customers, but tertiary channels of information also appear to be helpful. However, results of this study indicated that the survivors are emerging from the crisis with a renewed focus on the customer. Not only have the distribution channels fragmented (e.g., small firms were more likely to rely on distribution and/or concentration yards for lumber procurement than were for larger firms), but the expectations of customers have diverged and each one is looking to buy exactly what they need.

Conclusion
This study investigated success factors of participants of the secondary hardwood industry in six eastern states (VA, WV, OH, WI, TN, and NC). Firms ranked their manufacturing capabilities, external economic conditions, and input costs as the most important factors affecting the success of their businesses in the current environment. For the study sample, which was comprised mostly of small firms, conversations with customers to gather information regarding industry trends were widely used. Indeed, understanding the needs of customers is becoming increasingly important to be able to design product specifications and distribution channels for a company’s products and services. As a result, many respondents noted planned investments in marketing and advertising communications over the next five years, even as they consider the manufacturing capabilities of their respective companies to be the most important factor to their success.

Acknowledgements
The work upon which this publication is based was funded in part through a grant awarded by the Wood Education and Resource Center, Northeastern Area State and Private Forestry, U.S. Forest Service. Thanks also go to university and extension cooperators in the study states, including S. Bowe, S. Grushecky, D. Saloni, and A. Taylor. Use of trade names in this article does not constitute endorsement of any product or service.

Wood Pallets – An Important U.S. Industrial Product

Philip Araman, Ph.D., USDA Forest Service, Southern Research Station, paraman@vt.edu
Robert Bush, Ph.D., Virginia Tech
Courtney Kepley, Virginia Tech

Wood pallets are used to move, store and ship products in the U.S. This is not only a major wood using industry in the U.S., but also in most industrialized countries around the world. Our wood pallet industry uses a variety of materials to make pallets. The companies also recover, repair, resell and recycle pallets. We will present a Wood Pallet 101 short course on new pallet types and sizes and information on the various types of repairs used to make damaged pallets safe and reusable. We will also discuss methods employed to make pallets useable for international trade. We will finish by presenting historic and current data on wood use and recycling by the wood pallet industry.
Abstracts

Why Relevant: This is the largest industrial wood using industry in North America. Our industry is very different from the pallet industry in Europe. It should be very helpful to understand these differences and to be given the latest wood use and recycling statistics.

Cutting a New Deal for Lumber Drying

Bob Erickson, Ph.D., University of Minnesota, erick117@umn.edu

Most of the stress-graded dimension lumber of nominal 2" thickness is kiln dried by the use of either an elevated or high temperature schedule and venting to the atmosphere. The end results tend to be high average moisture contents for the charge coupled with high standard deviations. If the wood possessed a high permeability for moisture movement perpendicular to the grain, results would be quite different. However, it is accepted that the rate of moisture movement parallel to the grain is about 15 times that of perpendicular to the grain. Green kerfing capitalizes on this fact by creating cuts perpendicular to the grain on both wide faces of the piece in a manner that converts the structural framing member into a simulated I-joist that retains around 95% of its non-kerfed moment of inertia. The slight reduction in edge-wise bending strength is more than regained by way of lower and more uniform moisture contents. An interesting side effect is higher stiffness for the kerfed. It appears that the kerfing minimizes the influence of shear upon the stiffness of the dried product. Also, the kerfing alters the moisture gradient in the boards during drying such that the resulting drying stresses produce less warp. This is especially evident in the case of crook. A general overview of the drying tests so far completed suggests that a comparatively low temperature, non-vented kiln could achieve an acceptable drying time via an optimum alliance of kerfed lumber permeability, dry and wet bulb temperatures, volume of air moved through the charge plus adequate capability of moisture condensation.

According to Comstock, 70% of the total energy used in the production of softwood dimension lumber is for the drying. In a non-vented kiln the latent heat of vaporization is retained and loss of energy is eliminated along with elimination of voc's. In addition, it is possible to envision a value for the condensate collected. It could likely provide an adequate water supply for some nearby green houses or other useful purposes.
PTF BPI 2012

2nd Biennial International Conference on Processing Technologies for the Biobased Products Industries

Program & Agenda
November 6-7, 2012 • St. Simons Island, GA