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ABSTRACT. Studies of spatial patterns of landscapes are 
useful to quantify human impact, predict wildlife effects, or de­
scribe variability of landscape features. A common approach 
to identify and quantify landscape structure is with a land­
scape scale model known as a contagion index. A contagion 
index quantifies two distinct components of landscape diver­
sity: composition and configuration. Some landscape ecologists 
promote the use of relative contagion indices. It is demon­
strated that relativized contagion indices are mathematically 
untenable. Two new theoretical contagion indices, r 1 and r 2 , 

are derived .using a mean value approach (Le., statistical ex­
pected value) instead of entropy. Behavior of r 1 and r 2 was 
investigated with simulated random, uniform, and aggregated 
landscapes. They are shown to be well-behaved and sensitive 
to composition and configuration. Distributional properties of 
f\ and r2 are derived. They are shown to be asymptotically 
unbiased, consistent, and asymptotically normally distributed. 
Variance formulas for r 1 and r 2 are developed using the delta 
method. The new index models are used to examine landscape 
diversity on three physiographic provinces in Alabama by an­
alyzing the pattern and changes in forest cover types over the 
recent past. In comparing r 1 and r2 , use of r1 in analysis of 
variance gave a more conservative test of contagion. 
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1. Introduction 

1.1. Landscapes and contagion. Landscape diversity refers to 
the various ecosystems (including human, e.g., cities, farm country, 
etc.) within a large area. The structure observed in landscapes result 
from complex interactions among physical, biological, and social forces. 
Most landscapes have been altered by human land use, and the re­
sulting landscape mosaic is a mixture of natural and human-managed 
patches that vary in size, shape, and arrangement (Burgess and Sharpe 
[1981]). A commonly used tool for measuring spatial structure on land­
scapes is the contagion index. 

A landscape contagion index is a quantitative metric, a single statistic 
applied on a broad spatial scale in which two distinct components are 
confounded: composition and configuration. Composition refers to both 
the total number of land-cover categories or "patch" types and their rel­
ative proportions in the landscape, whereas configuration refers to the 
spatial pattern of patches in the landscape (Li and Reynolds [1993]). 
Contagion, as defined by O'Neill et al. [1988], measures the extent to 
which landscape elements are aggregated or clumped. Higher values of 
contagion generally result from landscapes with a few large, contigu­
ous patches, whereas lower values usually characterize landscapes with 
many small patches. Also, holding the number of categories more or 
less constant, contagion values, in general, should decrease as category 
proportions become more even. 

From the above definitions, it is obvious that landscape contagion, 
as a property, has a reverse scale from that of species diversity. A 
single-species community has no diversity while an infinite-species com­
munity has maximum diversity. The exact opposite is true from a 
contagion viewpoint. That is, a single-category landscape has maxi­
mum contagion whereas an infinite-category landscape has no conta­
gion. In this regard, contagion equates to spatial autocorrelation. If 
categories are not correlated in space (Le., autocorrelation ~ 0), then 
there is greater uncertainty at any point on the identity of surrounding 
neighbors. 

Since its introduction over two decades ago, the contagion index has 
been used extensively in the analysis and modeling of landscapes and 
ecosystems. It has been used to detect changes in spatial patterns and 
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structure across a variety of landscapes around the globe (e.g., '!Urner 
and Ruscher [1988], Dale et al. [1993, 1994], Sachs et al. [1998], Shi 
et al. [2008]). Contagion has been used in ecological risk assessment 

. (Graham et al. [1991]). Gustafson and Parker [1992] used contagion 
to analyze the relationsh~p between land-cover proportions and spatial 
pattern. Contagion is currently being used to study and model land~ 
use dynamics in urban lareas (see, e.g., Dietzel et al. [2005], Haack 
and Rafter [2006], Yu and Ng [2006], Thapa and Murayama [2008]). 
According to Alberti [2009, p. 116], dispersion of urban areas can :t>e 
effectively measured using contagion and aggregation indices.· 

To date, only a handful of (relativized) contagion indices have been 
proposed (O'Neill et al. [1988], Li and Reynolds [1993], Riitters et al. 
[1996]). Researchers such as Frohn [1998, p. 14] and Ricotta et al. 
[2003] have raised concern over the effects of varying composition on 
these contagion indices. In no cases have distributional properties been 
examined. As a statistic, a contagion index is limited if it cannot be 
used in making comparisons of diversities among different landscapes 
or the same landscape through time based on sampie data. The sam­
pling properties of a landscape index must be known before one can 
construct an appropriate test. Is the index unbiased? Consistent? Can 
the variance be computed or approximated? Is the sample distribu­
tion normal? A formal investigation needs to be done to answer these 
questions. 

1.2. Forested landscapes. Forest landscape management is 
based on the premise that resource flows as well as biodiversity lev-

. els and ecosystem processes are determined by the array and spatial 
arrangement of forest conditions, i.e., spatial structure, and its change 
over time (Waring and Running [1998]). Forested landscapes are nor­
mally categorized into forest cover types (Fralish and Franklin [2002]). 
Several forest cover type classifications are currently.used within the 
forestry profession, the two most commonly used in the United States 
are the Society of American Foresters system (Eyre [1980]) and the 
USDA Forest Service-Forest Inventory and Analysis (FIA) system 
(Miles et al. [2001]). Progress has been made at the regional scale 
to map general forest cover types from remotely sensed data (e.g., Zhu 
and Evans [1994], Sasaki et al. [2001]' Kachmar et al. [2005]). However, 
in the United States, FIA sample-based forest survey data are widely 
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available for specific forest cover type mapping going back to the 1930s, 
giving us the ability to look back historically at landscape diversity. 

Geologic landforms have been mapped and classified into physio­
graphic provinces and are readily available for input into a geographic 
information system (GIS). With the digitized maps and the FIA data, 
a unique opportunity exists to apply a contagion index and distribu­
tion theory to characterize and compare forest cover type diversity on 
landscape scale physiographic provinces. 

1.3. Objectives. This paper develops new contagion indices and 
provides a statistical basis for their use in hypothesis testing. They 
are applied to a particular forest region of interest. There were a num­
ber of specific objectives of this research. First, to demonstrate, using 
simulated landscapes under three scenarios that relativized contagion 
indices possess mathematically undesirable qualities. This conveys the 
need for new indices that overcome the illogical behavior inherent in 
relativized indices. Second, using statistical expected values as an alter­
native to the principle of entropy, 1 two indices are derived that exhibit 
desirable mathematical behavior under the same scenarios where rela­
tivized contagion failed. Third, to study the sampling properties of the 
new contagion indices r land r 2. And fourth, apply the new indices, 
using FIA data on forest cover types, for comparing three landscape­
level physiographic provinces of Alabama: (i) Great Appalachian Val­
ley Province, (ii) Blue Ridge-Talladega Mountain Province, and (iii) 
Piedmont Province. 

