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a b s t r a c t

Agricultural, industrial, and urban activities are the major sources for eutrophication of surface water
ecosystems. Currently, determination of nutrients in surface water is primarily accomplished by manually
collecting samples for laboratory analysis, which requires at least 24 h. In other words, little to no effort
has been devoted to monitoring real-time variations of nutrients in surface water ecosystems due to
the lack of suitable and/or cost-effective wireless sensors. However, when considering human health or
instantaneous outbreaks such as algal blooms, timely water-quality information is very critical. In this
study, we developed a new paradigm of a dynamic data-driven application system (DDDAS) for estimating
the real-time loads of nitrogen (N) in a surface water ecosystem. This DDDAS consisted of the following
components: (1) a Visual Basic (VB) program for downloading US Geological Survey real-time chlorophyll
and discharge data from the internet; (2) a STELLA model for evaluating real-time N loads based on the
relationship between chlorophyll and N as well as on river discharge; (3) a batch file for linking the VB
program and STELLA model; and (4) a Microsoft Windows Scheduled Task wizard for executing the model

and displaying outputs on a computer screen at selected schedules. The DDDAS was validated using field
measurements with a very good agreement prior to its applications. Results show that the real-time
loads of TN (total N) and NOx (nitrate and nitrite) varied from positive to negative with the maximums of
1727 kg/h TN and 118 kg/h NOx and the minimums of −2483 kg/h TN and −168 kg/h NOx at the selected
site. The negative loads occurred because of the back flow of the river in the estuarine environment. Our
study suggests that the DDDAS developed in this study was feasible for estimating the real-time variations
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of TN and NOx in the surfa

. Introduction

Clean water is of vital importance for human societies and natu-
al ecosystems. Agricultural, industrial, and urban activities are the
ajor sources for contamination and eutrophication of rivers and

akes (Carpenter et al., 1998; David and Gentry, 2000; Dodds and
elch, 2000). The concentrations of biologically available nutri-

nts in excess in surface water can lead to diverse problems such as
oxic algal blooms, loss of oxygen, fish kills, loss of biodiversity, and

oss of aquatic plant beds and coastal reefs. Nutrient enrichment
n surface waters can also seriously degrade aquatic ecosystems
nd impair the use of water for drinking, industry, agriculture, and
ecreation and for other purposes. With an increased understand-
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ng of the importance of drinking water quality to public health and
aw water quality to terrestrial life, there is a greater need to assess
urface water quality.

In the past, to determine surface water quality in a stream,
t is necessary to manually collect samples and send them to

laboratory for analysis. These analytical methods require at
east 24 h or longer. However, when the human health or other
nstantaneous outbreaks such as algal blooms are concern, timely

ater-quality information is required. Timely water-quality infor-
ation also is useful for other many reasons, including assessment

f total maximum daily loads and the effects of urbanization
nd agriculture on a water supply. In response to the need

or timely and continuous water-quality information, the US
eological Survey (USGS) has begun using an innovative, contin-
ous, real-time monitoring approach for many nation’s streams
http://waterdata.usgs.gov/nwis/rt). These real-time monitoring
ater quality data normally include discharge, flow velocity, dis-
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ig. 1. A schematic diagram showing the basic concept of a dynamic data-driven
pplication system redrawn after NSF (2000).

olved oxygen, pH, temperature, conductance, and chlorophyll.
hese data are valuable for monitoring surface water-quality indi-
ators. However, there is currently very little activity to monitor the
eal-time variations of nutrients in surface waters due to the lack of
uitable and/or cost-effective wireless sensors. Knowledge of real-
ime nutrient variations is critical to estimate surface water-quality
tatus. Therefore, a need exists to develop a new paradigm for this
urpose. To this end, a dynamic data-driven application system
DDDAS), which utilized the US Geological Survey (USGS) real-time
hlorophyll a (Chl a) and river discharge data, a STELLA (Structural
hinking, Experiential Learning Laboratory with Animation) model
or evaluation real-time variations of nitrogen (N), a VB.NET pro-
ram, and the Windows interfaces, was developed in this study.

