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ABSTRACT

Regional frameworks have been used extensively in recent years to aid in broad-scale management. Widely used landscape-based regional
frameworks, such as hydrologic landscape regions (HLRs) and physiographic provinces, may provide predictive tools of hydrologic
variability. However, hydrologic-based regional frameworks, created using only streamflow data, are also available and have been created at
various scales; thus, relating frameworks that share a common purpose can be informative. In addition, identifying how the relative
importance of variables change in governing streamflow with respect to scale can also be informative. The purpose of this study was to
determine whether landscape-based frameworks could explain variation in streamflow classifications and in the hydrologic variables used in
their creation. We also evaluated how climate and watershed-based variables govern the divergence of different flow classifications at two
different scales. HLRs and physiographic provinces poorly predicted flow class affiliation within our study and for the entire USA, although
physiographic provinces explained more variability. We also found that HLRs explained very little variation in individual hydrologic
parameters. Using variables summarized at the watershed scale, we found that climate will play a larger role in influencing hydrology across
the entire US, whereas soils may govern variation in hydrology at smaller scales. Our results suggest that predictor variables, developed at
the watershed scale, may be the most appropriate at explaining hydrology and that the variables used in creating regional landscape-based
frameworks may be more useful than the frameworks themselves. In addition, managers should be careful when using landscape-based
regional classifications for stream management because the scale of their construction may be too broad to capture differences in flow
variability. Copyright © 2011 John Wiley & Sons, Ltd.
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INTRODUCTION Hydrology varies extensively across large scales and can
change substantially depending on how humans alter the
landscape (Poff et al., 1997; Poff et al., 2006a). Because of
this obvious relationship, it makes intuitive sense that
regional frameworks might be developed to relate hydrol-
ogy with the landscape. Hydrologic landscape regions
(HLRs) were developed by the United States Geological
Survey (USGS) as part of the National Water-Quality
Assessment Program in order to provide a regional
framework for stratifying water-quality study sites based
on different hydrologic contexts (Wollock et al., 2004).
HLRs were developed using variables that control hydrol-
ogy (Wollock et al., 2004); thus, they have a potential to
predict flow variability in streams. HLRs, or the specific
variables that comprise them, have been used to predict or
model chemical concentrations in streams (Poor ef al., 2008;
Hoos and McMahon, 2009), baseflow levels (Santhi et al.,
2008) and fish assemblages (Frimpong and Angermeier,
2010). Another regional framework, physiographic prov-
T o o inces, was originally created by Fenneman and Johnson
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E-mail: rmcmanam@vt.edu geomorphological structure and history. Physiographic

The development of regional frameworks for conservation,
prioritization, or broad-scale management has increased sub-
stantially in recent years (McMahon et al., 2001; Snelder ez
al., 2004; Wollock et al., 2004; Sowa et al., 2007). Regional
frameworks inform management by relating spatial patterns
to ecological and physical variables at the landscape scale.
However, their utility rests upon the ability to provide
spatially explicit data, predictive tools, templates for
categorization and a way of relating existing datasets to
geographical information. Thus, as new regional frameworks
are created, it may be important to understand how these
datasets are related to other frameworks to inform manage-
ment. This is especially true for hydrological frameworks
because water is becoming a scarce resource (Sun et al.,
2008; Vordsmarty et al., 2010).
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provinces have been used as a regional framework for
regional channel morphology relationships (Johnson
and Fecko, 2008), the importance of different variables
on hydrology (Mohamoud, 2008; Morris et al., 2009)
and watershed classifications (Wardrop et al., 2005).

Landscape-based approaches used to predict hydrology
have primarily been centralized around flow-routing tools or
complex hill storage models. Flow-routing tools and
hydrology models can accurately predict streamflow
discharge across time (Easton et al., 2007; Gong et al.,
2009; Matonse and Kroll, 2009) with increasing accuracy as
model complexity increases (Butts et al., 2004). However,
flow-routing tools are generally limited to small scales and
individual basins (Arora et al., 2001; Shaw et al., 2005;
Gong et al., 2009). Although landscape-based approaches
are widely used as predictive tools of hydrology, datasets
created to evaluate spatial variation in hydrology based
on stream discharge alone (e.g. flow classifications) have
been conducted for individual states (Kennen et al., 2007,
Turton et al., 2008; Kennen et al., 2009), specific regions
(McManamay et al., 2011), the entire USA (Poff and Ward,
1989; Poff, 1996), Australia (Kennard et al., 2010) and
globally (Poff e al., 2006b). An important clarification is
that spatial flow classifications, in comparison to flow-
routing tools, generally do not encompass temporal
variability in streamflows. Nonetheless, within a spatial
context, streamflow classifications may be useful in relating
hydrologic variability to landscape-based regional frame-
works over large scales. It also may be informative to
understand how regional frameworks and landscape char-
acteristics (including climate) influence the spatial variation
in hydrology with respect to scale.

The overall purpose of this study was to determine if
landscape-based hydrologic frameworks could explain
variation in streamflow hydrology across different scales.
Specifically, we wanted to understand how flow classifica-
tions, conducted at different scales, may relate to existing
and widely used regional frameworks (HLRs and physio-
graphic provinces). Poff (1996) created 10 flow classes for
806 streams across the entire USA based on hydrologic
variables. In a similar study, McManamay et al. (2011)
classified 292 streams into eight flow classes in a sub-
region of the Southeast, which formed the basis for a
hierarchical classification system. Therefore, we wanted to
determine how well HLRs and physiographic provinces
predict the affiliation of these two spatially explicit flow
classifications. It is important to clarify that we do not
assess the relative importance of spatial autocorrelation in
the predictive capability of HLRs or physiographic
provinces. Rather, our sole purpose is to compare how
well these two frameworks, which should be sensitive to
hydrology, predict natural flow classes. However, because
there is some bias in using one classification system to

Copyright © 2011 John Wiley & Sons, Ltd.