2. Previous contagion indices. O'Neill et al. [1988J developed 
two landscape scale measures based on information theory. Their first 
index (D l ) is a measure of dominance. Their second index quantifies 
the extent to which different types are intermingled. It is given by 

(1) 
n n 

D2 = 2nln(n) + L LPij In(Pij), 
i=l j=l 

where Pij is the probability that a grid cell of land cover i is found 
adjacent2 (rook's rule) to a grid cell of land cover j, and n is the total 
number of land-cover categories (patch types) in a particular landscape. 
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Li and Reynolds [1993] showed that D2 is insensitive to changes in 
spatial pattern. This is because of an error, which they identified, in the 
formulation of the index. Li and Reynolds defined relative contagion 
(RC) as 

(2) RC = 1- EE/EEmax , 

where EE denotes the entropy value. The well-known measure of en­
tropy for categorical data, derived by Shannon (Shannon and Weaver 
[1949]), is - 2: Pi In(pi). Based on equation (2), Li and Reynolds gave 
two new indices. The first is 

(3} 

where Pij = Pjli = Nij/Ni , Pjli is the conditional probability, N ij is 
the number of joins between pixels of patch types i and j (rook's rule), 
and Ni is the total number of joins between pixels of patch type i and 
all patch types (including patch i itself). With this definition of Pij 
they proved EEmax = n In(n). Their second index is 

n n 

2: 2: Pij In (Pij ) 
(4) RO _ i=lj=l 

2 - 1 + --2-ln-(O:--n-=--)--

where Pij = Pi· Pjli and Pi is the probability that a randomly chosen 
pixel belongs to patch type i (estimated by the proportion of patch 
type i). With this definition of Pij, Li and Reynolds proved EEmax = 
2 In( n). The error in D2 was the use of 2n In( n) instead of the correct 
EEmax of 2 In( n). Thus D2 has a lower limit of 0 and no upper limit, 
but RCl and RC2 range from 0 to l. 

Riitters et aL [1996] examined what happens to the maximum pos­
sible entropy value for different ways of tabulating attribute (patch 
type) -adjacencies-with and without preserving the order of pixels in 
pairs. They showed when pixel order is preserved, the maximum en­
tropy value is 2In(n) and the index RC2 is obtained. When pixel order 
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is not preserved, EEmax = In( n2 + n) - In(2) and a new index results: 

na 
L Pq In(pq) 

(5) q=l 

RCunordered = 1 + In( n2 + n) - In(2) , 

where Pq = fq / np , fq is the frequency of pixel pairs that are of attribute 
adjacency type q, and np is the total number of pixel pairs in the map. 

3. The problem with relative indices of contagion. For an 
index to be appropriate, its behavior must follow the precepts of its 
definition. In the case of relativized contagion, it is easy to demon­
strate illogical behavior. Simulated landscapes can be used to formally 
investigate the behavior of the indices reviewed in Section 2. 

3.1. Simulated landscapes 

3.1.1. Increasing gradient of evenness. A series of simulated land,­
scapes, similar to that used by Li and Reynolds [1993], was generated 
with different spatial configurations (random, uniform, and clustered) 
and numbers of patch types (from 2 to 10), with an increasing gradient 
of evenness of the proportions of patch types. A simple 0 to 1 scaled 
measure of evenness is given by (Thrner [1989]) 

(6) 
-In (.tp;) 

RE = z=l 
In(n) 

where Pi is the proportion of the landscape in patch type i and RE 
(relative evenness) approaching 0 means increasing unevenness of the n 
categories and RE = 1 means all categories occur in equal proportion. 

For each of the three configurations, nine maps were generated. The 
first map had two patch types covering 90% and 10%, respectively. 
The second map had three patch types covering 80%, 10%, and 10%, 
respectively. The third map had patch type 1 covering 70% and the 
remaining three types covering 10% each, and so on. The ninth map 
contained 10 patch types each covering 10% of the surface area. The 
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rationale behind this scheme is to have a coverage of points between 
the extremes of high contagion to low contagion. 

The outlined scheme resulted in 27 simulated landscapes, nine for 
each spatial configuration. For each index, the computed values were 
plotted over number of patch types by spatial configuration, which 
gives a graph showing three lines, each determined by nine points. 
The plots show the sensitivity of the indices to changing numbers of 
categories/evenness (Le., composition) and spatial configurations. 

3.1.2. Same degree of evenness. As a second approach to looking 
at the behavior of the indices, another series of simulated landscapes 
was constructed for random, uniform, and clustered spatial configura­
tions and numbers of patch types (from 2 to 10) but with completely 
even proportions of patch types. That is, for two patch types each type 
occupied half of the area, for three patch types each type occupied 
one-third of the area, and so on (RE ~ 1 for each map). Again, this 
resulted in 27 simulated landscapes, nine for each spatial configura­
tion. A plot of the index values computed on these maps show if the 
indices, proportions being equal, are sensitive to increasing number of 
categories under different spatial configurations. 

3.2. The case against relative contagion 

3.2.1. Same degree of evenness. Consider the graph of RC2 values 
(Figure 1) from the 27 landscapes with RE ~ 1 (Le., same degree of 
evenness). The three spatial configurations separate out very distinctly, 
but the three lines are essentially fiat, showing that RC2 is completely 
insensitive to changes in number of patch types on the landscape when 
category proportions are equal. The other relative contagion indices 
behaved similarly. What does this mean? 

Figure 1 reveals that RC 2 is measuring something other than conta­
gion. For each value along the x-axis, RE is constant at its maximum 
value of 1. There is a direct parallel between the constancy of RE and 
the constancy of RC2 for each spatial configuration. It appears RC2 is 
measuring evenness. 
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FIGURE 1. Trend lines showing the relationship between RC2 and the two 
controlled variables: spatial pattern and number of patch types. Relative even­
ness ~ 1 at each point along the x-axis. 

3.2.2. Uniform landscapes-disparate evenness. To illustrate this 
point further, consider the thr:ee uniform landscapes in Figure 2. Con­
ceptually, as more patch types are included on a landscape, conta­
gion should decrease. Because patch-type proportions on landscape A 
change only slightly to create landscapes Band C with one and then 
two additional patch types, there should be a small decrease in conta­
gion from landscape A to B and then from B to C. Table 1 lists the 
breakdown of category proportions on the three landscapes and gives 
the index values computed on these landscapes. The relative contagion 
indices increase substantially from A to B to C. The relativized indices 
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FIGURE 2. Three uniform landscapes; (A) has four patch types, (B) has five 
patch types, and (C) has six patch types. 

are not reflecting changes in contagion, but rather, they are reflecting 
changes in evenness, as shown by RE. 

