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[1] We developed a water-centric monthly scale simulation model (WaSSI-C) by
integrating empirical water and carbon flux measurements from the FLUXNET network
and an existing water supply and demand accounting model (WaSSI). The WaSSI-C
model was evaluated with basin-scale evapotranspiration (ET), gross ecosystem
productivity (GEP), and net ecosystem exchange (NEE) estimates by multiple independent
methods across 2103 eight-digit Hydrologic Unit Code watersheds in the conterminous
United States from 2001 to 2006. Our results indicate that WaSSI-C captured the spatial
and temporal variability and the effects of large droughts on key ecosystem fluxes. Our
modeled mean (+standard deviation in space) ET (556 + 228 mm yr ') compared Well to

Moderate Resolution Imaging Spectroradiometer (MODIS) based (527 £ 251 mm yr ')
and watershed water balance based ET (571 + 242 mm yr '). Our mean annual GEP
estlmates (1362 + 688 g C m  yr ') compared well (R* =0.83) to estimates (1194 + 649 g
C m 2 yr') by eddy flux-based EC-MOD model, but both methods led 51gn1ﬁcantly
higher (25-30%) values than the standard MODIS product (904 + 467 g Cm 2 yrh.
Among the 18 water resource regions, the southeast ranked the highest in terms of its
water yield and carbon sequestratlon capacny When all ecosystems were considered, the
mean NEE (-353 £298 g C m > yr ') predlcted by this study was 60% higher than
EC-MOD’s estimate (—220 + 225 g C m 2 yr ') in absolute magnitude, suggesting overall
high uncertainty in quantifying NEE at a large scale. Our water-centric model offers a
new tool for examining the trade-offs between regional water and carbon resources under a

changing environment.

Citation: Sun, G, et al. (2011), Upscaling key ecosystem functions across the conterminous United States by a water-centric
ecosystem model, J. Geophys. Res., 116, G00JO5, doi:10.1029/2010JG001573.

1. Introduction

[2] Evapotranspiration (ET), water yield, gross ecosystem
productivity (GEP), net primary productivity (NPP), eco-
system respiration (Re), and net ecosystem exchange (NEE)
(i.e., NEE = -NEP, where NEP is net ecosystem produc-
tivity) are the key ecosystem functions [Xiao et al., 2008,
2010; Beer et al., 2010; Jung et al., 2010; Tian et al., 2010;
Xiao et al., 2010] that directly affect many ecosystem ser-
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vices, including providing stable and high quality water,
moderating climate, sequestering atmospheric carbon dioxide,
and protecting biodiversity. Understanding the tightly coupled
water and carbon cycles is critical to evaluating regional and
global biogeochemical cycles under a changing climate [Law
et al., 2002; Nemani et al., 2003; Beer et al., 2007, 2010].
Quantifying water and carbon balances at regional and con-
tinental scales is essential for land managers and policy
makers to develop sound mitigation and adaptation strategies
in response to global change.

[3] Although it is well known in ecology that water is a
major control to plant growth and productivity [Chapin
et al., 2004; Noormets et al., 2008; Domec et al., 2009],
water and carbon have long been treated as two separated
entities. Many existing ecosystem models have some forms
of coupling between carbon and water, mostly related to the
effects of soil moisture on photosynthesis process. However,
these models have rarely been validated with both carbon and
water flux measurements [Hanson et al., 2004; Noormets
et al., 2006; Domec et al., 2010; Tian et al., 2010]. Similarly,
the hydrologic community has long ignored the feedbacks
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between plants and the water cycles, and hydrological modeling
results are often assessed only with streamflow measurements
at the watershed outlets, rarely with direct ET or soil moisture
measurements [ Vorésmarty et al., 1998; Hay and McCabe,
2002]. Part of the reasons is that ET remains the least quanti-
fiable water balance components at all scales [Zhang et al.,
2001; Mu et al., 2007; Allen, 2008; Zhou et al., 2008; Sun
et al., 2010]. The science of ecohydrology, that specifically
addresses the interactions of hydrologic (i.e., ET) and ecolog-
ical processes, is rapidly developing to offer the basis to address
trade-offs between carbon sequestration and water use [Jackson
et al., 2005, 2009; Vose et al., 2011] and between crop pro-
duction and water resources [Liu et al., 2009].

[4] Carbon and water exchange are inherently coupled by
several mechanisms. The photosynthesis processes are mainly
controlled by radiation and soil water availability, stomatal
conductance, and leaf biomass and chemistry [Chapin et al.,
2004], all of them being the key factors regulating ecosys-
tem ET [Sun et al, 2010]. Seasonal patterns of ET rates
together with precipitation regulate soil moisture storage, a
key factor that determines ecosystem productivity [Noormets
et al., 2008, 2010]. This connection between ET and GEP
has been used in continental and global GEP modeling [Beer
et al., 2007, 2010]. Similarly, Re is constrained by soil tem-
perature and moisture [ Wen et al., 2006] as well as the quality
and quantity of the carbohydrate substrates, which in turn
depend on GEP [Davidson et al., 2006]. Understanding the
coupling of carbon, water and other biogeochemical elements
across ecosystems at a large scale is critical to address modern
environmental problems [Finzi et al., 2011].

[5] Several methods have been proposed in recent years to
quantify water and carbon fluxes and their interactions at a
large scale. These include (1) empirical machine-learning
techniques [Xiao et al., 2008, 2010, 2011; Jung et al., 2009;
Zhang et al., 2011] that involve developing regression
models using large amounts of empirical measurements
from the eddy flux networks and satellite remote sensing
data; (2) process-based models driven by remote sensing
data of landcover and biophysical parameters. Models such
as CASA, PnET, Biome-BGC, TEM, DELM, simulate
partial or the full biogeochemical cycles of carbon, water,
and nutrients [Field et al., 1995; Aber et al., 1996; Running
et al., 2004; Zhao et al., 2005, 2006; Mu et al., 2007; Xiao
et al., 2009; Tian et al., 2010]. Schwalm et al. [2010]
conducted a comprehensive evaluation of the performance
of 22 popular carbon cycle models using 220 site-years of
CO, flux data; (3) atmospheric inverse modeling [Deng
et al., 2007] method that infers NEE from a network of
CO, concentration measurements; and (4) inventory meth-
ods that estimate ecosystem productivity (i.e., NPP) from
long-term forest inventory data [Pacala et al., 2001] and
do not account for annual climatic variability and are not
designed to examine interactions between carbon and water.