‘predict’ another classification system, we wanted to show
how well HLRs can predict specific hydrologic variables
that were used to create the US flow classes. Lastly, we
wanted to determine what specific climate or watershed
variables (topography, soils, etc.) govern flow variability at
the sub-regional and US spatial scales.

METHODS
Regional frameworks

One of our goals was to compare the performance of
existing regional frameworks in explaining the variation in
the regional affiliation of flow classes at two scales. HLRs
are small watersheds (approx. 200km? each) that were
categorized into one of 20 different classes of regions that
differ in hydrologic conditions across the entire contermi-
nous USA. The development of HLRs was based on factors
that govern the hydrologic cycle (precipitation, evapotrans-
piration, infiltration, groundwater flow and overland flow)
(Wollock et al., 2004). Physiographic provinces, on the
other hand, were originally created to map regions of
common geographical structure and topography (Fenneman
and Johnson, 1946), which may also explain differences in
hydrology. We mapped the US flow classes and the sub-
regional flow classes on HLRs and physiographic provinces
in order to visually evaluate whether flow classes were
geographically affiliated with different regional frame-
works.

We also wanted to quantitatively determine the ability
of regional frameworks to predict flow class affiliation.
Fortunately, the dominant HLR within the basin of
each gauge was available in the Geospatial Attributes of
Gages for Evaluating Streamflow (GAGES) dataset
created by Falcone er al. (2010). The dataset consists
of 375 variables for 6785 USGS stream gauges across the
USA including basin morphology, climate, topography,
soils and anthropogenic disturbance factors (disturbance
index, population density and land use). Each basin’s
dominant physiographic region, however, was not
included in the dataset. Using the ‘select by location’
tool in ARCMAP 9.2 (ESRI, Redlands, CA, USA), we
recorded the physiographic region where each gauge was
located for all streams. Using the province represented by
each site location rather than the basin-wide average may
induce some bias in the analysis, especially in gauges
that are very close to physiographic boundaries. How-
ever, our purpose is simply to evaluate, on a coarse level,
the overall ability of these regional frameworks to predict
flow class membership. We used 7 values calculated
from —log-likelihood tests to compare the ability of HLRs
and physiographic provinces to explained variation in the
grouping of flow classes. The r* in —log-likelihood tests
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is calculated as the proportion of variation explained by
the model relative to total uncertainty where
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and n;; is the count for ith factor and jth response level, N; is
the total of the jth response level and N is the total sample
size (SAS, 2008). Assessing the ability of regional frame-
works to predict flow class grouping is biased because of a
different number of flow classes and regional units.
Therefore, to assess whether the number of flow classes
made a difference, we used the US classification variables
(13) to re-run a cluster procedure in order to create the same
number of classes as regional units for each framework:
HLRs (n=19) and physiographic provinces (n=22). We
then re-ran the statistical tests to determine if there were
increases in the predictive ability of the frameworks. We
also compare the average proportion of gauges in all classes
that were found within their dominant region.

Ability of hydrologic landscape regions to predict
hydrologic variables

We hypothesized that regional frameworks, such as
HLRs, may be useful in explaining the variability of
hydrologic variables that make up flow classes rather
than the flow classes themselves. In addition, there could
be great deal of bias when using one classification system
to predict another, especially considering that frameworks
may be created with totally different underlying variation.
Thus, we wanted to determine how much variation HLRs
explained in the individual hydrologic variables that were
used to form the US flow classes. We conducted one-way
analysis of variance tests (ANOVA) for the hydrologic
variables among different HLRs. We also conducted
ANOVA tests for the 15 variables among US flow
classes to compare the amount of variability explained in
hydrologic variables for each regional framework. We did
not conduct this analysis for physiographic provinces
because the dominant province was not summarized for
each gauge and the data was not readily available.

Variables that govern flow at different scales

Flow classifications conducted at different spatial scales
may be governed by very different factors. It may be very

Copyright © 2011 John Wiley & Sons, Ltd.

informative to understand the relative importance of specific
variables in predicting hydrology, which is not possible
when using regional classes as predictors. Therefore, we
wanted to determine what physical and climate variables at
the watershed scale explained flow variability within and
across regions. Watershed and climate variables for USGS
gauges were also downloaded from the GAGES dataset
(Falcone et al., 2010). We were primarily interested in how
natural climate and watershed variables (climate, basin
morphology, topography and soils) could be used to classify
relatively undisturbed flow classes; thus, anthropogenic
disturbance variables were removed from the analysis. We
also removed any categorical variables from the dataset
because classification tree decisions are based upon only
two outcomes. Many variables, primarily climate, were rep-
resented by a value for the entire basin or for the site where
each gauge was located. We removed variables that were
site-specific (at the gauge location) assuming that flow
dynamics are governed by variables that account for
the entire basin. The finalized dataset was reduced to 83
variables and each gauge was joined to its respective flow
class. We joined our flow classes and the US classes to 83
watershed/climate variables forming two separate datasets.
The joined dataset with our flow classes only had only 273
streams (rather than 292 in the original) and the joined
dataset with the US flow classes had 787 streams (rather
than the 816 total). Missing streams were not included in the
dataset primarily because they did not have 20years of
complete-year flow records from 1950 to 2007 or did not
have watersheds that could be accurately delineated
(Falcone et al., 2010).