3.2.3. Increasing gradient of evenness. The inappropriateness of us­
ing EEmax in an index of contagion is not restricted to the form of 
ratios. Let us examine the approach used by O'Neill et al. [1988]. They 
proposed an index using EEmax as an additive term (see equation (1)), 
though they incorrectly specified EEmax. Li and Reynolds [1993] 



TABLE 1. Illustrative example showing illogical behavior of relative contagion indices. 

Patch type Index 

Landscape 1 2 3 4 5 6 RE RC I RC2 RC unordered 

Proportion Value 

A 0.50 0.25 0.15 0.10 0.77 0.26 0.20 0.21 
B 0.47 0.25 0.15 0.10 0.03 0.71 0.31 0.25 0.27 
C .0.47 0.23 0.15 0.10 0.03 0.02 0.66 0.41 0.30 0.32 
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0.31 -2.22 
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FIGURE 3. Trend lines showing the relationship between D; and the two 
controlled variables: spatial pattern and number of patch types. There is an 
increasing gradient of evenness along the x-axis. 

derived EEmax = 2 In(n), therefore the corrected formula for D2 is 

(7) 
n n 

D2 = 2ln(n) + L LPij In(Pij) , 
i=l j=l 

which is the same as equation (1) but with the correct EEmax term. 
This index, of course, is bounded by 0 and 2ln( n ). I computed D2 
on the simulated landscapes with the progressively increasing gradi- . 
ent of evenness. A graph of these 27 values is presented in Figure 3. 
Illogical behavior is very apparent, with the lines increasing and then 
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decreasing. The pattern is contrary to theoretical response, in which 
each line should monotonically decrease. The lesson is that contagion 
indices, if they are to retain meaning, should not be relativized. 

3.2.4. The effect of scaling. From Figures 1 and 3 and Table 1, we 
can readily see that the effect of scaling contagion relative to the max­
imum contagion possible creates indices with mathematically undesir­
able qualities. Such indices are overly sensitive to small variation in 
composition. Sampling error could easily sway the result one direction 
or the other, so if contagion indices are to be meaningful they should 
be relatively insensitive to such a change. This revelation is not new. 
Sheldon [1969] and Peet [1975] argued against relativizing species di­
versity indices, and they demonstrated that such indices are mathe­
matically untenable. 

4. New contagion indices. One can view the adjacency of patch 
type i and j as a general problem in waiting times (Feller [1968]) for 
the encounter of stateij, which follows a geometric distribution. It 
will be shown that by defining contagion as a generalized function and 
inserting expected values of random variables based on the encounter 
of state ij, new and logical indices result. 

4.1. Contagion generalized. In a contagious landscape, as de­
scribed by O'Neill et al. [1988] and Riitters et al. [1996], the typi­
cal patch type is relatively concentrated. Therefore contagion can be 
viewed as a function of concentration. Denoting the concentration func­
tion of Pij as C (Pij ), a generalized measure of theoretical contagion on 
landscape L is given by 

(8) 

where r is the contagion index associated with the measure of concen­
tration C, ¢ is any real constant, and Pij = Pi . Pj/i (proportion of 
patch type i times the conditional probability). Because the meaning 
of contagion is the inverse of the meaning of species diversity, it is nec­
essary to subtract the quantity L: L:PijC(Pij) from some constant ¢ to 
reverse the scale and provide a contagion formulation. Li and Reynolds 
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[1993] used ¢ = 1 in formulating relative contagion, defined byequa­
tion (2). This caused their indices RCI and RC2 to have the range 0 
to 1. The parameter ¢ can be considered a location parameter. 

4.2. Geometric distribution. Recall that Pij is the probability 
that two randomly chosen adjacent pixels belong to type i and j of n 
patch types. Define X + 1 as the number of random picks of adj acent 
pixels up to and including the first encounter of state ij. This scheme 
is a general problem in waiting times. Under this scheme X has a 
geometric distribution: 

If patch type i (or j) dominates a landscape, for i -=1= j, a large value 
of X would be expected. The ratio X / (X + 1) provides a reasonable 
measure of concentration, varying from 0.5 (low concentration) to 1 
(high concentration). For the situation i = j, the ratio X / (X + 1) 
still provides a reasonable measure of concentration, the meaning is 
simply reversed. That is, if patch type i dominates the landscape, a 
small value of X would be expected. Now the ratio X /(X + 1) is a 
random variable, and the average of such a ratio can be constructed in 
a number of ways; each gives rise to a different index. 

4.3. The new indices r 1 and r 2 • Let us assume that C(Pij) 
is represented by C(Pij) = E[X/(X + 1)lpij]. Because E [X/eX + 
1) IPij] = 1 + Pij In (Pij ) / (1 - Pij) (see Appendix A for derivations), 
using this result in equation (8) with ¢ = 1 and simplifying gives 

(10) 

This index is bounded between 0 and 1. For a proof see Appendix B. 

Let us assume that C(Pij) is represented by C(Pij) = E [XIPij] x 
E[I/(X + 1)lpij]. Because E [XIPij] = (1 - Pij)/Pij and E [1/(X 
+ 1) IPij] = -Pij In (Pij ) / (1 - Pij) (see Appendix A for derivations), 
C(Pij) = -In (Pij). Use of this result in equation (8) with ¢ = 0 
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gives 

n n 

(11) r 2 = LLPijln(Pij). 
i=l j=l 

The quantity L LPij In (Pij ) is. the entropy information value 
(Shannon and Weaver [1949]). It has already been established that 
by defining Pij as the product Pi . Pj / i, EEmax is 21n( n) (see equation 
(4)). Therefore r 2 is bounded between -2In(n) and o. The index RC2 
is readily obtained from r 2 by dividing by EEmax and adding 1, thus 
RC2 is r 2 scaled to the interval [0,1]. 

4.4. Behavior of r 1 and r 2 

4.4.1. Increasing gradient of evenness. A graph of the r 1 values 
computed on the simulated landscapes generated with an increasing 
gradient of evenness is displayed as Figure 4. As is readily seen in Fig­
ure 4, r 1 is sensitive to both composition and configuration. The three 
spatial configurations separate out logically with aggregated landscapes 
having the highest values, followed by uniform landscapes, and then 
the randomly arranged landscapes having the lowest values. This is ex­
pected because random landscapes have little spatial autocorrelation 
whereas uniform and aggregated landscapes have increasing spatial au­
tocorrelation of patches. There is a sharp decrease in all three curves 
with increasing number of patches and evenness, covering nearly the 
full range of index values. This meets with the conceptual definition 
of contagion. Contrast this with the behavior of D2 on the same land­
scapes (Figure 3). The index D2 failed to give monotonically decreasing 
lines. 