[6] The objectives of this study included (1) developing
and validating a new integrated model (WaSSI-C), to account
for large-scale monthly water and carbon balances using
limited input parameters and variables; and (2) applying the
model to 2,103 large basins in the conterminous United
States to examine spatial and temporal patterns of water and
carbon exchange. We adopted an approach characteristic of
data-model fusion methods with a focus on the interactions
of water and carbon cycles at the monthly scale.
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[7] We hypothesized that if ecosystem water and carbon
fluxes are strongly coupled at the monthly scale [Law et al.,
2002; Beer et al., 2007], a water-centric approach can be
used to quantify carbon fluxes with a reasonable accuracy.
The WaSSI-C model presented in this study is comprosed of
an existing water balance model (WaSSI) and a set of
biome-specific apparent water use efficiency relationships
as estimated from 968 site-years of eddy covariance data.
The ET, GEP, Re, and NEE prediction models were first
developed using site level data of the eddy flux network and
other hydrological experimental stations. Next, these algo-
rithms were incorporated into the existing WaSSI model and
applied to the conterminous United States for the period of
20012006 corresponding to the time period when Moder-
ate Resolution Imaging Spectroradiometer (MODIS) pro-
ducts of ET, GPP, and NEE are available. The simulated
spatial and temporal distributions of continental ET, GEP,
and NEE were compared to estimates by several indepen-
dent sources including national historical watershed runoff
databases, improved MODIS-based ET and GPP products,
and gridded GPP and NEE databases developed by inte-
grating eddy flux measurements and remote sensing data.

2. Model Development, Validation, and Databases

[8] We explicitly examined spatial and temporal patterns
of water and carbon interactions at the monthly and annual
scales for 2001-2006, a period over which remote sensing
data are available for model validation. Ecosystem ET is
modeled as a function of with a monthly hydrologic model
Water Supply Stress Index Model (WaSSI) [Sun et al.,
2008], and the carbon fluxes are estimated from the
derived ET using eddy covariance-based biome mean water
use efficiency (WUE = GEP/ET). The latter represents an
update to the models reported by Law et al. [2002].

[9] The new WaSSI-C model operates at a monthly
temporal scale and a variable spatial scale depending on the
area of each land cover within a watershed. The model sim-
ulates the full monthly water and carbon balances, including
ET, soil moisture content, water yield, GEP, Re, and NEE for
each of the eight land cover categories within a watershed,
and then aggregates the fluxes to the entire basin using a area-
weighted average approach (Figure 1). The basins are the
eight-digit Hydrologic Unit Code (HUC) watersheds desig-
nated by the Watershed Boundary Dataset [ Natural Resources
Conservation Service, 2009]. Hydrologic units are a widely
used geographic framework for the conterminous United
States in water resource management and natural resource
conservation. Each unit defines a geographic area represent-
ing part or all of a surface drainage basin or a combination of
drainage basins. We used a total of 2,103 basins across the
conterminous United States with a size ranging from 11 to
22,965 km* with a median value of 3,207 km?.

2.1.

[10] The original WaSSI model was developed to examine
impacts of multiple stresses, including climate change, land
cover/land use change and water demand, on watershed
hydrology and water stresses [Sun et al., 2008]. The model
simulates the full monthly water fluxes for each of the eight
land cover categories within a watershed, and then aggre-
gates each fluxes to the entire basin using area-weighted

Water Supply Stress Index Model
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Figure 1. Sketch of conceptual framework of WaSSI-C model for an eight-digit Hydrologic Unit Code

watershed with mixed land covers.

averaging (Figure 1). The hydrologic fluxes include ET,
infiltration, soil storage, snow accumulation and melt, sur-
face runoff, and base flow, and discharge was routed
through the stream network from upstream to downstream
watersheds (Figure 1). Estimation of infiltration, soil stor-
age, and runoff processes was accomplished through the
integration of algorithms from the Sacramento Soil Moisture
Accounting Model and STATSGO-based soil parameters.
The model was driven by watershed-averaged monthly
precipitation and mean air temperature that were scaled from
gridded historical PRISM climate data (Table 1).

[11] The core of the WaSSI model is an empirical ET
model derived from a data set of ecosystem-level ET mea-
surements based on eddy covariance or sapflow techniques
at thirteen sites [Sun et al., 2011]. These sites represented a
range of biomes that span a large climatic gradient, ranging
from subtropical rain forests in the humid Appalachians in
the southeastern United States to the hot dry woodlands in
eastern Australia, and from forested wetlands on the Atlantic
coastal plain in the southeastern United States to the grass-
lands and shrub lands and cultivated croplands in the semi-
arid Inner Mongolian region of northern China. Management
practices also varied widely across sites. The geographic
range of the sites varied in latitude from 43.5°N to 33.7°S and
in longitude from 83.8°W to 150.8°E. The annual mean air
temperature ranged from 0.6 to 17.6°C and mean annual
precipitation from 300 to > 1800 mm yr '. Monthly total ET
rates from each site were scaled from half-hour measure-

ments using either the standard eddy covariance methods or
sapflow + canopy interception methods. Ancillary data, such
as monthly averaged leave area index (LAI), P, and climatic
variables were assembled from field measurements to
develop a regression model for predicting ET. In developing
and applying the ET regression model across the United
States, it became clear that a single equation could not capture
the spatial variability in ET as predicted by MODIS estimates
and water balance approaches. In particular, we observed that
ET in forested regions (i.e., forest cover percentage >20%) in
northern latitudes (e.g., >40°N) required a unique form of the
ET regression model to accurately replicate measured data.
For forested regions at high latitudes (>40°N) dominated by
winter precipitation in the northeastern United States, the
following ET equation was applied:

ET = 0.4*PET + 7.87*LAI + 0.00169*PET*P
R* = 0.85 RMSE = 14.5(mm month™ "), n = 147,p < 0.0001
For other regions,
ET = 0.174*P + 0.502*PET + 5.31*LAI + 0.0222*PET*LAI
R* = 0.86 RMSE = 14.0(mmmonth™'),n = 147, p < 0.0001

where LAI was monthly averaged leaf area index measured
on site or derived from continental MODIS products [Myneni
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Table 1. Databases for WaSSI-C Model Development, Parameterization, and Validation

