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Abstract 

Development of efficient forest fire policies requires an understanding of the underlying 

reasons behind forest fire ignitions. Globally, there is a close relationship between forest 

fires and human activities, i.e., fires understood as human events due to negligence (e.g., 

agricultural burning escapes), and deliberate actions (e.g., pyromania, revenge, land use 

change attempts). Wildfire occurrence even for human-ignited fires has also been shown to 

be dependent on biophysical variables (e.g., fuel conditions). Accordingly, this paper 

modelled the spatial risk of forest fire occurrence as a function of natural as well as 

socioeconomic variables. The study area is the region of Galicia (NW Spain). Our data 

include approximately 86,000 forest fires in nearly 3,800 Galician parishes, the unit of our 

study, during the ten years period 1999-2008, inclusive. The analysis combines spatial and 

non spatial econometric approaches to evaluate the consistency of the results and account 

for spatial autocorrelation in the fire ignitions data. 
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1. INTRODUCTION 

In Spain, wildfires are a recurrent phenomenon, with an annual average of 15,000 forest 

fires and 173,000 ha burned between 1980 and 2010 (MARM 2010). A significant 

proportion of these fires, and in particular those intentionally ignited, occurred in the region 

of Galicia, northwest of Spain (APAS and IDEM 2006). Thus, during the period 1999-2008 

an annual average of close to 8,600 forest fires burned about 40,000 ha in Galicia. Most 

fires are human-caused (99%), approximately 82% are set intentionally and 5% are either 

ignited accidentally or through negligence (Chas-Amil et al. 2010). However only a limited 

number of research has specifically evaluated how the human presence in this territory 

increase the risk of fire ignition (Martinez et al. 2009; Padilla and Vega-García 2011; 

Prestemon et al. forthcoming). This contrasts with the increasing literature on empirical 

assessments of the influence of socioeconomic aspects on forest fire risks, using variables 

such as population density, land cover changes associated with agriculture abandonment, 

distance to road or the density of human settlements (e.g., Brosofske et al. 2007; Maingi 

and Henry 2007; Moreira et al. 2011; Narayanaraj and Wimberly 2012). 

In this study, the spatial pattern in the number of fires throughout Galicia is modelled to 

determine which topographic, meteorological, and socioeconomic variables best explained 

a decade-scale pattern of fire activity (1999-2008). However, the analysis of spatial data is 

complicated by the potential presence of spatial autocorrelation (SAC) (Dormann et al. 
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2007). SAC occurs when fire data from locations close to each other have more similar 

values than those farther apart. It may emerge because fire ignitions in a given area are 

strongly dependent on natural and human factors that are also themselves spatially 

structured, i.e., values in a given location are strongly influenced by those in their 

surroundings (Chou 1992). If this SAC still exits in the residuals of an econometric model 

of spatial data, this may lead to biased coefficients and limit hypothesis testing. We apply 

non-spatial and spatial models to evaluate the consistency of our results and the effect of 

spatial autocorrelation on estimated coefficients and inference.  

 

2. MATERIALS AND METHODS 

2.1. Study area 

Galicia (NW of Spain) comprises a total area of 29,575 km
2
, which corresponds to a 6% of 

the Spanish geographical area. Individual private ownership represents 68% of the forestland, 

while 30% is under collective private ownership. Forests cover nearly 70% of its territory and 

approximately 67% of this forestland is wooded. Pinus pinaster, Eucalyptus globules, Quercus 

robur, and Quercus pyrenaica are the main tree species. 

2.2. Materials 

In this work, we studied 1999-2008 wildfire data provided by the General Statistics of 

Forest Fires compiled by the Spanish Forest Service and the Rural Affairs Department of 

the Regional Government (Xunta de Galicia). This means a total of 85,784 wildland fires, 

which burnt 319,651 hectares. Recorded fire ignitions were assembled into a dataset of 

counts of wildfires for each of the 3,790 Galician parishes. We opted for the parishes as the 

geographical unit for the analysis because it is the smallest administrative unit that divides 

the territory. The parishes’ mean size is 779 hectares with a standard deviation of 664 

hectares.The potential explanatory variables studied in the model specification were based 

on an extensive literature review and can be divided in three broad types: topographic, 

meteorological, and socioeconomic. The variable definitions and their sources are 

summarised in Table 1. 

2.3. Methods 

We use Moran’s Index to evaluate the degree of spatial autocorrelation of the Galician fire 

data over the studied decade (Moran 1950). Our modelled response variable is wildfire rate 

defined as the number of fire events per parish divided by the parish area, reported as fires 

per 100 hectares. Both Negative-binomial regression and OLS estimation were used to 

model fire ignitions as a function of the socioeconomic and natural covariates. A negative 

binomial model was chosen because of the overdispersion in the fire data per parish. 

Following Osgood (2000), we modified the basic Negative Binomial regression so that the 

analysis focuses on the fire rate per parish rather than counts of fire events. In addition, 

given the spatial character of fire data, the presence of spatial autocorrelation in the 

regression is examined using correlogram plots, which measure the similarity of the 

residuals as a function of geographical distances. A Generalised Least Squares (GLS) 

estimation, building a correlation structure that captures the fire’s spatial patterning, was 

also applied to evaluate the consistency of estimation parameters and spatial correlation 

effects. An exponential spatial correlation structure was used, as these fit the variogram of 

residuals produced when using a simple GLS without a correlation structure (Dormann et 

al. 2007). 