A graph of the r 2 values computed on these landscapes is displayed 
as Figure 5. The index r 2 shows sensitivity to composition and con­
figuration for these data. The three spatial configurations separate out 
logically with aggregated landscapes having the highest values, fol­
lowed by uniform landscapes, and then the randomly. arranged land­
scapes having the lowest values. The lines have less curvature than in 
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FIG URE 4. Trend lines showing the relationship between r 1 and the two 
controlled variables: spatial pattern and number of patch types. There is an 
increasing gradient of evenness along the x-axis. 

Figure 4 giving slightly better separation among index values at the 
higher patch/evenness gradient values. 

4.4.2. Same degree of evenness. A graph of the r 1 values from the 
27 landscapes with RE ~ 1 is displayed as Figure 6. Again we see 
that r 1 distinguishes between the three spatial configurations and de­
creases with increases in number of land-cover categories. Its behavior 
is consistent with changes in composition and configuration. Contrast 
this with the behavior of RC 2 on the same landscapes (Figure 1). The 
index RC 2 failed to be sensitive to changing composition. 
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FIGURE 5. Trend lines showing the relationship between r 2 and the two 
controlled variables: spatial pattern and number of patch· types. There is an 
increasing gradient of evenness along the x-axis. 

Figure 7 displays a graph of the r 2 values computed on these land­
scapes. Similar to r 1 , r 2 distinguishes among the three spatial configu­
rations and decreases with increases in number of land-cover categories. 
The lines in Figure 7 have less curvature than in Figure 6, hence they 
flatten out less, giving slightly better separation between index values 
at the higher number of patch types. 

4.4.3. Uniform landscapes-disparate evenness. As a final check on 
the properties of r 1 and r 2, let us apply them to the three uniform 
landscapes of Figure 2. Recall that all of the relative contagion indices 
failed this test. The computed values of r 1 and r 2 on these landscapes 
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FIGURE 6. Trend lines showin,g the relationship between r 1 and the two con­
trolled variables: spatial pattern and number of patch types. Relative evenness 
~ 1 at each point along the x-axis. 

are given in Table 1, and as shown in the table, both indices decrease 
slightly from landscape A to B to C, as expected from a theoretical 
measure of contagion. 

5. Sampling properties of r 1 and r 2 • In this section, let r 
simultaneously represent r 1 and r 2 . To obtain an estimate of the 
contagion 

(12) 
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FIGURE 7. Trend lines showing the relationship between r 2 and the two 
controlled variables: spatial pattern and number of patch types. Relative 
evenness ~ 1 at each point along the x-axis. 

on the basis of a given sampling lattice, the unknown a priori proba­
bilities, the PijS in equation (12) are replaced by estimated PijS. In this 
connection, then, the properties of the random variable 

(13) 

are what we wish to determine. 

5.1. Bias. To estimate the first moment of (13), it is necessary to 
expand the function in a Taylor series about the point (Pu, ... , Pnn) 
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and take the expected value. We can write the expansion as follows: 

(14) r(Pll," . ,Pnn) = r(Pll,'" ,Pnn) + L L r'(Pij ) (Pij - Pij) 

+ ~ L Lf"(Pij)(Pij - Pij)2 + ~ L Lflll(Pii)(Pii - Pii)3 

+ 2~ LL f (4)(Pii)(Pii - Pii)4 + ... 

The expectation of r(pll , ... ,Pnn) involves the central moments of the 
random variables Pij (i, j = 1, ... , n). The multinomial distribution 
arises in categorical data analysis. The genesis of the multinomial dis­
tribution stems from T independent trials, where each trial can result 
in only one of n mutually exclusive events. See Ratnaparkhi [1985] for 
background on the multinomial distribution. Let T be the total number 
of lattice plots, and let Cij = Pij - Pij' For the multinomial distribution, 
the moment-generating function is (Shenton and Hutcheson [1969]): 

(15) 

where Xij takes the value 1 with probability Pij, and 0 with probability 
qij = 1 - Pij' Using equation (15), the following values are obtained: 

(16) E[Cij] = 0, E [c;j] = Pij(1 - Pij)/T, 

E [crj] = (2prj - 3p;j + Pij) /T2, 

E [C{j] = O(T-2), E [cfj] = O(T-3). 

By substituting the appropriate expressions from (16) into (14) and 
simplifying, we obtain the first moment or mean of the random variable 
r: 

(17) E[r] = r(Pll,'" ,Pnn) + o(T-l) + o(T-2) + o(T-3) + ... 
= r + o(T-l). 

From (17), we can deduce that r1 and r2 are biased, but for any 
reasonable size T the bias is very small, and in fact is less than T- 1 • 
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5.2. Variance. The estimated r equals the true r plus a random 
error~, i.e., r = r +~. By definition, E[~2] = E[(r - r)2], and the vari­
ance of r is E[~2] - E2[~]. From (17), we know that E[~] = o(T-1 ), 

consequently E2 [~] = o(T-2), which for practical purposes is negligi­
ble. Therefore, the variance of r is: 
(18) 

A common approach for establishing the variance of a scalar statistic 
that is a function of many variables is the delta method (Rao [1965, 
pp. 321-322], Bishop et al. [1975, pp. 492-497]). The delta method 
uses the first-order multivariate Taylor series expansion to produce an 
estimated variance, i.e., var (r). The variance derivations for r1 and r2 

are given in Appendix C. For r1 we have 

(19) 

For r 2 the estimated variance is3 

]

2 
n n n n 

.2:: ?= Pij In2 (Pij) - [.2:: ?= Pij In (Pij) __ (A) ~=1 )=1 ~=1 )=1 
var r 2 ~ T (20) 

5.3. Consistency. The property of consistency ensures that an 
estimate is close to the true parameter value with a high probability if 
the sample size is sufficiently large. Let OT be an estimator of () based 
on a sample of size T. Sufficient conditions for an estimator OT to be 
consistent for () are (Judge et al. [1988, p. 85]): 

(21a) lim E[OT] = 0 
T---+oo 
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(21b) lim var(8T ) = o. 
T----7oo 

An estimator that satisfies (21a) is said to be asymptotically unbiased. 
Thus an estimator is consistent if any bias it has goes to zero as the 
sample size increases and if its variance goes to zero as T ~ 00. The 
limit of equation (17) is r so condition (21a) is met; and the limit of 
equations (19) and (20) is zero so condition (21b) is met. Thus f\ and 
r 2 are consistent estimators. 