We used the rpart package in the program R to develop
classification trees that can be used to classify a stream into
a flow class using climate or watershed variables. The rpart
package in R uses recursive partitioning, which includes
some of the same ideas developed in the CART software
(Salford Systems, San Diego, CA, USA) (Therneau et al.,
2010). Trees are built in a two-step procedure. The first step
involves splitting the data on the initial node using the ‘best’
variable that minimizes the risk of misclassification. This
procedure continues throughout subsequent nodes until the
subgroups reach a specified minimal size or no further
splits can be made (Therneau et al., 2010). Because trees
can become very complex, the second step involves a
pruning procedure that minimizes the number of nodes, the
cost-complexity factor and the cross-validation error. The
cost-complexity factor takes into account minimizing
misclassification while also increasing the complexity of
the tree. We then evaluated the cross-validation versus tree-
size plot to determine how to prune the tree. The tree is
pruned at the number of nodes that minimize the cross-
validation error to avoid overfitting the data. After the
trees were completed, we were able to calculate a
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misclassification error to assess the accuracy to which the
subset of variables could classify flow groups.

RESULTS

Regional frameworks

Patterns emerged in the spatial grouping of flow classes,
which suggested that flow classes were regionally affiliated;

however, individual classes were found in multiple HLRs
and physiographic provinces (Figures 1 and 2). Twelve
HLRs were represented in the Southeastern sub-region
compared to only five physiographic provinces (Tables I
and II). Perennial run-off 1 and 2 classes (PR1 and 2)
were represented in over nine of the HLRs. PR 1 and
stable high baseflow 1 classes (SBF 1) were represented
in all five physiographic provinces. Excluding the
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Figure 1. Geographical affiliation of flow classes for the USA and the Southeastern sub-region across hydrologic landscape regions. This
figure is available in colour online at wileyonlinelibrary.com/journal/rra.
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Figure 2. Geographical affiliation of flow classes for the USA and the Southeastern sub-region across physiographic provinces. This
figure is available in colour online at wileyonlinelibrary.com/journal/rra.

unpredictable perennial run-off and Black River flow
classes, the average percentage of gauges of each class
found in their dominant region was 35% for HLRs and
62% for physiographic regions in the sub-regional area
(Tables I and 1II).

Nineteen HLRs and 22 physiographic provinces were
represented across the USA where flow classes were present
(Tables IIT and IV). For the US classification, perennial run-
off streams (PR) were found in 18 HLRs, and snow and rain

Copyright © 2011 John Wiley & Sons, Ltd.

and intermittent run-off streams were found in 14 HLRs. PR
streams were found in 15 of the 22 provinces, whereas
groundwater and snow and rain streams were found across
13 provinces. On average, for the US flow classes, the per
cent of gauges in each class found in a dominant region was
31% for HLRs and 41% for provinces (Tables III and IV).

For the sub-regional flow classes, chi-squared analysis
revealed that flow class grouping was not statistically
independent from HLRs and physiographic provinces
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Table 1. Proportion of gauges in each flow class affiliated with each hydrologic landscape region (HLR) in the Southeastern sub-region

Flow classes

HLR BKR CSI IF PR 1 PR 2 SBF 1 SBF 2 UPR
1 1.00 0.24 — 0.01 — 0.03 0.04 —
2 — 0.10 — 0.03 0.04 0.06 0.06 —
4 — 0.14 — — 0.01 0.03 0.02 —
7 — 0.14 0.37 0.10 0.17 0.09 0.10 —
9 — 0.05 0.05 0.20 0.20 031 0.08 1.00
11 — 0.05 0.21 0.04 0.07 0.03 0.02 —
12 — — — — — 0.03 0.02 —
15 — 0.10 — 0.16 0.01 0.03 — —
16 — 0.14 0.26 0.27 0.40 0.19 0.52 —
18 — — — 0.01 0.01 — 0.04 —
19 — — — 0.13 0.01 0.16 0.04 —
20 — 0.05 0.11 0.05 0.06 0.03 0.04 —
Shaded boxes represent the dominant HLR for each flow class.— indicates that no gauges were found for that respective HLR. HLRs developed by the

United States Geological Survey (Wollock ez al., 2004).
BKR, Black River at Tomahawk NC; CSI, coastal swamp and intermittent; IF, intermittent flashy; PR 1, perennial runoff 1; PR 2, perennial runoff 2; SBF 1,
stable high baseflow 1; SBF 2, stable high baseflow 2; UPR, unpredictable perennial runoff.

(x*=119.2, d.f.=55, p<0.0001 and x*>=297.8, d.f.=24,
p<0.0001). HLRs poorly predicted flow class grouping
(r*=0.13, —log-likelihood = 59.61). Similarly, physiograph-
ic provinces poorly predicted flow class grouping although
it was stronger than HLRs (+>=0.30, —log-likelihood =
148.9). Flow class grouping for the USA was also not
statistically independent from HLRs and physiographic
provinces (%*=635.7, d.f.= 162, p<0.0001 and y*>=907.28,
d.f.=189, p<0.0001). HLRs explained more variation in
flow class grouping across the USA than in the South-
eastern sub-region, however the relationship was still very
weak (r*=0.23, —log-likelihood=317.8). Again, provinces
explained slightly more variation in flow classes across the
USA and explained more variation in flow classes than
HLRs (r>=0.33, —log-likelihood =317.8). Because differ-
ent numbers of regions and classes may bias the analysis,
we re-ran cluster analyses with the variables used in the US

flow classification and specified the same number of clus-
ters as regional units (19 HLRs and 22 provinces). Increas-
ing the number of clusters did not substantially increase
the predictive ability of the HLRs (r*=0.25, —log-likelihood =
491.7, d.f.=324) or the physiographic provinces (*=0.34,
—log-likelihood = 664.3, d.f.=441). Although not large, the
per cent of gauges in each class affiliated to a dominant
region did show some increase and was 43% for HLRs
and 58% for provinces.