Modeling Fire Behavior and Risk 
 

 183 

 

Table 1. Independent variables for modelling forest fire occurrence at the parish level 

Variables Data source Description Units 

Physiography    

Slope 10 m Digital Elevation Model 

(1:5,000). SITGA. 

Mean, minimum, maximum and 

standard deviation of the parish 

slope. 

% 

Elevation 10 m Digital Elevation Model 

(1:5,000). SITGA. 

Mean and range elevation 

observed in the parish. 

m 

Meteorology    

Air temperature  Digital Climatic Atlas of the 

Iberian Peninsula- spatial 

resolution 200 m (Ninyerola et al. 

2005). Monthly data. 

Annual mean, maximum, 

mininum  

ºC 

Precipitation  Digital Climatic Atlas of the 

Iberian Peninsula- spatial 

resolution 200 m (Ninyerola et al. 

2005). Monthly data. 

Annual mean l/m2 

Forest use cover    

Forest area: 

 

- Wooded land 

- Other wooded land 

Third Spanish Forest Inventory 

cartography (1:50,000). MARM. 

Land with tree crown cover, or 

equivalent stocking level of: 

-higher than 10% 

-lower than 10% 

ha 

Dominant forest 

vegetation: Eucalyptus, 

Conifers, Other broad-

leaved species  

Third Spanish Forest Inventory 

cartography (1:50,000). MARM. 

Area ha 

Pure monoculture: 

Eucalyptus, Conifers, 

Other broad-leaved 

species 

Third Spanish Forest Inventory 

cartography (1:50,000). MARM. 

Pure stands were considered 

with at least 80% of the area 

covered by a single species. 

ha 

Forest plantations Third Spanish Forest Inventory 

cartography (1:50,000). MARM. 

Area of planted forest consisting 

primarily of introduced species. 

ha 

Forest land tenure: 

Public, Private, 

Communal 

Third Spanish Forest Inventory 

cartography (1:50,000). MARM. 

Area by parish ha 

Protected natural area Protected natural spaces coverage 

(1:25,000) 

Consellería do Medio Rural 

Area of protected natural area 

by parish (dummy variable) 

 

Human factors    

Population density Nomenclator (INE) 

 

Mean of parish’s population in 

the period divided by parish 

area 

hab/ha 

Road density (paved, 

path, forest path) 

Base Topográfica Nacional 

(BTN25) (1: 25,000) 

m of roads included in the 

parish divided by parish area 

m/m
2
 

Accessibility index Base Topográfica Nacional 

(BTN25) (1: 25,000) 



Si = exp(dij
i j

 )A j
 

A is population size in parish j. 

α takes a value of 0.001 

(average travelling distance is 

10 km) 
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3. RESULTS 

The spatial representation of the total number of fires per parish illustrates that wildfires are 

mainly concentrated on the Atlantic coast and in the South. The global Moran’s Index for 

wildfire occurrence was 0.404, indicating the presence of a statistically significant positive 

spatial autocorrelation in the parishes’ fires (z-score=42.03, p-value: 0.000). OLS, Poisson 

and GLS estimates show consistent results in terms of the signs of the coefficients 

(Table 2).  

 

Table 2. Model estimation results. 

 

 

The variables explored have a significant effect on forest fire events in both the OLS and 

negative binomial models, except for forest path density. In addition, the regression 

coefficients for population density, percentage of forestland, and communal private 

forestlands were always positive and significant for all models. This means that, as 

expected, the higher the population pressure and the greater the share of forestland with 

respect other land uses in the parish, the greater the probability of fire occurrence. A 

negative relation is shown, however, with the percent of forest plantations and the 

percentage of forest area that is wooded. This result indicates that sparsely wooded 

landscapes are at lower risk of fire, while less densely wood landscapes are at greater risk, 

ceteris paribus. The high percentage of eucalyptus and conifers on forestry plantations may 

explain the negative effect of these two tree species on fire risk. Density of rural paved 

roads and paths as well as a higher accessibility index increase the probability of fire 

ignitions. We have also found that OLS and the negative binomial models do not 

completely explain the fire distribution, as they do not take into account the spatial 

structure of the dependent variable. Figure 1 shows that the negative binomial model’s 

residuals display spatial autocorrelation up to 30 km. 
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Figure 1. Correlogram plot and spatial representation of residuals from the estimated 

negative binomial model. Negative residuals (overpredictions) are represented as blue, 

positive residuals (underpredictions) as red. 

 

4. CONCLUSIONS 

Our models have identified variables that have significant relationships and signs to explain 

where forest fires are ignited in Galicia. Higher population pressure, communal ownership, 

and higher road and path accessibility to the forest increase the probability of fire, while 

increasing the productivity of forestlands through forest plantations decreases this 

probability. This econometric analysis, however, has so far failed to shed full light on the 

strong spatial pattern in the fire occurrence pattern, with significant clusters of fire events in 

the Atlantic coast and in the South of the region. The question remaining is how the number 

of fires reported at one location encourages/discourages occurrences at other nearby 

locations. Given the high proportion of deliberate fires in this region, this may be 

attributable to serial or copycat fire setting, with a relatively few individuals responsible for 

multiple fires over long time spans. It may also be related to the omission from our models 

of key covariates, still to be identified, whose spatial distributions closely align with the 

residual spatial patterns observed in our models.  
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