5.4. Asymptotic distribution. Kempthorne and Folks [1971,. 
pp. 112-115 and pp. 120-121] have shown how the probabilities for the 
multinomial distribution tend with increasing sample size to the ordi­
nates for the multivariate normal distribution. They used a moment­
generating function argument to show that the limiting distribution 
of the multinomial is the multivariate normal distribution. Because r 1 

and r2 are functions of multinomial probabilities, the k-variate normal 
condition of equation (13) is met, thus proving asymptotic normality 
for f\ and r2 • 

6. Application: Analysis of contagion on three physio­
graphic provinces in Alabama. Much public attention has been 
given to growth declines of southern commercial forests (Sheffield et al. 
[1985], Zeide [1992]). Survey units in Alabama showed a pattern that 
created the suspicion that widespread growth declines might be oc­
curring in Alabama. Thomas and Parresol [1989] were able to show, 
using Simpson's paradox, that basal area growth was (i) consistent 
with changes in tree frequency in diameter classes and (ii) relatively 
constant over the most recent inventories. Simple comparison of ra­
dial growth was misleading. A look at landscape diversity is of interest 
in this region, especially for broad-scale management considerations. 
Physiographic provinces for Alabama are given by Hodgkins et al. 
[1979] (Figure 8). 

6.1. Study areas and data. Three adjacent physiographic 
provinces in Alabama were chosen for study: (i) Great Appalachian 
Valley Province, (ii) Blue Ridge-Talladega Mountain Province, and 
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LIMESTONE PLATEAU 

II CUMBERLAND MOUNTAIN PLATEAU 

• GREAT APPALACHIAN VALLEY 

• BLUE RIDGE· TALLADEGA MT. 

• PIEDMONT 

• HILLY COASTAL PLAIN 

D MIDDLE COASTAL PLAIN 

• FLATLANDS COASTAL PLAIN 

• ALLUVIAL FLOODPLAIN 

FIG URE 8. The nine physiographic provinces of Alabama. 

(iii) Piedmont Province (see Figure 8). FIA forest cover type data for 
these provinces were obtained from the national FIA website (http:/ / 
www.fia.fs.fed.us).4 General forest cover types are listed in Table 2. 
Each physiographic province point coverage was apportioned into 
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TABLE 2. USDA Forest Service general forest cover typesa occurring on three 

physiographic provinces in the state of Alabama, USA. 

General forest cover types 

Longleaf-slash pine 

Loblolly-shortleaf pine 

Oak-pine 

Oak-hickory 

Oak-gum-cypress 

Elm-ash-cottonwood 

Nontyped 

Nonforest 

aSource: May [1990, p. 6]. 

Species 

Pinus palustris-Pinus elliottii 

Pinus taeda-Pinus echinata 

Quercus sp.-Pinus sp. 

Quercus sp.- Carya sp. 

Quercus sp.-Liquidambar styraciftua- Taxodium 

distichum 

Ulmus sp.-Fraxinus sp.-Populus sp. 

Thiessen polygons, and polygons of the same forest cover type were 
marked the same to create a landscape-level view of cover types for 
each province for the survey years 1972, 1982, and 1990 (Figure 9). 
Proportions of each cover type on each province by survey year are 
given in Table 3. 

6.2. Hypotheses and hypothesis testing. It is generally be­
lieved that prior to the 1900s forested landscapes in the South were 
more homogeneous and contiguous than today. Exploitative logging, 
agriculture, forest-type conversion, and other factors have altered, and 
continue to alter, the mosaic of forest cover types on the landscape. 
Today landscape flux (changes in composition and/or configuration) 
can possibly occur on the time scale of a decade. Therefore, it is nat­
ural to hypothesize that landscape flux is occurring on the physio­
graphic provinces. Also, it is of general interest to compare physio­
graphic provinces for similarity or differences in contagion" Using the 
new indices, contagion values (C) were computed for each province for 
the three survey periods. Let A represent the Great Appalacian Valley 
Province, let B represent the Blue Ridge-Talladega Mountain Province, 
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and let P represent the Piedmont Province. The following constitute a 
logical set of hypotheses for the landscape data: 

1. For Appalachian, Ho: C72 = C82 = C90 

2. For Blue Ridge, Ho: C72 = C82 = C90 

3. For Piedmont, Ho: C72 = C 82 = C90 

4. For 1972, Ho: CA = C B = C p 

5. For 1982, Ho: CA = CB = C p 

6. For 1990, Ho: CA = Cs = Cpo 

Variance formulas have been derived for the two new indices, and the 
distribution of both indices is asymptotically normal, hence hypothesis 
testing can be accomplished through application of one-way analysis of 
variance (ANOVA). The tests of hypotheses were conducted using a = 

.10. This level was chosen to increase power of the test. The results of 
the hypothesis tests were used to draw general conclusions about forest 
cover type diversity on the three physiographic provinces and use of 
the new indices. 

7. Results and discussion. Table 4 lists the f\ values and their 
corresponding variances computed on each of the provinces at the three 
survey periods. All r1 values in Table 4 are fairly low, reflecting the fact 
that all three landscapes have many patches. Compositional change, in 
terms of changing proportions of forest cover types (see Table 3), is 
probably more responsible for the slight differences in r1 values than 
configuration. From the tests of hypotheses in Table 4, we can see that 
there was a significant increase in contagion in the Great Appalachian 
Valley in 1990 over the other two provinces. All in all there is great 
uniformity in contagion values in Table 4 indicating there has been little 
or no change in processes affecting contagion over the two decades and 

. that all three provinces operate under the same influences. 

The r 2 contagion values and their corresponding variances computed 
on each of the provinces at the three survey periods are listed in Table 5. 
This table tells much the same story as Table 4, but there are some 
interesting differences. The first hypothesis test in Table 5 indicates 
that contagion has increased significantly in the Great Appalachian 
Valley in 1990 over the previous two periods. The fourth hypothesis test 
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TABLE 4. Contagion values, variances, and F -tests using f 1 on three 
physiographic provinces in Alabama during three survey periods. 

Province Year fl 

Great Appalachian Valley 1972 0.1713 

Great Appalachian Valley 1982 0.1798 

Great Appalachian Valley 1990 0.1888 

Blue Ridge-Talladega Mt. 1972 0.1736 

Blue Ridge-Talladega Mt. 1982 0.1725 

Blue Ridge-Talladega Mt. 1990 0.1709 
Piedmont 1972 0.1778 
Piedmont 1982 0.1864 
Piedmont 1990 0.1787 

For Appalachian, Ho: r 72 = r 82 = r9 0 j F = 2.128, p = 0.120. 
For Blue Ridge, Ho: r72 = r82 = r90 j F = 0.035, p = 0.965. 
For Piedmont, Ho: r72 = r82 = r90 j F = 1.154, p = 0.316. 
For 1972, Ho: rA = rB = rpj F = 0.349, p = 0.706. 
For 1982, Ho: r A = rB = rp j F = 1.599, p = 0.203. 
For 1990, Ho: r A = rB = rp j F = 2.926, p = 0.054. 