Ability of hydrologic landscape regions to predict
hydrologic variables

Hydrologic landscape regions explained 7% to 39% of the
variation in the hydrologic variables, whereas US flow classes
explained 9% to 87% of the variation in hydrologic variables
(Table V). HLRs explained more variation than the US flow

Table II. Proportion of gauges in each flow class affiliated with each physiographic province in the study area

Physiographic Flow class
province

BKR CSI IF PR 1 PR 2 SBF 1 SBF 2 UPR
Appalachian Plateau — — — 0.38 0.03 — —
Blue Ridge — — — 0.04 0.08 0.30 0.29 —
Coastal Plain 1.00 0.95 0.08 0.06 0.07 0.18 0.08 1.00
Piedmont — 0.05 0.92 0.08 0.51 0.21 0.60 —
Valley and Ridge — — — 0.44 0.33 0.27 0.04 —
Shaded boxes represent the dominant province for each flow class. ‘—’ indicates that no gauges were found for that respective province.

BKR, Black River at Tomahawk NC; CSI, coastal swamp and intermittent; IF, intermittent flashy; PR 1, perennial runoff 1; PR 2, Perennial runoff 2; SBF 1,
stable high baseflow 1; SBF 2, stable high baseflow 2; UPR, unpredictable perennial runoff

Copyright © 2011 John Wiley & Sons, Ltd.
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Table III. Proportion of gauges in each of the 10 US flow classes, created by Poff (1996), that are found within 19 hydrologic landscape
regions across the entire USA

HLR US flow class (Poff, 1996)

GW HI IF IR PF PR SN1 SN2 SR SS
1 0.04 — — 0.06 — 0.05 0.02 — 0.02 0.14
2 0.12 — — — 0.02 0.02 0.02 0.09 0.03 0.23
3 — 0.03 — 0.02 — 0.03 — — 0.01 —
4 — — — 0.04 0.02 0.02 — — 0.02 —
5 — — — — — <0.01 — — — —
6 0.02 0.24 0.19 0.08 0.08 0.09 — 0.27 0.03 —
7 0.11 0.03 — 0.06 0.08 0.10 0.02 0.09 0.02 0.09
8 — 0.16 0.33 0.02 0.17 0.02 — — — —
9 0.11 0.03 — — 0.08 0.12 0.02 — 0.02 0.09
10 0.01 0.03 0.10 — 0.02 0.01 — — 0.01 —
11 0.06 — 0.24 0.18 0.36 0.11 0.02 — 0.02 0.27
12 0.06 0.03 — 0.04 — 0.02 — — — —
13 — 0.16 0.14 0.12 0.09 — — — — —
15 — 0.05 — — — 0.04 0.04 — 0.03 —
16 0.28 — — 0.12 — 0.28 0.13 0.27 0.20 0.05
17 — 0.08 — 0.04 0.02 0.01 — — — —
18 0.01 0.16 — 0.14 0.06 0.02 0.11 0.09 0.08 —
19 0.11 — — 0.02 — 0.03 0.02 — 0.23 0.14
20 0.05 0.03 — 0.04 0.02 0.04 0.59 0.18 0.27 —

<

Shaded boxes represent the dominant hydrologic landscape region (HLR) for each flow class.
HLR. HLRs were developed by the United States Geological Survey (Wollock et al., 2004).
GW, stable groundwater; HI, harsh intermittent; IF, intermittent flashy; IR, intermittent runoff; PF, perennial flashy; PR, perennial runoff; SN, snowmelt (types
1 and 2); SR, snow and rain; SS, superstable groundwater.

— indicates that no gauges were found for that respective

classes for only one variable, mean annual run-off (39% CSI and IF streams were separated from one another on the
compared to 29%). For HLRs, only two variables explained basis of soil size (permeability). SFB 1 differed from SFB 2
more than 30% of the variation, whereas for US flow classes, streams in terms of higher soil bulk densities, soil
six of the variables explained more than 60% of the variation. components and precipitation seasonality.

For the US flow classes, the watershed cross-validation
plot minimized around a c¢p=0.025, or six branches

Variables that govern flow at different scales (Figure 3). Because six branches would have excluded four

For the sub-regional flow classes, the watershed cross- of the US flow classes, we pruned the tree to a ¢cp=0.015,
validation plot minimized at seven branches, with a which we felt was a compromise between overfitting the
cp=0.028; however, this caused some overfitting because data and pruning the tree back to its barest form (Figure 5).
there were only six classes (Figure 3). Thus, we pruned the Because of the size of the tree, we do not display competing
tree at six branches, with a ¢p=0.0525. Five primary variables along with the primary splitting variables.
splitting variables along with their corresponding competing However, we do compare the results of the two pruning
variables were isolated that accurately assigned 74% of the procedures (Nodes 1-5 indicate variables used in the barest
streams to their actual classes (Figure 4). Soil and tree). The six-branch tree accurately assigned 62% of the
infiltration variables explained a great deal of the variation streams to their actual class. Increasing the tree size did not
in the model, along with some variation explained by substantially increase accuracy, which was 70% of the
precipitation. PR 1 streams were separated from the other streams to their actual flow class. The majority of variation
streams primarily based on lower amounts of finer-sized was explained by climate variables with only a small
soils and having shallower soils. PR 2 streams were portion of the variation explained by soils. The six-branch
separated on the basis of northern latitude. Stable high tree was completely composed of climate variables.