Original
Data Set References Source Usage Resolution Time Period
Eddy flux data FLUXNET (http://www.fluxnet.ornl.gov/) model development >240 sites Vary
Climate (monthly P PRISM Climate Group (http://prism.oregonstate.edu/) parameterization 4*4 km? 1960-2007
and air T)
Streamflow U.S. Geological Survey (USGS) for regional ET eight-digit 1901-2006
(http://waterwatch.usgs.gov/index.php/ validation HUC
?m = romap3&w = download)
Land cover Moderate Resolution Imaging Spectroradiometer parameterization 1*1 km? 2001
(MODIS) (http://modis.gsfc.nasa.gov/)
Leaf area index Moderate Resolution Imaging Spectroradiometer parameterization 1*1 km? 2001-2006
(MODIS) http://modis.gsfc.nasa.gov/
Soil properties STATSGO-based Sacramento Soil Moisture parameterization 1*#1 km? N/A
Accounting Model Soil Parameters and NOAA-NWS
Hydrology Laboratory, Office of Hydrologic
Development
GEP wall-to-wall maps published by Xiao et al. [2010] validation 1*#1 km? 2000-2006
NEE wall-to-wall maps published by Xiao et al. [2008] validation 1#1 km? 20002006

et al., 2002]. Potential ET (PET) was calculated with
Hamon’s method that used air temperature and potential
daytime length and was widely used due to its simplicity and
reliability comparing to more complex methods [Vérosmarty
et al., 1998; Lu et al., 2005].

[12] The above two equations do not account for soil
water availability’s effect on ET and thus may cause over-
estimation errors under extreme dry conditions. To correctly
close the water balance, the ET predicted by the regression
models was further constrained. Using the two-soil-layer
SAC-SMA model algorithm, the WaSSI model compares
ET demand to soil water storage, and limits ET if soil water is
insufficient to meet the demand. Soil moisture for ET is
withdrawn sequentially from the upper soil layer tension
water storage (i.e., soil water tension between field capacity
and the wilting point), upper layer free water storage (i.e., soil
water tension between saturation and field capacity), and
from the lower layer tension water storage until the demand is
met or until available soil water has been depleted.

2.2. The Carbon Models

[13] It has been shown that ecosystem ET and GEP are
closely coupled at a monthly scale [Law et al., 2002]. The
original relationships for forest ecosystems have been suc-
cessfully used in a number of modeling studies, but the
availability of data has increased by orders of magnitude, and
we reevaluated these relationships, as well as developed them
for nonforest ecosystems that were not covered by Law et al.
[2002]. The relationships between GEP and ET were evalu-
ated using level 4 data of FLUXNET LaThuile data set (http://
www.fluxdata.org) which were integrated to a daily scale.
These values were further integrated to a monthly scale for the
analyses presented here. Of the 968 site-years of data 935 and
905 site-years were available for analyzing GEP-ET and Re-
Ta relationships, respectively. The data covered 244 and 233
separate sites, respectively and spanned 11 IGBP land cover
classes. The relationships of monthly GEP with ET, and Re
versus GEP were estimated using linear regression procedures
(SAS v9.1.3, Cary, NC). For GEP-ET relationship, the
intercept was forced through the origin (Table 2), and the
coefficients of determination increased over those with non-
zero intercept. Thus, the slope of GEP-ET regression model
represented an integrated GEP-based water use efficiency.

[14] Ideally, ecosystem carbon fluxes should be indepen-
dently derived from one another. However, scaling Re solely
from temperature (Ta) led to very high estimates over hot and
dry desert ecosystems that are grouped together with shrub
lands in the IGBP classification scheme. To obtain more
realistic estimates at the continental scale, Re must be con-
strained by moisture availability and vegetation activity that
are both controlling factors of Re [Davidson et al., 2006].
GEP provided such an integrative constraint, and while
future development calls for independent Re estimates, cur-
rent data availability limits global application of unbounded
Re-Ta relationships. While the correlation between Re and
GEP was strong in the current data set (Table 3), recent
analyses suggest it may have been exaggerated by the
assumptions implicit in the gap-filling protocols [Vickers
et al., 2009, 2010; Lasslop et al., 2010]. Although there
are strong reasons for the correlation to exist between pro-
ductivity and respiration [Lasslop et al., 2010], the strength
of the relationship in monthly data is strongest in comparison
to the strength in shorter and longer time domains, and
unrelated to the possible artificial correlations introduced in
the gap-filling process. Finally, monthly NEE was modeled
as the difference between GEP and Re (NEE = Re — GEP).
A model comparison study by Schwalm et al. [2010] sug-
gests models that estimate NEE as the difference between
GEP and Re perform better than others. Nevertheless, future

Table 2. Regression Model Parameters for Estimating Monthly
GEP as a Function of ET, GEP = a*ET

Number of Flux

Land Cover Tower Sites a+ SD R?
Croplands 29 3.13 £ 1.69 0.78
Closed Shrublands 6 1.37 £ 0.62 0.77
Deciduous Broadleaf Forest 32 3.20 £ 1.26 0.93
Evergreen Broadleaf 16 2.59 + 0.54 0.92
Evergreen Needleleaf 69 2.46 £ 0.96 0.89
Grasslands 44 2.12 £ 1.66 0.84
Mixed Forests 12 2.74 £ 1.05 0.89
Open Shrublands 11 1.33 £ 0.47 0.85
Savannas 4 1.26 +£0.77 0.80
Wetlands 15 1.66 + 1.33 0.78
Wet Savannas 6 1.49 £ 0.36 0.90
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Table 3. Regression Model Parameters for Estimating Monthly
Ecosystem Respiration as a Function of GEP, Re = m + n GEP

Number
of Eddy
Ecosystems Flux Sites m + SD n =+ SD R?
Cropland (CRO) 29 40.6 £3.84 043+0.02 0.77
Closed Shrublands 3 11.4+£15.62 0.69+0.15 0.74
Deciduous Broadleaf 32 30.8 +2.93 0.45+0.03 0.83
Forest (DBF)
Evergreen Broadleaf 11 19.6 £8.74  0.61 +£0.06 0.63
Forest (EBF)
Evergreen Needleleaf 70 9.9 +£224 0.68 £0.03 0.8
Forest (ENF)
Grasslands (GRA) 44 18.9 +2.31 0.64 £0.02 0.82
Mixed Forests (MF) 12 244 +£424  0.62+0.05 0.88
Open Shrublands (OS) 8 9.7 +3.03 0.56 £ 0.08 0.81
Savannas (SAV) 3 252 +3.23 0.53 £0.07 0.65
Wetlands (WET) 15 7.8 +3.04 0.56 +£0.03 0.8
Wet Savanna (WSA) 6 147275 0.63+0.04 074

efforts in WaSSI-C development will focus on independent
estimation of GEP and Re as outlined above.