The DDDAS was probably first conceived by the US National
cience Foundation around March 2000. Fig. 1 shows a basic con-
ept of a DDDAS, which consists of the following four symbiotic
omponents: user control, dynamic computation, real-time data
cquisition, and dynamic visualization. A similar concept can also
e found in NSF (2000), Douglas et al. (2004), Darema (2005) and
uyang et al. (2007). Users control and interact with dynamic com-
utation, real-time data acquisition, and dynamic visualization.
ynamic computation includes application models, computational
lgorithms, and all of the computing machines and their connec-
ions (e.g., computers and monitors). Real-time data acquisition
nvolves the instantaneous data collections from remote sensing,
limatic monitoring, GIS map sources, and wireless sensor mea-
urements. Dynamic visualization includes supporting software
nd hardware for interactive visualization, which help users to
ontrol the system and make decisions.

When a DDDAS is launching, the dynamic computation
nfrastructure will start to run the application models and/or com-
utational algorithms. Meanwhile, the real-time data acquisition

nfrastructure will start to collect the real-world data and inject
hem into the dynamic computation infrastructure for simulations.
his DDDAS will have the ability to dynamically employ simula-
ions to guide the real-time measurements, to determine when,

here, and how it is best to gather additional data. In reverse,

he DDDAS can also dynamically steer the simulations based on
he real-time measurements. Such automatic steering of simula-
ions and measurements with ability to switch between the two
nfrastructures can be envisioned through the dynamic visualiza-
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ion infrastructure. The dynamic visualization infrastructure will
e achieved through the software and hardware supports. Overall,
ll of the infrastructures are controlled and managed by the users. A
pecific example of a DDDAS applied to watershed contamination
onitoring and predictions can be found in Ouyang et al. (2007).
Chl a is often used to estimate algal biomass, with blooms being

redicted to occur when the Chl a concentration exceeds 40 �g L−1

Stanley et al., 2003). During the last several decades, numerous
tudies have demonstrated a strong correlation among Chl a, total
hosphorus (TP), and total nitrogen (TN) concentrations in north-
emperate lake waters from around the world (Aizaki et al., 1981;
hlgren, 1980; Sakamoto, 1966) and in Florida lakes (Huber et al.,
982; Canfield, 1983). Large- and small-scale experiments fur-
her suggested that P is a primary factor controlling algal growth,
specially in northern lakes. Therefore, simple empirical TP–Chl a
egression models (Dillion and Rigler, 1974; Jones and Bachmann,
976) have been used to predict changes in Chl a concentrations

n response to changes in TP concentrations. However, lakes sur-
ounded by rich phosphate deposits and P-containing soils may be

limited. Existing equations using the P and Chl a correlation may
nadequately estimate algal biomass under such circumstances.
anfield (1983) demonstrated that in Florida lakes, Chl a is signifi-
antly correlated with both TP and TN. The P is the limiting nutrient
hen the TP concentration is below 100 �g L−1, whereas the N is

he limiting nutrient when the TP is above 100 �g L−1.
STELLA is a user-friendly and commercial software package for

uilding a dynamic modeling system. It uses an iconographic inter-
ace to facilitate construction of dynamic system models. The key
eatures of STELLA consist of the following four tools: (1) stocks,
hich are the state variables for accumulations. They collect what-

ver flows into and out of them; (2) flows, which are the exchange
ariables and control the arrival or the exchanges of information
etween the state variables; (3) converters, which are the auxiliary
ariables. These variables can be represented by constant values or
y values depending on other variables, curves or functions of var-

ous categories; and (4) connectors, which are to connect among
odeling features, variables, and elements. STELLA offers a practi-

al way to dynamically visualize and communicate how complex
ystems and ideas really work (Isee Systems, 2006). STELLA has
een widely used in biological, ecological, and environmental sci-
nces (Hannon and Ruth, 1994; Costanza et al., 2002; Aassine and
l Jai, 2002; Ouyang, 2008). An elaborate description of the STELLA
ackage can be found in Isee Systems (2006).