baseflow streams were separated from coastal swamp and
intermittent (CSI) and intermittent flashy (IF) streams by the

subsurface flow contact time index, which is an estimation DISCUSSION

of the days infiltrated water resides in the saturated zone Although there was some regional affiliation of flow
before being discharged into the stream and is calculated classes, HLRs and physiographic provinces did not explain
using topography and soil properties (Falcone et al., 2010). a great deal of the variation in the grouping of flow classes
Copyright © 2011 John Wiley & Sons, Ltd. River Res. Applic. (2011)
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Table IV. Proportion of gauges in each of the 10 US flow classes, created by Poff (1996), that are found within 22 physiographic provinces

across the entire USA

Physiographic province

US flow class (Poff, 1996)

GW HI IF IR PF PR SN1 SN2 SR SS
Adirondack — — — — — — — — 0.02 —
Appalachian Plateaus — 0.03 — 0.06 — 0.18 — — — 0.05
Basin and Range — 0.03 0.05 0.04 — 0.01 0.04 0.09 0.01 —
Blue Ridge 0.19 — — — — 0.03 — — — —
Cascade-Sierra Mountains 0.04 0.03 — 0.06 0.02 0.03 0.02 0.09 0.24 0.09
Central Lowland 0.10 0.42 0.76 0.18 0.66 0.18 0.02 0.36 0.09 0.50
Coastal Plain 0.31 0.11 — 0.18 0.13 0.15 — — 0.05 0.05
Colorado Plateaus 0.01 0.03 — — — — 0.07 — — —
Columbia Plateau 0.01 0.03 — — — — 0.02 — 0.04 0.05
Great Plains — 0.18 0.19 0.12 0.08 0.03 0.02 0.09 0.01 0.05
Interior Lowland Plateaus 0.01 — — 0.06 0.04 0.02 — — — —
Middle Rocky Mountains — — — — — — 0.28 0.09 0.01 —
New England 0.02 — — — — 0.09 0.04 — 0.02 —
Northern Rocky Mountains 0.01 — — — — — 0.28 — 0.09 —
Ouachita — — — 0.12 — 0.01 — — — —
Ozark Plateaus 0.05 — — 0.02 — 0.03 — — — —
Pacific Border 0.01 0.16 — 0.14 0.08 0.02 — — 0.39 0.05
Piedmont 0.19 — — — — 0.11 — — — —
Southern Rocky Mountains — — — — — — 0.13 — 0.01 —
Superior Upland — — — — 0.01 — 0.09 0.02 0.18
Valley and Ridge 0.05 — — — — 0.09 — — — —
Wyoming Basin — — — — — — 0.07 0.18 — —

Physiographic provinces were originally created by Fenneman and Johnson (1946) and later digitized by United States Geological Survey for geographic
information system analysis. Shaded boxes represent the dominant hydrologic landscape region (HLR) for each flow class. ‘— indicates that no gauges were

found for that respective HLR.

GW, stable groundwater; HI, harsh intermittent; IF, intermittent flashy; IR, intermittent runoff; PF, perennial flashy; PR, perennial runoff; SN, snowmelt (types

1 and 2); SR, snow and rain; SS, superstable groundwater.

to different regions. Some of our analyses were biased in
that we used one set of classes, which were produced using
landscape-based variables, to predict another set of classes,
which were produced using only hydrologic variables.
Thus, we hypothesized that a regional framework, such as
HLRs, may explain more variation in the hydrologic
variables that make up flow classes, rather than the flow
classes themselves. However, we found that for the
majority of hydrologic variables, HLRs explained less
than 30% of the overall variability. We also found that,
depending on scale, different variables will govern
flow variability. Altogether, our results suggest that
landscape-based regional frameworks (i.e. landscape clas-
sifications) should not be used to predict hydrology unless
the relative importance of variables that comprise them is
allowed to change with scale (Buttle, 2006).

Regional frameworks

Regional frameworks have increasingly been used in
the development of predictive tools to aid in conservation
(McMahon et al., 2001; Snelder et al., 2004; Wollock et al.,
2004; Sowa et al., 2007; Frimpong and Angermeier, 2010).

Copyright © 2011 John Wiley & Sons, Ltd.

We used two landscape-based frameworks to predict
hydrologic variability at two spatial scales in order
to understand how scale can influence a framework’s
predictive ability and to discuss the applicability of using
regional frameworks given their underlying structure.
Although HLRs were developed with variables that
govern hydrology and have the potential to predict flow
variability in streams, they were not necessarily created as
a predictive tool. Poor et al. (2008) found that HLRs did
not improve predictions of nitrate concentrations beyond
commonly used metrics. However, Hoos and McMahon
(2009) found that the incorporation of HLRs into their
analysis gave their models spatial structure and improved the
estimation of nitrogen loading. Frimpong and Angermeier
(2010) found that HLRs did a poor job of explaining fish
assemblages alone but explained significant additional
variation when nested in other frameworks.
Physiographic provinces have not been tested as
predictive tools to the extent of HLRs. Provinces were
created for visual rather than predictive purposes;
however, they have been used as a spatial framework
in the development of other relationships. For example,
Johnson and Fecko (2008) showed that the majority of
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Table V. Results of one-way analysis of variance for 15 hydrologic variables among 19 different hydrologic landscape regions and 10 US

flow classes, created by (Poff, 1996)