2.3. WaSSI-C Model Validation

2.3.1. Model Validation Methods

[15] The WaSSI-C model was developed from site-level
data and applied to eight-digit HCU watersheds. We vali-
dated the model against remote-sensing based GEP and
NEE estimates with a spatial resolution of the watershed.
For ET validation, two data sets were used: (1) derived from
the watershed water balance method published by the U.S.
Geological Survey (USGS), and (2) acquired from the
MODIS ET products [Mu et al., 2010]. For carbon flux,
modeled GEP and NEE fluxes were compared to the stan-
dard MODIS-GPP product [Zhao et al., 2005] and gridded
GPP and NEE data derived from eddy covariance (EC) and
MODIS data (EC-MOD) [Xiao et al., 2008, 2010, 2011].
To be consistent with terminology, we referred to the GPP
data sets of both sources as GEP hereafter in this paper. The
performance of the model in predicting ET, GEP, and NEE
was evaluated qualitatively using scatterplots and difference
maps, quantitatively using Root Mean Square Error (RMSE)
and Coefficients of Determination (R”) and the slopes of
the linear regression models. We validated the model against
various reference products of annual ET, GEP, NEE, and
monthly ET.
2.3.2. Databases for Model Validation
2.3.2.1. MODIS-ET

[16] Remote sensing—based ET models have been devel-
oped in recent years to estimate regional-scale ET and water
balances [Cleugh et al., 2007; Mu et al., 2007; Fisher et al.,
2008; Zhang et al., 2010]. Mu et al. [2010] further improved
the MODIS ET algorithms by (1) simplifying the calcula-
tion of vegetation cover fraction; (2) calculating ET as the
sum of daytime and nighttime components; (3) adding soil
heat flux calculation; (4) improving estimates of stomatal
conductance, aerodynamic resistance and boundary layer
resistance; (5) separating dry canopy surface from the wet;
and (6) dividing ground moisture conditions into saturated and
moist surfaces. The MODIS ET algorithm employs reanalysis
surface meteorological data (0.05° resolution) from NASA’s
Global Modeling and Assimilation Office [2004] with MODIS
land cover, albedo, LAI and the Fraction of Absorbed Pho-
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tosynthetically Active Radiation (FPAR) inputs for regional
and global ET mapping and monitoring. The global ET
product has been evaluated using AmeriFlux flux data sets
with variable success [Mu et al., 2007]. We aggregated the
new 1 km? ET data set [Mu et al., 2010] to the eight-digit
HUC level by averaging monthly ET (sum of 8 day values)
of all cells for each watershed.

2.3.2.2. ET Data Derived From Waters Balance

of Gauged Watersheds

[17] In addition to the MODIS-ET for WaSSI-C model
validation, we also acquired historic runoff (Q) data (Table 1)
from the U.S. Geological Survey (USGS) to estimate annual
ET as the difference between precipitation (P), runoff, and
change in surface and groundwater storage, ET =P — Q +
AS. This method (hereafter USGS-ET) represented an
independent approach for estimating regional ET flux at an
annual scale. The change in water storage is negligible for a
normal year or over a long-term period, and the water bal-
anced equation can be simplified as ET = P — Q. However,
ET may be greatly overestimated or underestimated at the
annual scale during extreme wet or dry years due to a positive
or negative change in soil water storage, respectively
[Donohue et al., 2007]. In addition, natural streamflow
characteristics of many watersheds have been altered by
water management practices such as interbasin transfer,
groundwater pumping, and large-scale irrigation, resulting in
measurement errors in Q, and thus estimated ET. These
potential sources of error were not accounted for in the cur-
rent version of WaSSI-C.

[18] Not all the watersheds within the large basins mod-
eled in this study were gauged for streamflow measure-
ments. Continental-scale eight-digit HUC watershed-level
runoff databases were consequently estimated by combin-
ing historical daily flow data collected at approximately
6000 USGS stream gauges. The drainage basin areas of
these gauged streams ranged from 10 to 180,000 km?. We
identified 2103 valid eight-digit HUC watersheds for this
study to use.
2.3.2.3. MODIS-GEP (MOD17A3)

[19] We scaled the 8 day, 1 km? resolution MODIS GEP
(MOD17A3) data (Table 1) to the eight-digit HUC water-
shed level to compare to our model results. The original
GEP data were developed using Monteith’s logic that cal-
culated GEP as a function of light use efficiency (g), min-
imum air temperature, vapor pressure deficit, absorbed
photosynthetically active radiation (APAR), and shortwave
radiation [Running et al., 2004]. MODIS GEP has been used
in many applications including the evaluation of water stress
by integrating with the BIOME-BGC model [Mu et al.,
2007] and long-term ecosystem productivity trend analysis
at the global scale [Nemani et al., 2003]. MODIS GPP
products have been evaluated by eddy flux measurements
across many biomes [Turner et al., 2006; Zhang et al.,
2008] and used to predict plant diversity in semiarid Inner
Mongolia [John et al., 2008], estimate wheat yield, and
scale up site level GEP into estuarine wetlands of the
Yangtze delta [Yan et al., 2008].
2.3.2.4. Gridded GPP and NEE Data Sets

[20] To provide an independent estimate of carbon flux,
we also acquired continental 1 km? GEP and NEE data
developed by Xiao et al. [2008, 2010, 2011]. The data sets
were constructed by a data-driven approach that combined
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Figure 2. Spatial distributions of (a) mean annual evapotranspiration (ET) (mm yr_l), (b) ET:P ratios,
(c) ET:PET ratios, and (d) P/PET ratios across the conterminous United States over the period of

2001-2006 as simulated by the WaSSI-C model.

eddy covariance data and MODIS data to develop predictive
GEP and NEE models. The explanatory variables in the
models included vegetation type, surface reflectance, daytime
and nighttime land surface temperature, enhanced vegetation
index, and normalized difference water index. These vari-
ables could partly account for a variety of physical, physio-
logical, atmospheric, hydrologic, and edaphic variables that
affect ecosystem carbon exchange. The models, referred to as
EC-MOD, were used to create gridded flux fields for tem-
perate North America over the period of 2001-2006 [Xiao
et al., 2011]. We scaled the data set to the watershed scale
for comparison purposes.

3. Results and Discussion

3.1.

