capability and reduced the
effects of plot-to-plot variation in fuel, fire and weather condi-

tions that were not explicitly modelled. The strongest model fit
was found in the high-range fire groups, specifically for Q90 and
T300, where the fuel clusters were highly significant predictors.

Although grouped datasets were most promising, the individual
plots revealed significance of specific fuel types (e.g. bare
ground, deciduous litter) and the importance of spatial

configuration of fuel types. Mean fuelbed height was overall a
significant variable, important for temperature and residence
time predictions in these fine-fuel-dominated fuelbeds. Fuel
metrics demonstrated the importance of fuelbed continuity (both

horizontal and vertical) in driving fire behaviour at fine scales.
This work offers promise in linking fire behaviour to fire effects
at appropriate scales in these ecosystems.
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Appendix 1. Details of infrared imagery data collection
and specifications for recording fire behavior

Surface temperature estimates were based on emitted infrared
(IR) radiation and application of the Stefan–Boltzmann Law for
a grey body emitter. Surface temperature estimates are driven by

heat produced by combustion of the surface itself and by con-
vection and radiation from nearby flames and conduction
through the material itself. The detector is a focal-plane array

uncooled microbolometer with 320� 240 pixels and a spectral
range of 7.5–13 mm. The S60 was fitted with a 458 lens and
positioned along with the operator on a boom approximated
7–8m above the ground and 9m from the plot centre (view

angle,408). The camera was positioned on the upwind side and
perpendicular to a head fire so that burning fuels would be in
front of unburned fuels, minimising signal dilution or obstruc-

tion. Measurements were corrected for air temperature, relative
humidity and distance from target (Hiers et al. 2009), and
emissivity was set at 0.96 (an average of live and dead vegeta-

tion, Z. Wan, unpubl. data). The estimation algorithm is robust
to variation in atmospheric temperature, IR emission and IR
transmittance. Thermal data were recorded at 0.25Hz. After

initial preburn images were collected of the fuel bed, the tem-
perature range of 300 to 15008C was chosen to capture typical
longleaf fires.

Appendix 2. Date recorded and mean wind speed measured within each plot as the fire passed through

Plot Fire group Wind speed (m s�1) Date

1 Middle-range 1.73 23-Feb-2007

2 Middle-range 1.43 27-Feb-2007

3 Middle-range 1.26 27-Feb-2007

4 Middle-range 2.45 23-Feb-2007

5 Middle-range 1.81 23-Feb-2007

6 Middle-range 1.66 27-Feb-2007

7 Middle-range 2.88 16-Mar-2007

8 Middle-range 2.31 16-Mar-2007

9 Middle-range 1.15 27-Feb-2007

1 High-range 1.64 27-Feb-2007

2 High-range 1.41 16-Mar-2007

3 High-range 1.46 23-Feb-2007

4 High-range 2.39 27-Feb-2007

5 High-range 2.03 16-Mar-2007

1 Low-range 1.65 23-Feb-2007

2 Low-range 1.56 16-Mar-2007

3 Low-range 1.34 27-Feb-2007

4 Low-range 1.89 16-Mar-2007

5 Low-range 2.18 16-Mar-2007

6 Low-range 2.41 16-Mar-2007

Appendix 3. Burn day mean wind speed and direction from wind sensors next to each plot as well as mean

temperature and relative humidity (RH) from a local weather station

Burn date Wind speed (m s�1) Wind direction Temperature (8C) RH (%) No. plots

23 February 2007 1.80 South 19.36 14.88 5

27 February 2007 1.47 South-west 22.88 42.28 7

16 March 2007 2.19 South-west 22.06 65.86 8
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Appendix 4. Fuelbed (ground-LIDAR and point-intercept)metrics and fire (FLIR (forward-looking infrared))metrics

created for the CART (classification and regression trees) analysis

Metrics were determined within 33� 33-cm cells within 20 4� 4 -m forest plots. All height values are in metres and point-

intercept data are categorical. All intensity and point density values are normalised across all plots. Fuel typeswere either present

(1) or absent (0). sqrt, square root; qdrt, quadratic

Fuelbed metrics Fire metrics

Ground-LIDAR Point-intercept FLIR

x, y coordinatesA Fuel clusters (1–11)B Maximum temperature 8C

Mean height Fuel types (0 or 1): 90th quantile temperature 8C

Maximum height 1- and 10-h fuels (10 h) Residence time above 3008C

Variance of height 100- and 1000-h fuels (100 h) Residence time above 5008C

Kurtosis of height Pine litter

Skewness of height Oak litter

Height distribution ratio (mean/maximum) Perched pine litter

Sum of heights Perched oak litter

Spread of heights (maximum – minimum) Wiregrass

Point density (0–1) Other grasses

Mean LIDAR intensity (0–1) Forbs

intsqrt (sum of sqrt(LIDAR intensity)) Shrubs

intqdrt (sum of qdrt(LIDAR intensity)) Volatile shrubs

intlnr (sum of LIDAR intensity) Bare soil (no vegetation or fuel)

AUsed for plot-level analysis only; Bused for multiplot (e.g. grouped) analysis only.

Appendix 5. Results ofCART (classification and regression trees) analysis at the collective plot level (all plots together)

using the 10-fold cross-validation procedure

Residence times (T300, T500) are in number of 4-s intervals. Response variables are the fire metrics, namely Tmax, maximum

temperature (8C); Q90, 90th quantile temperature (8C); T300, residence time above 3008C; and T500, residence time above

5008C. Tn, no. of terminal nodes; CVRE, cross-validation relative error; RRE, resubstitution relative error; R2, coefficient of

determination; RMSE, root-mean-square error; RPD, residual prediction deviation

Response variable Tn CVRE RRE R2 RMSE RPD

Collective data (20 plots, n¼ 3380)

Tmax 330 0.540 0.124 0.43 64.37 1.24

Q90 322 0.390 0.090 0.22 63.62 1.11

T300 323 0.317 0.062 0.54 1.91 1.46

T500 341 0.296 0.063 0.38 1.61 0.90
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