Hydrologic variables

Hydrologic landscape regions

US flow classes

F P  adj. F P r* adj.
Daily mean discharge 4.33 0.09 0.07 9.79 0.10 0.09
Mean annual runoff 28.87 0.40 0.39 37.20 0.30 0.29
Daily flow variability (CV) 27.13 0.39 0.37 163.88 0.65 0.65
Predictability of flow 21.54 0.34 0.32 141.65 0.62 0.62
Flood variability 8.42 0.16 0.15 16.22 0.16 0.15
Flood frequency 5.09 0.11 0.09 12.85 0.13 0.12
Flood duration 13.40 0.24 0.22 56.35 0.39 0.39
Seasonal predictability of flooding 11.32 0.21 0.19 131.68 0.60 0.60
Timing of flooding 5.99 0.12 0.10 18.36 0.18 0.17
Seasonal predictability of non-flooding 14.50 0.25 0.24 132.40 0.61 0.60
Number of zero flow days 8.10 0.16 0.14 562.65 0.87 0.87
Baseflow index 8.34 0.16 0.14 164.98 0.65 0.65
Seasonal predictability of low flow 13.14 0.24 0.22 41.23 0.32 0.32
Timing of low flow 6.28 0.13 0.11 31.38 0.26 0.26
Seasonal predictability of non-low flow 17.40 0.29 0.27 63.42 0.47 0.47

Hydrologic variables used in the clustering procedure of the 10 US flow classes (Poff, 1996). All one-way comparisons were significant (p <0.0001).

regional curves for channel morphology relationships are
similar within physiographic provinces. Physiographic
provinces have been shown to govern how different
variables control hydrology (Mohamoud, 2008; Morris
et al., 2009). In addition, Frimpong and Angermeier
(2010) found that physiographic provinces explained
more variation in fish assemblages than HLRs.

Because HLRs and physiographic provinces both are
composed of factors that may influence flow in streams,
we wanted to determine if these regional frameworks
could explain the variability in the affiliations of flow
classes, especially in relation to our watershed/climate
trees. We assumed that the scale at which datasets are
created will largely influence their predictive abilities
depending on the scale of the response dataset. HLRs and
physiographic provinces explained only 13% and 30% of
the variation in the sub-region flow class affiliation,
respectively, and explained 22% and 33% of the variation
in US flow class affiliation, respectively. As an accuracy
assessment, we wanted to determine how many streams
within a given flow class were affiliated with one
dominant HLR or province. We found that within the
sub-region flow classes, 35% to 62% of the streams, on
average, were affiliated with only one dominant HLR or
province, respectively. Interestingly, within each of the
US flow classes, 31% to 41% of the streams, on average,
were affiliated with only one dominant HLR or province,
respectively. Because, the number of clusters relative to
the number of regional units may create some bias, we
repeated a k-means procedure in order to create as many
US flow classes as regional units. However, we found
that there was not a substantial increase in the percentage

Copyright © 2011 John Wiley & Sons, Ltd.

of streams within a dominant flow class affiliated with
only one dominant HLR or province (43% to 53%,
respectively).

Variables that govern flow at different scales

Isolating key physical and climate variables that are
responsible for the divergence in flow classes can be useful
by providing a conceptual model that shows how flow
dynamics are regulated at the watershed scale and by
providing a means for classifying disturbed streams that
lack sufficient pre-disturbance hydrologic data. Predicting
hydrologic regimes from the landscape has become a reality
in water resource management (Wollock et al., 2004); thus,
it may be advantageous to understand how variables that
govern flow dynamics change with spatial resolution. We
show that at smaller spatial scales, soils and factors that
influence infiltration may govern flow dynamics whereas at
the scale of the entire USA, climate may be responsible for
governing flow variability.

For the sub-regional flow classes, we isolated five
primary splitting variables along with their corresponding
competing variables that accurately assigned 74% of the
streams to their actual classes (Figure 4). Soil properties,
such as particle size, soil thickness and the amount of soils
in various hydrologic groups, influence permeability,
infiltration capacity and the response of watershed to
precipitation events (Hewlitt and Hibbert, 1963). In humid
areas, the vast majority of the precipitation is yielded as
subsurface flow, which is primarily influenced by soil and
catchment properties (Hewlitt and Hibbert, 1963). Climate
played a smaller role in discriminating among flow classes;
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Figure 3. Plots for the hydrologic and watershed classification trees

comparing the cross-validation error to the tree size (number of

nodes) in order to determine where the tree should be pruned.

Trees are generally pruned at the cost-complexity factor that

minimizes the number of nodes and the cross-validation error.
Arrows indicate the tree size that we plotted.

however, PR 2 streams were separated on the basis of
northern latitude, which certainly is related to climate, as
indicated by the monthly precipitation competing variables,
and also to potential evapotranspiration.

Stable high baseflow streams had a lower subsurface flow
contact time than CSI or IF streams. Subsurface contact
time is an estimate of the time that infiltrated water remains
in contact with ‘saturated’ soil before discharging into the
stream. Initially, this seems contradictory considering that
stable baseflow streams are sustained by slow draining
soils, which suggests that saturated conditions would be
extensive. However, humid mountain catchments, at least in
western North Carolina, are characterized by deep soils with
saturated areas primarily confined to aquifers along channels
and saturated flow occurring only for short periods of time
following precipitation events (Hewlitt and Hibbert, 1963).
In these areas, high baseflows and stability in SBF streams are
most likely sustained because of deep soils with properties
conducive to the slow migration of moisture downslope and
extended drainage times (Hewlitt and Hibbert, 1963). SBF 1
and 2 streams were separated from one another by bulk density

Copyright © 2011 John Wiley & Sons, Ltd.

as the primary variable, which again, would influence soil
permeability and infiltration rates and, in turn, flow variability.
Because IF streams were separated from CSI streams on the
basis of soil size (related to permeability), we conjecture that
small drainage basins originating in piedmont soils may
induce flashiness in flow dynamics.