[21] Spatially, WaSSI-C predicted ET ranged from approx-
imately 200 to 1200 mm yr ', and closely followed precipita-
tion and temperature distribution patterns across the United
States (Figure 2a). The 6 year spatial average (+spatial SD)
was 556 + 228 mm yr '. Due to both a warm (i.e., high PET)
and wet climate (i.e., high precipitation), the water resource

Spatial and Temporal Dynamics of ET

regions in the southeastern Untied States (e.g., WRR 03) had
high annual ET, ET:PET and P:PET ratios, and a moderate ET:
P ratios overall (Figure 2). WRR 01, 02, 5, and western parts of
WRR 17 and 18 had the lowest ET:P ratios (<0.6), while the
highest ET:P ratios (>0.8) were found in the arid western
WRR (14, 15, 16) where ET was low (Figure 2b). Addition-
ally, a few watersheds on the lower coastal plain in the
southeastern United States also had high ET:P ratios. These
watersheds were dominated by forests that consumed more
water than other ecosystems [Sun er al, 2010]. For the
northeastern and the Pacific Northwest regions, ET was lim-
ited by energy in the winter months when precipitation (i.e.,
snow and rainfall) exceeded atmospheric demand. In contrast,
in the arid western United States, precipitation generally
limited ET in most of the seasons, thus ET was similar to P,
and rarely equaled PET (Figure 2d).

[22] We compared modeled annual and monthly mean ET
for 2001-2006 with MODIS-ET across the 2103 water-
sheds. We eliminated outliers in the MODIS-ET and the
USGS-ET databases if the annual ET values were found to
be unrealistically higher than precipitation, or if ET values
substantially exceeded calculated PET. The data for those
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Figure 3. A comparison between mean (2001-2006) annual ET (mm yr ') by WaSSI-C and MODIS for

(a) scatterplot and (b) spatial display of differences,

watersheds were not appropriate for model validation pur-
poses and were considered to contain errors in the data. The
USGS-ET water balance method only provided annual ET
estimates. However, these annual estimates were still
affected by annual changes in soil water storage, so we only
evaluated model performance against average annual ET. As
mentioned earlier, water resources management activities
such as inter basin transfer and groundwater over with-
drawal likely impacted the accuracy of ET estimates based
on the water balance equation. The errors were more pro-
nounced in the western United States where groundwater
had been widely used for irrigation of agricultural crops.
[23] The comparison of our modeled annual ET against
MODIS-ET and USGS-ET showed that the WaSSI-C
model performed reasonably well (Figures 3 and 4). Mod-
eled ET was highly correlated with MODIS-ET (R* = 0.90,
RMSE =70 mm yr ', p < 0.001) and USGS-ET (R* = 0.85,
RMSE = 78 mm yr ', p < 0.001) methods. The scatterplots
of modeled ET by WaSSI-C versus USGS-ET (Figure 3a)
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across 2103 HUC:s for the period of 2001-2006.

and MODIS-ET versus USGS-ET (not shown) indicated
higher variability of P-Q wvalues than WaSSI-C versus
MODIS-ET for a few watersheds. The errors were likely
related to watershed hydrologic alteration by human activ-
ities such as interbasin water transfers, groundwater recharge
(e.g., missing surface water at gauging stations, and ground-
water withdrawals added to surface water) that all affected the
accuracy of ET estimates by the USGS-ET method. In spite of
the discrepancies at individual watersheds, the cross-model
validation suggested that both WaSSI-C and MODIS-ET
models captured ET variability over space and time.

[24] As expected, the highest monthly ET occurred in July
(85 + 32 mm month "), and lowest ET in January (20 =+
13 mm month ). The seasonal patterns of mean monthly
ET predicted by WaSSI-C matched very well with those
of MODIS-ET (Figure 5). The two sets of ET predictions
were significantly correlated to each other (R? = 0.80,
RMSE = 14.3 mm month™', p < 0.0001, WaSSI-C ET =
142 + 0.73*MODIS-ET). MODIS-ET had a much higher

b)
Differences in Modeled ET (mm yr.")
(WaSSI-C ET minus USGS ET)

ET Difference
I -657 - -300
[ -299 - -100
99-0
1-100
[ 101 - 200
I 201 - 540
[_] Water Resource Region (WRR)

Figure 4. A comparison between mean annual ET (mm yr ') by WaSSI-C and the USGS-ET. (a) Scat-
terplot and (b) spatial display of differences, across 2103 HUCs for the period of 2001-2006.
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spatial variability (SD = 30-50 mm month ") than did
WaSSI-C modeled ET (SD = 25-30 mm month™') in the
growing season.

3.2. Spatial and Temporal Distributions of GEP
and NEE

3.2.1. Modeled GEP Comparisons

[25] We applied the uncalibrated WaSSI-C model to the
continental United States and calculated GEP for each
watershed and each month over the period of 2001-2006.
Mean annual GEP (Figure 6) modeled by this study were
compared to two other GPP products (Figures 7 and 8).
Across the 2103 Watersheds mean modeled annual GEP
was 1360 g Cm 2 yr ' and ranged from 200 to 3000 g C
m 2 yr ' (Figure 6). The total conterminous United States
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carbon uptake was 10.11 Pg C yr ' during 2001 2006
which was higher than the mean GEP (7.06 Pg C yr ')
estimated by Xiao et al. [2010] (Table 4). Since modeled
GEP is directly proportional to ET in this study (Table 2),
spatial patterns of GEP closely followed the ET distribution
(Figure 2). The top three WRRs with high spatial mean
annual GEP values were WRR08 and WRRO06 (mean =
2400 g C m%yr "), and WRR03 (mean = 2336 g C m >
yr ") located in the southern United States. WRRO03 received
the highest precipitation under a warm climate (i.e., high
PET). In terms of total amount of ecosystem carbon uptake
the to;) three regions were WRRO03 (1 7PgCyr ' or 2337 g
Cm “yr '), WRRI10 (1. 37P]gCyr or 1057ng yr '),
and WRRI11 (0.89 Pg C yr ' or 1431 gCm *yr ).

[26] Our mean annual GEP correlated well with estimated
EC-MOD GEP P(zao et al., 2010] (R*> = 0.83, RMSE =
279 ¢ Cm 2 yr ', p < 0.001, GEP = 208 + 0.97 EC-MOD
GEP) (Figure 7). Compared to EC-MOD, WaSSI-C esti-
mates were 208 g C m > yr ', or about 10% greater on
average (Figure 7a). The spatial distribution of difference was
complex. WaSSI-C predicted higher GEP that EC-MOD in
regions with high GEP values, such as the southern United
States, but lower in the cool regions with low GEP, like in
the northeastern United States and the Pacific Northwest
(Figure 7b).