The purpose of this study was to develop a DDDAS for indi-
ectly estimating the real-time loads of N in a surface water
cosystem. Our specific objectives were to: (1) obtain the rela-
ionships between Chl a and total N (TN) as well as between Chl
and total Kjehldahl N (TKN) through linear regressions, using a

ong-term dataset from a regular (i.e., non real-time) surface water-
uality monitoring station; (2) download the USGS real-time Chl
data from a monitoring station to a personal computer using a
indows-based VB.NET program; (3) develop a STELLA model for

redicting the real-time loads of TN and NOx (nitrate and nitrite)
pecies in the surface water ecosystem based on the real-time Chl
data and the relationships obtained from Objective 1 as well

s based on the river discharge data; (4) create a batch file for
inking the VB.NET program and the STELLA model; (5) set up a

indows Scheduled Task wizard for implementing the DDDAS at
iven schedules; (6) validate the DDDAS for estimating real-time
ariations of N species using another independent dataset from the

egular monitoring station; and (7) apply the DDDAS to forecast the
eal-time loads of N species in the surface water ecosystem.

It should be pointed out that the real-time monitoring station
elected in this study was very close (<400 meters in distance) to
he regular monitoring station in order to minimize the sample



618 Y. Ouyang et al. / Ecological Engineering 37 (2011) 616–621

F
S
m
t

v
s
t
f
s
t
b
f
i
t
o

2

l
g
(
a
i
(
s
p
b

2

s
e
s
s
w
r
m

F

p
t
t
#
S
(
m
s
s
r
t
s
w
S
s
a
o
s
c
b
T
m
b
a

T

T

ig. 2. (A) Location of the USGS real-time and regular monitoring stations near
atsuma, Putnam County, FL, USA. The distance between the two stations is <400
eters. (B) A schematic diagram showing a DDDAS framework for estimating real-

ime variations of N in a surface water ecosystem.

ariations. As stated above, most of the USGS real-time monitoring
tations do not measure nutrients in surface water ecosystems due
o the lack of suitable and/or cost-effective wireless sensors. There-
ore, it is impossible to directly estimate the real-time loads of N
pecies based on the USGS real-time monitoring stations. The real-
ime loads of NOx in the surface water ecosystem were calculated
ased on the real-time loads of TN and TKN that were obtained
rom Objective 3. The Windows Scheduled Task wizard employed
n Objective 5 was used to guide the DDDAS on when to download
he data, perform the STELLA simulation, display the simulations
n computer screen, and end the real-time forecasting.

. Materials and methods

A schematic diagram for a DDDAS in estimating the real-time
oads of N species pertaining to this study is given in Fig. 2. This dia-
ram shows the following five major components of the DDDAS:
1) a wireless sensor from a USGS real-time monitoring station; (2)
USGS real-time database website; (3) a STELLA model for simulat-

ng the real-time loads of N species in a surface water ecosystem;
4) a computer for downloading the real-time data and performing
imulations; and (5) a screen monitor for displaying simulation out-
uts. The detailed descriptions of each component were presented
elow.

.1. Data mining

The first step in developing the DDDAS is to select a study
ite (i.e., watershed) and a USGS monitoring station of inter-
st from the USGS website within the watershed. This station

hould be very close to a regular (non real-time) monitoring
tation that has a long-term dataset for nutrients. In other
ords, these two monitoring stations should have the same

epresentative for a watershed of interest. Once the real-time
onitoring station is selected, a Windows-based computer

T
t
t

ig. 3. Relationships of TN and TKN with Chl a obtained from field measured data.

rogram in Microsoft VB.NET needs to be constructed for simul-
aneously downloading the data to a personal computer. In
his study, we selected a USGS real-time monitoring station
02244040 (Lat. 29◦35′46′′, long. 81◦41′00′′) located at the
t. Johns River basin near Satsuma, Putnam County, FL, USA
http://waterdata.usgs.gov/fl/nwis/uv/?site no=02244040&PARA-

eter cd=00400,00095,00010). In companion with this real-time
tation, there is a regular (non real-time) water quality monitoring
tation (29◦35′43′′, 81◦40′45′′) located <400 meters east of the
eal-time monitoring station. This station is currently managing by
he St. Johns River Water Management District (SJRWMD), FL. All
ampling activities for this station were conducted in accordance
ith the SJRWMD and US Environmental Protection Agency’s

tandard Operating Procedures for the collection of water quality
amples and field data. Both stations represent the same drainage
rea. However, the USGS station measured the real-time data
n river flow characteristics and other water quality parameter
uch as Chl a but without nutrients, whereas the regular station
ollected most of the water quality parameters including nutrients
ut were not the real-time data and without river discharge.
he nitrogen data collected during 1993–2003 from the regular
onitoring station were used to obtain the relationships (Fig. 3)

etween Chl a (mg/m3) and TN (mg/L) as well as between Chl a
nd TKN (mg/L) with the following linear regression equations:

N = 0.01 × Chl a + 1.01029

×(R2 = 0.356, p < 0.0019, ˛ = 0.05) (1)

KN = 0.0119 × Chl a + 1.0039
×(R2 = 0.511, p < 0.00000184, ˛ = 0.05) (2)

hese two equations were used, respectively, to predict the real-
ime variations of TN and TKN concentrations based on the real-
ime variations of Chl a from the USGS real-time monitoring station.

http://waterdata.usgs.gov/fl/nwis/uv/%3Fsite_no=02244040%26PARAmeter_cd=00400,00095,00010


Y. Ouyang et al. / Ecological Engineering 37 (2011) 616–621 619

ode (B

T
o

N

f

l

l

w
t
T

2

a
S
r
d
e
c

c
(

d
c
T
w

w
i
e
w
e
a
t

2

Fig. 4. STELLA modeling map (A) for evaluating N species loads and its c

he real-time variations of NOx (mg/L) were then calculated based
n the following equation:

Ox = TN − TKN (3)

The real-time loads of TN and NOx can be calculated using the
ollowing equations:

oadTN = 0.10194 × discharge × TN (4)

oadNOx = 0.10194 × discharge × NOx (5)

here discharge is the river discharge rate (ft3/s or 101,940 L/h) at
he real-time monitoring station and the load denotes the masses of
N and NOx loading from the station into the lower stream (kg/h).

.2. STELLA model

The first step in the STELLA modeling processes was to develop
basic structure to capture the processes described above using
TELLA. In Fig. 4, the rectangles are stocks that graphically rep-
esent the masses of nutrients. The flow symbols (represented by
ouble lines with arrows and switches) represent the rates of nutri-
nt discharges into or out of the stocks. The other variables are
onverters (represented by empty circles) that denote the rules or

t
“
l
T

) showing the equations and graphic input data from the USGS station.

onditions controlling the stocks and flows through the connectors
represented by single red lines with arrows).

As shown in Fig. 2, the model first received the real-time Chl a
ata from the USGS station; then calculated TN, TKN, and NOx con-
entrations, respectively, using Eqs. (1)–(3); and finally estimated
N and NOx loads, respectively, using Eqs. (4) and (5) in conjunction
ith the real-time river discharge data from the USGS station.

After the basic STELLA structure was developed, the second step
as to assign the initial values for stocks, equations for flows, and

nput values for converters. The STELLA modeling code showing the
quations and input parameter values are given in Fig. 4. This code
as automatically generated with STELLA once its structure was

stablished. It should also be noted that the STELLA software has
n “Interface” module that can display simulation outputs instan-
aneously.

.3. DDDAS framework
A batch file “RealTime.bat” was created by linking the following
wo executable files together: “usgs.exe” and “stella-N.exe”. The
usgs.exe” was written with Microsoft VB.NET for instantly down-
oading the real-time data every 30 min from the USGS website.
his dataset was saved in a Microsoft Excel file. The “stella-N.exe”
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Fig. 6 further reveals that loads of TN and NOx varied from posi-
ig. 5. Comparison of the DDDAS predictions with the field measurements for TN
nd TKN. The values of R2 from the linear regression analysis were 0.692 and 0.748,
espectively, for TN and TKN.

as composed with the STELLA package for modeling N loads and
isplaying the real-time predictions on a computer screen. The
stella-N.exe” read the Excel file for the real-time inputs of Chl a
nd river discharge when it was executed. A Microsoft Windows
cheduled Task wizard “RealTimeRun” in Windows XP was set up
o include the “RealTime.bat” file and directed this bat file on when
o begin and end running of the “usgs.exe” and “stella-N.exe” files
s well as on the running time intervals.

In other words, the DDDAS developed in this study consisted of
he following four files; (1) “usgs.exe”, (2) “stella-N.exe”, (3) “Real-
ime.bat”, and (4) “RealTimeRun”. To implement the DDDAS, users
ust need to click on the “RealTime.bat”.