For the US classification, climate variables explained the
majority of variation in flow classes (Figure 5). The pruned
tree isolated five climate variables that accurately classified
62% of the streams to their respective flow classes. The
partially pruned tree accurately classified 70% of the
streams, in which eight of the 12 variables were climate
variables. In a similar continental scale analysis, Kennard
et al. (2010) developed a classification tree using geo-
graphic and environmental variables to discriminate among
12 flow classes across Australia. The best model included
catchment, soils, vegetation and climate variables and
accurately classified 62% of the streams in the study;
however, climate was the dominant variable in the model
and when used alone, it accurately assigned 58% of the
streams to their respective flow class.

Can landscape-based frameworks capture the
hydrologic variability?

Ultimately, our results suggest that two widely used,
landscape-based classifications poorly predicted streamflow
variability across the entire USA and within a sub-region of
the USA. We find this highly significant because landscape-
based frameworks have currently been used to predict the
natural flow regimes of rivers and to inform management
(Carlisle et al., 2010). The poor performance of both
frameworks most likely stems from the purpose and scale of
their creation, the underlying variability of their classifica-
tion and the structure of their framework. Large-scale
regional frameworks are currently being used to organize
river conservation measures (McMahon er al., 2001,
Snelder et al., 2004, Wollock et al., 2004, Sowa et al.,
2007). In light of this, we wanted to provide some broadly
applicable considerations for management. We provide
three main reasons for the inability of the landscape-based
classifications used in this study to accurately predict
streamflow variability:

(1) The spatial resolution of continental-wide, landscape-
based classifications is too coarse for predicting the flow
variability of geographically close river systems. The
ability of aregional dataset to predict hydrology is largely
an artifact of the number and size of the regions
represented and differences in variability between
datasets. Fewer and larger physiographic provinces most
likely allowed more clustering of streams within the
region’s boundaries as compared to HLRs. However, we
found that arbitrarily increasing the number of classes

River Res. Applic. (2011)
DOI: 10.1002/rra



REGIONAL FRAMEWORKS APPLIED TO HYDROLOGY

Mean Soll <2mm (% weighy < G851
Mean Sod <5 mm (% wesght) < TI®H
Mean Sol Thickness finch) < 44.07
Solls in Hydrologic Group C* (%) = 31.73
Mean Monthly Min, Days of Precip > 7.38
WM\{E':EB.S
Lafitude (decinhal degrees) = 3704
Mean Aprll Precip (cm) = 945
Mean Min. Arnupl Precip {em) =< B1.41
Mean February Precip{cm) < 835
Mean March Precip (em) < 15
LA E>=37.04
PR1
Subsurface Flow Contadl Time Index {days) > 240.28
Mean Aprd Pricip (em) < 940
Topographic. Weness Index® = 125
Mean Siage (%) < 450
Max Elevasion {m) < 34400
CONTACT>=240.3
PR2
NOJAVE>=85.25 BDAVE
Mean Sol <5 mm (% weight) > 95.25 csi F SBF 1
Soils in Hydrologic Group A* (%) > 280
Mean Permeabilly fnchtr) > 278 Mean Bulk Density (gfem’) = 1.42
Mean Sand (%) > amem Sails in Hydrologic Group BD* (%) > 139
Min im) = 55'5‘] Mean Oclober Precip {cm) = B40
Pl = Sclls in Hydrologic Group B* {%) < 64.35
Index* = 008
Actual Classification
) CBKRCSlIF PR1PRZ SBFISBF?  UPR
n 1 2 19 T4 o 2 L] 2
100 081 005 . 013 os0
T IF ons 074 008 (1113
ree
Assig R . oos  0Ove o oo3
mz = 01 016 005 OFft 009 002 _
SBFI - om oo 059 013 o5
SBF 2 - oos oo oza 0.83 -

Figure 4. Classification tree using five climate/watershed metrics as primary splitting variables along with the four corresponding competing

variables to classify six of the eight flow classes in this study. The left branch meets the conditions of the equation on each node. The matrix

below the tree shows the proportion of gauges in the actual flow class (columns) classified to each flow class using the tree (rows). The
proportion of each actual flow class accurately assigned by the tree is shown in grey boxes. For class codes, see Figures 1 and 2.

(via cluster analysis) for the entire USA did not
substantially increase the predictive capability of either
framework. All spatial frameworks are subject to spatial
autocorrelation (Frimpong and Angermeier, 2010).
Obviously, physiographic provinces explained more
variation in flow class affiliation because provinces are
spatially contiguous whereas HLRs are not. However,
our purpose was not to test how much spatial
autocorrelation is explained by various regional frame-
works. In contrast, we simply wanted to determine how
much variation in flow class affiliation each of these
frameworks explain, because they were constructed
using variables that influence hydrology.

Copyright © 2011 John Wiley & Sons, Ltd.