[27] We found a large discrepancy in annual GEP between
WaSSI-C model predictions and MODIS-GEP (Figure 8).
Our estimates were about 30% higher that estimate by
MODIS GEP. This result was consistent with Xiao et al.’s
[2010] observation that eddy flux-based model predictions
are generally higher than MODIS-GEP for highly produc-
tive regions. The differences between WaSSI-C and MODIS
GEP estimates were greatest at GEP > 1500 g C m 2 yr .
WaSSI-C GEP exhibited a weaker relatlonshlp with MODIS
GEP (R* = 0.72, RMSE =359 ¢ C m 2 yr ', p < 0.0001,
GEP = 231 + 1.25 MODIS GEP) than with EC MOD.

GEP
I 122 - 400
[ 401 - 800
801 - 1200
1201 - 1600
1601 - 1800
[ 1801 - 2000
[ 2001 - 3000
[]water Resource Region (WRR)

WaSSI-C Modeled GEP (g C m?2yr.")

Figure 6. WaSSI-C simulated spatial distribution of mean annual GEP (g C m 2 yr ) for the contermi-

nous United States over the period of 2001-2006.
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b)
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Figure 7. A comparison between mean annual GEP (g C m 2 yr ) estimates by WaSSI-C and EC-
MOD. (a) Scatterplot. The dashed line is 1:1 line, and the solid line is regression line. (b) Spatial display
of differences, across 2103 HUCs for the period of 2001-2006.

[28] The large differences found from this study could be
attributed to several reasons: (1) Deficiency in MODIS-GEP
algorithms related to the critical light use efficiency
parameter [Zhang et al., 2008] and inherent errors due to
limitation of meteorological data. Comparing to tower-
based measurements, a 20—30% error was not uncommon in
MODIS-GEP [Heinsch et al., 2006]. (2) Uncertainty of
input parameters (i.e., LAI derived from MODIS products)
and driving variables data (i.e., coarse meteorological data)
for continental scale applications [Zhao et al., 2006; Xiao
et al., 2010]. All models, including WaSSI-C, involved
this type uncertainty. (3) Insufficient representation of some
ecosystems within the FLUXNET as well as accurate land
cover classification for our study. Past flux measurements
are conducted mostly in mature or unmanaged forests, and
the contribution of young or managed forests may be
underrepresented in the current flux data sets. Additionally,
model parameters are lumped to one biome without dis-
crimination to age, ecosystem structures, tree species, or
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0 500 1000 1500 2000 2500 3000
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disturbances [Amiro et al., 2010]. For examples, few flux
towers exist for wetlands and savannas that represent the
two ends of the water regime. A lack of representations of
these biomes would result in large errors of GEP estimation.
(4) The ET model used in this study does not account for
other vegetation characteristics than LAI variability. One
solution is to develop specific ET model for each biome
when sufficient eddy flux tower data become available.
Finally, measurement errors exist in flux data used since
eddy covariance towers represent a single point in space that
is integrated over the entire stand [Oren et al., 2006].
3.2.2. Modeled NEE

[20] The WaSSI-C modeled spatial patterns of mean
(2001-2006) annual NEE (Figure 9) were compared to
estimates by EC-MOD (Figure 10). Across the 2103
watersheds, annual WaSSI-C modeled NEE varied from a
carbon source of 200 g C m 2 yr ! to a strong carbon sink of
—1150 g C m2yr ' (Figure 9). The conterminous U.S. mean
NEE was —353 298 ¢ C m 2 yr ', representing a total net

b)
Differences in Modeled GEP (g C m? yr.'1)
(WaSSI-C GEP minus MODIS GEP)

GEP Difference
[ 1091 - -800
[ -799 - -400

-399 -0

1-400

401 - 800
[ 801 - 1200
[ 1201 - 1600
[]water Resource Region (WRR)

Figure 8. A comparison between mean annual GEP (g C m > yr ') estimates by WaSSI-C and MODIS.
(a) Scatterplot and (b) spatial display of discrpencies across 2103 HUCs for the period of 2001-2006.

9 of 16



G00J05 SUN ET AL.: UPSCALING ECOSYSTEM FUNCTIONS G00J05
Table 4. Summary of Annual Conterminous United States, Regional, and Global Estimates of Carbon Fluxes
NEE or Carbon
Sequestration
GEP (Absolute Values) Methodology Comments Reference
0.37-0.71 Pg C yr' multiple methods conterminous United States Pacala et al. [2001]
(including C exports) (1980-1989)
7.06 Pg yr! 121 Pg C yr ' (all lands) ~ EC-MOD model; regression conterminous United States Xiao et al. [2010, 2011]

NPP = 0.92-1.45 Pg yr |

NPP = 3.4 Pg C yr'!

10.11 Pg C yr

0.63 Pg C yr!
(excluding croplands)
0.54 Pg C yr ' (all lands)

0.36 Pg C yr!

NEP = —0.12 Pg C yr !
(carbon loss)

0.12-0.23 Pg C yr'!

0.666 Pg C yr '
(net C absorption)

1.24 Pg C yr ' (croplands,
C export not included)

tree scaling up eddy flux
data in the United States

process-based ecosystem model

coupling eddy flux data and
remote sensing
NASA-CASA model

NASA-CASA model
SOCCR Project; multiple
methods and sources

ET based, water-centric

model parameterized with

(2001-2006)

southern region (13 states)

U.S. Great Plains grasslands

continental United States
(1982-1997)

North America (1996-98)

North America

conterminous United States
(2001-2006)

Zhang [2008]
Zhang et al. [2010]

Potter et al. [2006]

Potter et al. [2003]
Pacala et al. [2007]

this study

global eddy flux data

26+1.7PgCyr' model synthesis

109.12 Pg C yr ' MODIS
(NPP = 56.02 Pg C yr' ")

121.7 Pg C yr'! processes-based

global, deforestation excluded
global

Denman et al. [2007]
Zhao et al. [2005]
models

global Beer et al. [2010]

carbon sequestration of 2.54 Pg C yr ! during 2001-2006.
When crop lands NEE were excluded from the calculations,
the total NEE was reduced to 1.24 Pg C yr '. Because NEE
was modeled linearly from GEP in this study (Tables 2
and 3), spatial patterns of NEE was closely related to GEP
distribution (Figure 8). Similar to GEP distributions, when
NEE was expressed on a unite area basis with croplands
excluded, the top three WRRs were WRR6 (=554 g C m >
yr 1), WRR3 (405 ¢ C m 2 yr '), and WRRS (-390 g C
m 2 yr ') in the southeastern United States. These WRRs
received abundant precipitation and radiation energy (repre-
sented by high PET in this study). In terms of contribution
to total regional NEE, the top three regions were WRRO03

(—0.30 Pg C yr '), WRR11 (—0.14 Pg C yr '), and WRRO05
(023 PgCyr ).