Vai'(fl) 

0.00003415 

0.00004075 

0.00003319 

0.00004874 

0.00005597 

0.00005583 

0.00002236 

0.00001777 

0.00001766 

T 

407 

407 

407 

155 

155 

155 

409 

409 

409 

Note: In the table footnotes, the subscript A stands for the Great Appalachian Valley, 
B is for the Blue Ridge-Talladega Mountain, and P is for the Piedmont. 

tells us that contagion is lower in the Great Appalachian Valley than 
in the other two provinces in 1972. The fifth hypothesis test indicates 
that contagion is higher in the Piedmont Province than in the other 
two provinces in 1982. Hence there were three significant tests using 
r2 whereas there was only one significant test using r1 . From this, 
we can conclude that use of r1 provides a more conservative test. Let 
us examine composition and configuration on the landscapes to try to 
understand the significant tests. 

7.1. Composition. From Table 3, it is apparent that the longleaf­
slash, oak-gum-cypress, and elm-ash-cottonwood types are minor com­
ponents of the provinces. Proportions range from less than 1 % for the 
elm-ash-cottonwood type in the Great Appalachian Valley Province 
to about 5% for longleaf-slash in the Blue Ridge-Talladega Mountain 
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TABLE 5. Contagion values, variances, and F-tests using f'2 on three 

physiographic provinces in Alabama during three survey periods. 

Province Year r 2 

Great Appalachian Valley 1972 -3.0609 
Great Appalachian Valley 1982 -3.0167 
Great Appalachian Valley 1990 -2.9075 
Blue Ridge-Talladega Mt. 1972 -2.9513 
Blue Ridge-Talladega Mt. 1982 -2.9813 
Blue Ridge-Talladega Mt. 1990 -2.9747 
Piedmont 1972 -2.9517 
Piedmont 1982 -2.8583 
Piedmont 1990 -2.9340 

For Appalachian, Ho: r72 = r82 = r 90 ; F = 3.231, p = 0.040. 
For Blue Ridge, Ho: r72 = r 82 = r 90 ; F = 0.102, P = 0.903. 
For Piedmont, Ho: r72 = r82 = r90; F = 1.997, p = 0.136. 
For 1972, Ho: r A = rB = rp; F = 2.451, p = 0.087. 
For 1982, Ho: r A = rB = rp; F = 3.839, p = 0.022. 
For 1990, Ho: rA = rB = rp; F = 0.779, p = 0.459. 

Vai-(r2) 

0.001819 

0.002158 

0.001815 

0.002264 

0.002895 

0.002111 

0.001325 

0.001088 

0.001286 

T 

407 

407 

407 

155 

155 

155 

409 

409 

409 

Note: In table footnotes, the subscript A stands for the Great Appalachian Valley, B is 
for the Blue Ridge-Talladega Mountain, and P is for the Piedmont. 

Province. Though minor, these forest types nonetheless play a role in 
determining the contagion of the provinces. 

Again referring to Table 3, there has been a 4-7% decrease in the 
loblolly-shortleaf type from 1972 to 1990 in the three provinces. The 
oak-pine type has declined by 4% in the Great Appalachian Valley; it 
declined by 5% in 1982 but regained the lost 5% in 1990 in the Blue 
Ridge-Talladega Mountain Province; and it declined nearly 5% in 1982 
but regained 3% in 1990 on the Piedmont Province. The oak-hickory 
type has increased notably in the Great Appalachian Valley (8%) and 
the Piedmont (11 %) Provinces between 1972 and 1990, and was up 
7% in 1982 but lost 4% in 1990 in the Blue Ridge-Talladega Mountain 
Province. The nonforest proportion has been relatively stable, shifting 
only 1% to 3.5% in the provinces between survey periods. It is worth 
noting that the Great Appalachian Valley Province has considerably 
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more nonforest area, about 36% to 38%,compared to the other two 
provinces, which have around 19-23% nonforest area. 

7.2. Configuration. The landscape-level views of forest cover 
types in Figure 9 reveal subtle rather than dramatic changes in pattern 
and composition occurring in the provinces between 1972 and 1990. 
For the three physiographic provinces, the pattern appears to be a mix 
of random and clumped. Obviously, all provinces display a degree of 
fragmentation. Fragmentation at this geographic level results from a 
complex mix of cities and towns, dams and artificial lakes, forest type 
conversion, farming, and inherent site conditions such as topography, 
soil type, and moisture. . 

The Great Appalachian Valley Province has a topography of folded 
mountain ridges with interspersed valleys and hills. The mountain 
ridges are oriented from southwest to northeast. Under the Great Ap­
palachian Valley section of Figure 9, we can see that the nonforest type 
occurs in three concentrated clumps. These clumps are the result of two 
major cities and a man-made lake, with Birmingham in the southwest 
and Gadsden and Weiss Lake in the northeast. The Coosa River flows 
through this province coming in from the east. The Coosa was dammed 
to make Weiss Lake. In this province, the oak-gum-cypress and the elm­
ash-cottonwood. types. occur in the broad valley areas along the Coosa 
and its tributaries. The ridges and slopes support extensive areas of 
hardwood forests, and we can see clumping of the oak-hickory type. 
Pine management, both planted and natural, is important in this re­
gion, and we can see some clumping of the loblolly-short leaf type. The 
other types are more scattered. 

The smallest of the three provinces, the Blue Ridge-Talladega Moun­
tain, is a topographically reduced extension of the heavy slates and 
quartzites of the western Blue Ridge Mountains of East Tennessee and 
North Georgia. This province lacks the elm-ash-cottonwod type and 
the oak-gum-cypress type (except in 1982 where it shows up at a plot 
near where the Coosa crosses the province). The nonforest areas (see 
Figure 9) are scattered, but one clump shows up at the northeast neck 
of the province coinciding with the city of Anniston. Immediately to 
the west of the "neck" is a narrow cut out area belonging to the Great 
Appalachian Valley that contains a part of this nonforest city area. 
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We can see in Figure 9 that this province has some clumping in the 
loblolly-short leaf and oak-hickory types that relates to the topography 
and soil characteristics of the province. 

Heading south out of the Blue Ridge-Talladega Mountain Province, 
we drop in elevation and enter into the Piedmont Province. Cultivation 
was once widespread in this province. The Tallapoosa River generally 
runs north to south nearly through the center of the province with 
a major man-made lake, Lake Martin, formed close to the southern 
border. In Figure 9 (under the Piedmont section) this lake shows up 
as a large nonforest block near the southern border a little to the 
west of center. In the southeast of the province, there is a northeast to 
southwest line of towns (Lanett and Valley, Opelika, and Auburn) along 
interstate 85, which show up as three small nonforest blocks. Farming, 
though not as extensive as in years past, is still important in the region, 
creating small nonforest fragments across the province. Additionally, 
we can see in Figure 9 that there is clumping of the loblolly-short leaf 
and oak-hickory types in this province. 