. Simulations

.1. DDDAS validation

In order to apply the DDDAS for estimating real-time loads of
species in the surface water ecosystem, its applicability must be

alidated. The validation is a process of comparing the DDDAS pre-
ictions with the field observations within a given time period. In
his study, an attempt was made to validate the DDDAS predictions
sing an independent set of the field observations collected from
004 to 2009. Since no river discharge data were collected from
he regular monitoring station, only the TN and TKN data from the
egular monitoring station were used for validations.

Comparisons of the field measured and DDDAS predicted TN
nd TKN concentrations are shown in Fig. 5. The values of slope,
ntercept, R2, and p from the linear regression analysis were, respec-

ively, 0.52, 0.75, 0.69, and <0.00000000006 for TN and were,
espectively, 0.69, 0.52, 0.75, and <0.0000000005 for TKN. We,
herefore, concluded that a fairly reasonable agreement between
he field measurements and the DDDAS predictions was obtained.

t
N
n
u

ig. 6. Real time loads of TN and NOx predicted from the DDDAS and real time vari-
tions of river discharge obtained from the USGS monitoring station from October
7 to 4 November 2, 2009.

.2. DDDAS application

To obtain a better understanding of the real-time load of N in a
urface water ecosystem, a forecasting (or simulation) scenario was
erformed in this study. In particular, this scenario investigated the
eal-time loads of TN and NOx in responses to real-time variations
f river discharge over a week period. Input values for the real-time
iver discharges and chl a contents at every 15 min were instantly
ownloaded from the USGS station (#02244040). The forecasting
egan on October 27, 2009 and ended on November 2, 2009. It
hould be pointed out that USGS only provides the most current 60
ays’ real-time data for this station with an interval of 15 min. A
eek real-time data were selected in this scenario for the purpose

f data storage efficiency and simplicity although it is very easy to
odify the DDDAS for a 60-day period simulation.
Real-time variations of TN and NOx loads in the surface water

redicted from the DDDAS are shown in Fig. 6. It should be empha-
ized that although this figure demonstrated the variations of TN
nd NOx loads for the entire simulation period (i.e., 7 days), in
eality, the DDDAS was run every 15 min and the variations of TN
nd NOx loads at that particular time were displayed immediately
n the computer screen. The users can then estimate the surface
ater-quality status in a timely manner. The simulation ended at

:09 pm on Monday, November 2, 2009.
ive to negative with the maximums of 1727 kg/h TN and 118 kg/h
Ox and the minimums of −2483 kg/h TN and −168 kg/h NOx. The
egative loads implied that the TN and NOx flowed back to the
pstream, resulting from the negative (back) flow of river discharge
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Sakamoto, M., 1966. Primary production by the phytoplankton community in some
Y. Ouyang et al. / Ecological

Fig. 6C). The back flow of the river at the monitoring stations
elected in this study was due to the tidal influence as the stations
ere located within the estuarine system. Comparison of Fig. 6A

nd B with Fig. 6C shows that effects of river discharge on TN and
Ox loads were profound, and the loads of TN and NOx followed

he same time-series pattern as that of the river discharge.

. Summary

In this study, we had developed a DDDAS for forecasting real-
ime loads of TN and NOx in a surface water ecosystem. Prior to its
pplications, the DDDAS was validated by field data with a reason-
ble agreement between the predictions and the measurements.

A forecasting scenario was chosen to demonstrate real-time
oads of TN and NOx in an estuarine surface water ecosystem.
esults showed that river discharge had decisive effects on the real-
ime loads of TN and NOx with the maximums of 1727 kg/h TN and
18 kg/h NOx.

Our results further revealed that the DDDAS developed in this
tudy was feasible for estimating the real-time variations of TN and
Ox in the surface water ecosystem. Further study is warranted

o develop a DDDAS for scrutinizing the real-time loads of other
ater quality parameters such as phosphorus and organic carbon

n surface water ecosystems.
It should be noted that the purpose for estimation of the real-

ime load of N in the river is not to monitor the algal bloom since
he algal bloom can be better estimated from the USGS real-time
hl-a data. We estimated the real-time N load because high con-
entrations of N in a river could increase the biomass of aquatic
lants, threaten the shallow groundwater quality, and affect ter-
estrial ecosystem. Additionally, for those areas around the world
hat use surface water as drinking water, the real-time monitoring
f N load in surface water is very critical.
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