[30] We found large differences in NEE estimates from
those of Xiao et al. [2011] (Figure 10) and other limited
continental-scale carbon sink values in the literature (Table 4).
Xiao et al. [2008, 20111 estimated spatial mean NEE as
—220 + 225 g C m 2 yr ' and total carbon sequestration of
—1.21 Pg Cyr ' forall ecosystem included, or —0.63 Pg C yr '
when croplands were excluded (Table 4). Correlations
between the two data sets were significant (R* = 0.63,
RMSE =179 gCm 2yr ', p<0.0001, NEE = —120 + 1.06*
EC-MOD NEE). Compared to EC-MOD, WaSSI-C predicted
on average 33% higher NEE (Figure 8), even greater in

NEE
I 1148 - -800
I -799 - -600
-599 - -400
-399 - -200
-199-0
1-200
[]water Resource Region (WRR)

WaSSI-C Modeled NEE(g C m2 yr.")

Figure 9. Spatial distribution of WaSSI-C simulated mean annual NEE (g C m 2 yr ') over the period of

2001-2006.
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b)
Differences in Modeled NEE (g C m? yr.”)
(WaSSI-C NEE minus EC-MOD NEE)
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Figure 10. A comparison between mean annual NEE (g C m 2 yr ') estimates by WaSSI-C and
EC-MOD. (a) Scatterplot and (b) spatial display of differences, across 2103 HUCs for the period

of 2001-2006.

regions with high ET and GEP. The differences were highest
in the southern United States in general, and in the Lower
Mississippi Valley in particular, with a large contribution
of croplands.

[31] The large differences in predicted NEE could be
attributed to several reasons. First, NEE was underestimated
for ecosystems with high carbon sequestration potential
across season and sites for EC-MOD estimates [Xiao et al.,
2008]. Second, radiation was not an input variable to esti-
mate PET or ET by the WaSSI-C model due to model sim-
plification, which can cause potential overestimate of NEE.
PET was estimated using a temperature-based approach.
However, it is well known that plant transpiration is very
responsive to radiation. Large PET does not automatically
translate to high transpiration or carbon assimilation at the

ecosystem level even under a wet condition. For example, a
recently cleared forest land may receive similar energy as a
mature stand, but the low LAI of the young stand may result
in relatively much less transpiration but higher soil evapo-
ration than older stands [Sun et al., 2010]. Therefore, we
may have overestimated NEE for some areas (i.e., sparsely
vegetated wetlands) in the southern United States where total
ET was estimated rather high. In this case, a large portion
of ET may be water evaporation (e.g., plant canopy inter-
ception + soil evaporation). The small number of flux tower
sites (Table 2) may also misrepresent the true global patterns
of ecosystem WUE, and further refinement of these esti-
mates is bound to improve model performance. Third, unlike
WaSSI-C, Xiao et al. [2008, 2011] did not use local pre-
cipitation and soil physical property data as model inputs

400 4
-
300 - == NEE (all landcover)
= NEE Crop Excluded L 3
2
g 200 A C=INEE EC-MOD
E — EWUE (NEE/ET) _
g 100 1 ,
| | | | 17
[} 0 |:| II - . e = Ml I o
(e} 4
5 || 3|1H5Is|] Hgtﬂﬂzﬂmmwmlﬂﬁ ©
G -100 A F 1w
2
e :
w -200 A
z
= 0
§ -300 A V}\
c
©
S -400 - } }
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Figure 11. Summary of modeled mean annual water yield, carbon gain or loss expressed as Q

(billion m* yr ') and NEE (Tg yr "), and ecosystem water use efficiency (EWUE) (NEE/ET, g C kg !

H,0) by water resource region (WRR).
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although the use of normalized difference water index
derived from MODIS could partly account for soil moisture
conditions. Bias could be introduced for regions that have
high precipitation variability or where ET and plant carbon
uptake is sensitive to soil water storage. In addition, neither
model considered the effect of soil organic matters on NEE
through Re, nor the effect of deep root functioning on NEE
[Domec et al., 2010], thus amplifying the effects of climatic
variables on the differences. A recent comprehensive model
evaluation study by Schwalm et al. [2010] found that all the
22 ecosystem models assessed performed poorly in matching
observed CO, fluxes at a series of eddy flux sites, suggesting
a large knowledge gap in modeling carbon cycle even at the
site level.

[32] It could be confusing when comparing NEE values
among studies that used different accounting methods and
with a poor definition of carbon sequestration. This is
especially troublesome when reporting the total sum values
at the continental scale due to error propagation. A few
studies have attempted to document the carbon sequestration
strength for either the entire or certain geographic regions of
the United States (Table 4). Although some consistency of
carbon sequestration estimations was reported by previous
studies [Pacala et al., 2007; Xiao et al., 2010, 2011], given
the poor performance of existing models [Schwalm et al.,
2010], we argue a large uncertainty remains in reported U.S.
ecosystem carbon sink and this study offers improved
understanding and estimation of carbon fluxes and interac-
tions between carbon and water.

3.2.3. Ranking of Water Resource Region According
to Carbon and Water Fluxes

[33] Water yield volume and total carbon sequestration are
summarized by water resource region (WRR) to rank their
capacity of providing ecosystem services (Figure 11). Over
the period of 2001-2006, we estimated a total water yield
of 1.92 trillion m® yr ', an annual NEE of 1.24 Pg C yr !
(croplands excluded) and mean water use efficiency of
—0.57 + 0.38 g C kg ' H,O " for the conterminous United
States. The top three water production regions were

WRR17, WRRO03, and WRRO05, each of which received
highest precipitation and covered a large geographic region.
The top three carbon uptake regions (i.e., WRR03, WRRO05,
and WRR10) overlapped two of the three regions identified
by water yield. WRR10 had a similar total NEE as WRR 7,
8, 11, and 12. WRR17, located in the high latitude with
low PET, exhibited relatively low NEE in spite of receiv-
ing large amount of precipitation in the dormant season.
Although the magnitudes of estimated NEE by WRR were
different between the WaSSI-C and EC-MOD models,
the NEE ranking patterns for the two models were sim-
ilar, suggesting model consistency in estimating NEE
(Figure 11).