7.3. Conclusions. From our examination of composition and con­
figuration and the contagion tests, it can generally be concluded that 
(i) there has been a minor shift in loblolly-shortleaf and oak-pine 
acreage into oak-hickory acreage; (ii) the overall1andscape pattern in 
the three provinces is similar, being a mix of random and clumped; 
(iii) the loblolly-short leaf and oak-hickory forest cover types occur in 

. moderate-to-large clumps while the others occur in small (relative to 
the landscape) well-intermixed patches; and (iv) there have been only 
small, though in some cases statistically significant, changes in con­
tagion on the provinces. Both r1 (Table 4, test 6) and r2 (Table 5, 
test 1) indicate a significant increase in contagion for the Great Ap­
palachian Valley in 1990. The large proportion of nonforest and clump i­
ness of this type are probably most responsible for this result. In 
1972, contagion appears to be lowest on the Great Appalachian Valley 
Province (Table 5, test 4). This province has the greater richness, which 
may account for its lower contagion. Finally, in 1982 the Piedmont 
has greater contagion over the other two provinces (Table 5, test 5). 
The Piedmont experienced greater composition changes from 1972 to 
1982 than the other provinces, which probably accounts for its greater 
contagion. 
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8. Concluding" remarks. Based on the simulations, both r 1 and 
r 2 behaved in a manner consistent with the concept of contagion. Both 
indices were sensitive to changes in composition and configuration and 
correctly ordered spatial pattern with aggregated> uniform> random. 
The graph of r 1 values displayed more curvature (see Figures 4 and 6) 
than the graph of r 2 values (see Figures 5 and 7). Hence for landscapes 
having many patch types, r 2 may give better separation. A feature of 
r 2 is its negative scale. One could specify a positive constant for ¢ (see 
equation (8)) and thereby translate the axis to give positive readings, 
but there is no constant other than ¢ = 0 that will retain the origin as 
an end point in the range interval. We have already seen the deleterious 
effects of specifying a variable value for ¢ such as 2 In( n) in equation (7). 

~~ From a theoretical point of view, there is nothing inherently wrong 
with having a negative scale, but from a practical point of view most 
users of indices prefer a positive scale. Thus, the index r 1 is appealing 
because of its positive scale. Also, r 1 possesses the fixed range (0,1] 
providing a ready interpretation of no contagion at the lower extreme 
and perfect contagion at the upper extreme, with degrees of contagion 
in between. The index r 2 has a nonstationary range dependent on 
the quantity 2 In( n), which adds a layer of complexity in interpreting 
contagion on the range of r 2. 

Because r 2 has an expanding range with increasing number of patch 
types, 0!le could raise the issue of what is a meaningful difference. Past 
a certain point of fragmentation or with increasing evenness and num­
ber of categories, r 1 tends to flatten out whereas r 2 keeps increasing 
its range and can take on lower and lower values. This author con­
curs with others such as O'Neill et al. [1988] and Riitters et al. [1996], 
who want measures of contagion to assess dominance or concentra­
tion.5 Philosophically then, this author believes that below a certain 
point, differences have little functional significance on the landscape. 
The "conservativeness" of r 1 reflects this philosophical niche. If one 
does not subscribe to this ideology, then r 2 would seem preferable~6 

A contagion index can be considered as a sum of multinomial prob­
abilities. Using properties of the multinomial distribution in a Taylor 
series expansion of r 1 and r 2, the bias of these statistics is shown to 
be o( T- 1

) where T is total number of observations. Using the delta 
method, a standard linear approximation formula, variance equations 
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were derived for r 1 and r 2. A function of a multivariate normal is itself 
normally distributed. Because multinomial probabilities have a limiting 
multivariate normal distribution, r 1 and r 2 are asymptotically normal. 

With the sampling properties worked out, an analysis of forest cover 
type contagion was conducted on three physiographic provinces in Al­
abama based on available FIA data. Field-determined forest cover type 
data are available from the USDA Forest Service-FIA surveys from 
sampling lattices covering the whole of the United States dating back 
to the 1930s. 

A host of tools are today available to policy makers and forestry 
practitioners to assess the state of forests and to help guide in their 
management for sustainability. In dealing with landscapes or regions, 
GIS and landscape indices are important tools for characterizing and 
comparing landscape diversity. 
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APPENDIX A: EXPECTED VALUE CALCULATIONS 

The contagion formulas for r 1 (equation (10)) and r 2 (equation (11)) 
come from particular expected values based on a geometric random 
variable (see equation (9)). Let qij = (1 - Pij), the required expected 
values are: 

00 

(AI) E[X /Pij] = LXPijqfj 
x=o 

= Pijqij + 2Pijq;j + 3Pijqtj + ... 
= Pijqij (1 + 2qij + 3q;j + ... j 
= Pijqij(l- qij)-2 = (1 - Pij)/Pij, 



(A2) 

(A3) 
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00 1 
E[l/(X + l)lpij] = L -lPijqfj 

x=o x+ 

= Pij + l/2Pijqij + l/sPijq;j + 1/4PijqYj + ... 
= Pij(qij + l/2q;j + l/sqYj + 1/4q& + .. ')/qij 

= Pij [-In(l - qij )]/qij 

= -Pij In(Pij) / (1 - Pij), 

00 

E [X/eX + l)lpij] = L -X-Pijqt 
. x=o x + 1 

= l/2Pijqij + 2/sPijq~ + 3/4Pijq¥j + ... 
= Pij(l/2q;j + 2/sqYj + 3/4q& + .. ')/qij 

= Pij[l/(l - qij) -1 + In(l- qij)]/qij 
= 1 + Pij In (Pij )/(1 - Pij). 

All three expected values involve solutions of infinite series. The series 
solutions are given below. 

One of the most celebrated series. in mathematics is the binomial 
series (Salas and Hille [1974, pp. 533-534]): 

(A4) 

where (~) is the kth binomial coefficient. For the binomial (1 - x )-2 

the following sequence is obtained 

(AS) 1 + 2x + 3x2 + 4x 3 + ... 

which is the same sequence in equation (AI). 
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To solve the power series embedded in equation (A2), begin by noting 
that d~ - In u = - ~ ~~. We can sum the power series 

ex) k 

(A6) L x 234 
- = X + l/2X + l/3X + 1/4X +"', . k 

k=l 

by setting 

(A7) 
ex) k 

f(x) = L ~, x 2 < 1 
k=l 

and applying the differentiability of power-series theorem (see Salas 
and Hille [1974, p. 526]) to obtain 

(A8) 
ex) k k-l ex) ex) 1 

f'ex) =" X = "xk- 1 = "xk =_, 
~ k ~ ~ I-x 
k=l k=l k=O 

the last sum being the well-known geometric series. Because f(O) = a 
and f'ex) = l~x' we must have 

(A9) f(x) = -In(l - x). 

To solve the power series embedded in equation (A3), we begin by 
noting the summation formula 

(Ala) ~k-Ik 2 3 4 
6 -k-x = l/2x + 2/3x + 3/4X + ... 
k=l 

We can take (Ala) and rearrange it into two series with known values 
and thereby arrive at the solution. 