[34] Trade-offs between carbon and water at the regional
scale can be evaluated by ecosystem water use efficiency
(Ewug = NEE:ET), representing the amount of carbon
sequestered per unit of water consumed (g C - Kg' H,0).
This study showed that the Ewyg values of the most pro-
ductive regions in both water and carbon (WRRO03 and
WRRO5) were relatively high compared to those of the arid
regions (WRR 13-16) or cool regions (WRR 10, 17, 18)
that had low productivity (Figure 11). However, overall
Ewug was rather uniform across regions, suggesting mutual
constraints between carbon and water fluxes.

3.2.4. Temporal Variability of ET, GEP, and NEE
and the Roles of P

[35] The mean annual precipitation (P) for the contermi-
nous United States during 2001-2006 was 775 + 34 mm,
about 8% lower than the long-term (1960-2007) mean of
847 mm. Year 2004 was a relatively wet year among the
6 years studied, resulting in higher GEP and NEE, and water
yield (Q) than other 5 years (Figure 12). The severe drought
in 2002 caused a noticeable decrease in GEP and NEE as a
whole across the Untied States. In contrast, ET fluxes
fluctuated little over the entire study period (Figure 12),
suggesting carbon fluxes were more sensitive to precipita-
tion change that ET as a large scale.

[36] The low interannual variability of fluxes presented in
Figure 12 might have masked the true coupling between
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Figure 14. Relationships between anomalies of annual P
and (top) annual ET, (middle) GEP, and (bottom) NEE, sug-
gesting regional differential responses of ecosystem fluxes
to changes in P in 2002 and 2006. Anomalies of P were rel-
ative to 48 year mean (1960-2007), while anomalies of ET,
GEP, and NEE were relative to the mean of 2001-2006.

water and carbon processes. For example, year 2002 had the
same annual precipitation as 2004 (757 mm), but the 2 years
had rather distinct spatial patterns of carbon and water fluxes
owing to spatial precipitation variability (Figure 13). The
western and eastern regions experienced separate severe
droughts in 2002 and 2006, respectively, resulting in large
decreases in GEP and NEE. The regional decreases in
GEP and NEE closely followed with the decreases in P
(Figure 13). The reason was that modeled GEP and NEE
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was a linear function of ET which was controlled by P in
most regions in the United States. Indeed, annual ET
anomalies were strongly influenced by P, as were anomalies
of GEP and NEE (Figure 14). We found that the ET fluxes
were more sensitive to P in water-limited dry regions (e.g.,
WRR15) than in other regions. This was demonstrated by a
severe shift to a steeper slope for the relationship between
anomalies of ET and P compared to the overall relation-
ship across the conterminous United States that has slope
of 0.25 mm mm ™' (Figure 14). GEP and NEE had similar
pronounced response to droughts for the arid regions.
Annual ET generally increased with an increase in P at the
annual scale, but we found the opposite for some watersheds
(e.g., HUC 17100101-17100312) in WRR17 in the wet and
cool Pacific Northwest. In this case, ET, GEP, and NEE
decreased somewhat (in absolute values), up to 60 mm yr ',
100 g Cm2yr ', 20 gCm?yr', respectively, with the
increase in annual P up to 380 mm yr ' in 2006 (Figure 14).
A close examination of seasonal precipitation patterns in
2006 found that the increase in annual P was due to an
increase in winter precipitation whereas the growing season
precipitation decreased compared to the long-term mean,
consequently resulting in a decrease in ET, GEP, and NEE
(absolute values) in the annual totals.

4. Conclusions

[37] We developed a water-centric carbon and water
resource accounting model, WaSS-C, by linking a data-
driven water balance model and simple relationships
between GEP, Re, and ET as derived from global eddy flux
databases. This approach was similar to Beer et al.’s [2007,
2010] water use efficiency approach to derive carbon fluxes
from water fluxes. The main advantages of our model are
twofold: (1) the algorithms were developed from eddy flux
data and captured the essence of carbon and water interac-
tions at the monthly scale, and (2) input data are widely
available to run the model for prediction purposes. The
model requires only two basic climatic variables (i.e., pre-
cipitation and air temperature) and two major remote sens-
ing products (i.e., LAI, and land cover maps). As a result,
it is highly transferable to other regions that have limited
resources as a first estimation of water supply and ecosys-
tem productivity.

[38] The model was applied to the 2103 basins in the
conterminous United States. Model results suggest that most
of the ecosystems in the United States are carbon sink at the
annual timescale. When croplands were excluded, the car-
bon sink capacity of ecosystems of the conterminous United
States was estimated to be 1.24 Pg C yr '. Terrestrial eco-
systems produced about 1.92 trillion m® of fresh water
annually. There was a large spatial and temporal variability
in both water and carbon fluxes across the United States,
largely due to climate and vegetation dynamics over space
and time. The southeastern United States represented a
region with a large carbon sink and high water yield. We
found that carbon fluxes were strongly influenced by water
availability during the growing seasons. This was especially
true for arid regions where ET, thus GEP and NEE, was
more sensitive to changes in precipitation.

[39] This study presents improved understanding and
estimation of U.S. ecosystem water and carbon fluxes. The
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spatial and temporal changes of ET modeled by WaSSI-C
compared reasonably well with both MODIS-ET products
and estimates based on streamflow data of gauged water-
sheds. Although modeled ET and GEP values by this study
were compared well to several reference data sets, our NEE
estimates were higher than those published by the published
products, suggesting a large uncertainty in large scale NEE
estimates in all methods used in this comparison study.
[40] Future studies should aim at closing the NEE esti-
mation gaps among different regional modeling methods.
Alternative physiologically based soil respiration models
need to be incorporated into our water-centric model to fully
account for ecosystem respiration fluxes. Eddy flux mea-
surements and modeling efforts should focus on ecosystems
that are currently not represented in the flux networks, such
as wetlands and managed ecosystems that are under various
natural and human disturbance regimes. In spite of the
uncertainty and deficiencies identified, our model will be
useful in helping natural resource managers construct water
and carbon budgets and examine trade-offs between carbon
sequestration and water supply at the regional scale.
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