(All) 

ex) xk 00 00 xk 
~ (k - 1)- = ~ xk - ~ -
k=l k k=l k=l k 

I 
= -- - 1 + In(l - x). 

I-x 
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APPENDIX B: BOUNDS FOR r 1 

The index r 1 is bounded between 0 and 1. To show this, we will 
make use of L'Hopital's rule. If n = 1 then PH = 1 and r 1 has the 
indeterminate form 0/0, so by L'Hopital's rule we have 

(B1) 

To establish the lower bound, consider that as n ---t 00 the PijS ---t 

O. However, this results in the indeterminate form 0 . 00. By writing 
P~j In (Pij ) as l~/(~V.) we obtain the indeterminate form 00/00 to which 

ZJ 
we can apply L'Hopital's rule. Hence 

lim t t P~j In(pij) . f f lim In(p~) / (Pi; - 1) 
(B2) n~ex:> PO)· - 1 p. ·~o+ l/p .. 

i=l j=l 0 i=l j=l ZJ ZJ 

ex:> ex:> l/p .. 
= LL lim -2/~ /(Pi; -1) 

i=l j=l Pij~O+ Pij 

ex:> ex:> 

= LL lim 
p··~o+ 

i=l j=l ZJ 

ex:> ex:> 0 

=LL 2 =0. 
i=l j=l 

APPENDIX C: DELTA METHOD CALCULATIONS 
FOR VARIANCE OF I\ AND r2 

Recall that n is defined as the number of land-cover categories. r 1 and 
r 2 are scalar statistics that are nonlinear functions of the n 2 elements 
of a. n x n contingency table, where Pij is the ijth element of the 
contingency table. As before, let r simultaneously represent r 1 and r 2. 

Let Cij = (Pij - Pij) and (ar / apij ) /Pij =Pij be the partial derivative of r 
with respect to Pij evaluated at Pij = Pij. The first-order multivariate 
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Taylor series expansion of f' is: 

(Cl) 
A ( ar ) ( ar ) r~r+cll -- +···+c1n --

apll Ip11 =1311 ap1n IPIn =13In 

( ar ) ( ar ) +c21 -- +···+c2n -- + ... 
ap21 Ip2I =1321 ap2n IP2n =132n 

( ar ) ( ar ) +cn1 8 +···+Cnn ~ 
Pn1 IPnl=13nl 'Pnn IPnn=13nn 

The Taylor series expansion in equation (C1) provides the following 
linear approximation: 

(C2) 

The squared random error approximately equals (,2 from equation (C2): 

[ 
n n ( ar ) ] [n n ( ar ) ] 

(C3) (,2 ~ LLCij -00 LLckl -
0_ 0_ apZ) _ apkl A 

1,-1 )-1 IPij=13ij k=1 l-1 IPkl=Pkl 

n n n n ( ar ) ( 8r ) ~LLLLCijCkl - -00 • 

o 0 8Pkl 8pz) 
1,=1 )=1 k=1l=1 IPkl=13kl Ipo o_pAo 0 

ZJ - ZJ 

From equations (18) and (C3), the var(f') is approximated as: 

n n (8r) n n (8r) (C4) var(f') ~ L L a-:: E [cijCkd L L a 
o 1 . 1 PZJ k 1 l 1 'Pkl 
1,= )= IPij=13ij = = IPkl=13kl 

The covariances E[cijCkd in equation (C4) can be determined using 
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equation (15). The values are as follows: 

(C5) (" " ) (A) E[2] E2[ ] Pij(l-Pij) 
COV Pij Pij = var Pij . Cij - Cij = T ' 

Replacing the expectation in equation (C4) with the values from (C5) 
gives: 

" 1 ~~ ar (C6) {n n [ ] 2 

Yar(r) ~ T Lt Lt ~ A Pij i~l j~l ('P') ) IPij~Pij 
n n [( ar ) ] n n ~(ar) ]} -LL ~ PijLL a Pkl . 

i=l j=l p~J IPij=Pij k=ll=l Pkl IPkl=Pkl . 

The first and second derivatives of rlat the point (PH, ... , Pnn) are 
. as follows: 

or l _ prj [1 + In (Pij)] - Pij [1 + 2ln (Pij )] . 

(C7) OPij - (Pij - 1)2 ' 

a2r l prj - 4Pij + 2ln (Pij) + 3 

ap;j = (Pij - 1)3 

Substituting the derivative values from (C7) for the partial derivative 
notation in equation (C6) and simplifying gives: 
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The first and second derivatives of r 2 at the point (PH, ... , Pnn) are 
as follows: 

(C9) 

As before, substituting the derivative values from (C9) into equa­
tion (C6) and simplifying gives: 

'[ ] 2 
n n n n 

.L: ?= Pij In2 (Pij) - ?=?= Pij In (Pij) ___ (A) 2=1)=1 '/,=1)=1 
var r 2 ~ T (C10) 

ENDNOTES 

1. The maximum-entropy principle (Shannon and Weaver [1949]' Jaynes [1957]) 
provides a means to obtain least-biased statistical inference under uncertainty. The 
rule is to choose the probabilities so as to maximize the uncertainty when one 
has only partial information about the possible outcomes. In general, formulas for 
quantifying diversity and contagion have been motivated by information-theoretic 
axioms, i.e., the principle of entropy (Renyi [1961]' Hill [1973], Ricotta et al. [2003]). 

2. On a grid adjacency may be defined as sharing a common side ("rook's" def­
inition, from chess), as sharing a corner ("bishop's" definition), or as either a side 
or corner ("queen's" definition). The standard used is rook's rule (O'Neill et al. 
[1988], Li and Reynolds [1993], Riitters et al. [1996]). 

3. As a point of interest, it was shown (Section 4;3) that the second relative 
contagion index of Li and Reynolds [1993], known as RC 2, is a scaled version of r 2 •. 

The variance of JiG; , or r2 (scaled), is simply the variance of r2 times the square of 
the scaling factor 2In(n), Le.: 

--- --- A ~(r2) 
var(RC2 ) = var(r2 (scaled)) = 2 ( ) 

4ln n. 
n n n n 

L: L: Pij In2 (Pij) - [L: L: Pij In (Pij )]2 
:;:::::i=l j =l i=l j=l 

4. Nationally, the FIA program collects data on sample plots spaced across each 
state on a 3- by 3-mile (4.8- by 4.8-km) grid. Detailed descriptions of the southern 
FIA data can be foundin May [1990]. 
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5. In ecology, dominance or concentration is normally measured using some func­
tion of p~ as this has been shown to reflect expected commonness (see Pielou [1975, 
pp. 8-9]). Note that r 1 is a function of p~j' 

6. The true entropy index of contagion is r 2 ; and RC2 , the scaled or relativized 
version of r 2 , is its corresponding "evenness/configuration" index. 
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