We believe that the scale of HLRs and physiographic
provinces was unable to accurately assess flow variability
for three main reasons: Firstly, flow at a given gauge
represents the culmination of watershed processes from
that point upstream regardless of the geographical
location of the gauge. In the case of large river systems,
this may include areas across multiple regions. Although
this may be an obvious fact, most ecologists would agree
that a stream in the lower piedmont looks quite different
than a stream in a mountainous environment. The
tendency is to assume that because gradient, substrate
and channel geometry are far different, flow character-
istics should follow suit. However, flow metrics are
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Figure 5. Classification tree using five climate/watershed metrics as primary splitting variables along with the four corresponding competing

variables to classify eight of the 10 US flow classes (Poff, 1996). Tree shown has been pruned to a cp=0.015. The first five nodes and the

classes in larger, bold letters indicate that the tree has been pruned to a ¢p=0.025 (see METHODS section). The left branch meets the

conditions of the equation on each node. The matrix below the tree shows the proportion of gauges in the actual flow class (columns)

classified to each flow class using the tree (rows). The proportion of each actual flow class accurately assigned by the tree is shown in grey
boxes. For class codes, see Figures 1 and 2.

calculated from discharge, which is the volume of water
per time, and not just velocity, depth and channel profile
alone. Thus, there is a tendency of a river to have ‘flow
inertia’, that is the tendency to retain flow characteristics
from upstream areas despite geographical location and
reach characteristics. Secondly, smaller streams, whose
watershed may be entirely contained within the given
province, may be located in close proximity to larger
rivers, whose watershed may span multiple provinces.
Thirdly, a river’s flow regime is largely dictated by
watershed characteristics and climate patterns, which
may vary extensively within the same physiographic
province. This suggests that flow regime should be
related to watershed characteristics and not just geo-
graphical location alone.

(2) Landscape-based classifications may not incorporate
layers of information or hierarchical structure. Classi-
fications are generally a way of consolidating var-
iability. However, the construction of one framework

Copyright © 2011 John Wiley & Sons, Ltd.

may poorly predict another regional framework, if the
underlying variability between the two datasets is
very different. Using continuous variable descriptors
rather than discrete classes will allow for flexibility in
the relative importance of some variables in com-
parison to others. Also, allowing for hierarchical
structure, such as nesting classes, may be informative
and increase accuracy. For example, our watershed/
climate trees suggest that at various scales, the
relative importance of variables may change; there-
fore, static classifications conducted at one scale may
be inappropriate for applications of finer resolution.
Buttle (2006) argues that one limitation of HLRs is
that they do not identify the relative importance of
different controls on hydrology nor do they indicate
how the importance of those controls change depend-
ing on scale. Interestingly, Santhi et al. (2008) found
that the variables used in the construction of HLRs
could be used to accurately define groundwater flow.
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Variables used in the construction of HLRs are
publicly available for each of the 43931 small water-
sheds (approx. 200km?). We only used 19 HLRs as
predictors; however, we imagine that if we had isolated
variables used in the construction of HLRs across each
of our watersheds, they could have explained a great
deal of variability in flow classes. This suggests that,
depending on the application, the variables that
comprise regional frameworks may be more useful for
predicting flow variability than the regional framework
itself.

(3) The watershed is the appropriate scale to relate
landscape characteristics to flow variability. The spatial
scale of frameworks will largely influence their ability
to accurately predict some response variable. For
example, although we used the dominant HLR in each
watershed, watersheds that were delineated at each
gauge location may have been composed of many
different HLRs. Our watershed/climate trees accurately
assigned 70-74% of streams to their appropriate flow
class compared to an average of 31-35% and 41-62%
of streams affiliated with a dominant HLR or province,
respectively. Although this comparison is somewhat
biased because of key structural differences, we wanted
to make a very obvious point: regional frameworks
created as classes are mutually exclusive whereas
watersheds are not. Our watershed/climate trees were
created with variables that were summarized at the
watershed scale. HLRs and provinces, on the other
hand, span extensive areas and may not relate to the
scale at which flow is measured. Carlisle et al. (2010)
found that HLRs poorly predicted 13 streamflow indices
and concluded that local basin-scale factors in addition
to regional factors must be included in models used to
predict natural flow variability. Because flow in rivers is
the result of a culmination of hydrologic processes
within a watershed, the watershed scale (delineated at
the point where hydrology is measured) is the most
appropriate at linking the landscape to flow dynamics.
Furthermore, this scale continuously changes with
drainage area.

CONCLUSION

Landscape-based regional frameworks (at least classes)
should be used with caution as independent predictive
entities of hydrology, depending on their purpose, the scale
at which they were produced and the underlying variability
of their classification. We believe that the classification of
flow regimes based on hydrological data alone is important
in the broader management context of river conservation. A
general trend in current conservation management is
developing regional frameworks to organize and prioritize

Copyright © 2011 John Wiley & Sons, Ltd.

conservation objectives (McMahon et al., 2001, Snelder
et al., 2004, Wollock et al., 2004, Sowa et al., 2007). In
addition, current conservation strategies have and will
continue to require landscape-based models to predict
streamflow variability when sufficient hydrologic informa-
tion is not available (Carlisle ef al., 2010). The development
of many regional frameworks operates under the assumption
that similar patterns in landscape-scale factors will be
represented in either physical responses (i.e. hydrology) or
biotic responses. We find this highly appropriate and very
useful; however, we suggest that managers should be careful
in selecting what variables to use in river classification. The
scale of regional frameworks may not explain ecological
differences in geographically close river systems (Snelder
et al., 2004). Our data suggest that flow regimes can be
quite different for streams occurring in the same physio-
graphic province or HLR and gross classes may override
important differences in the hydrologic regime of rivers. If
landscape-based approaches are to be used to predict
hydrology, we suggest that their structure incorporate
models to predict existing (although limiting) hydrologic
information. Because flow classes consolidate variability,
landscape-based frameworks may explain more variation
when predicting flow classes rather than predicting
individual hydrologic indices. In this case, hydrologic
classifications should be conducted prior to developing
predictive landscape-based frameworks. Furthermore, simi-
lar to Poff er al. (2006b), we suggest that a hierarchical
approach is appropriate when applying flow variability to
a geomorphic context across multiple scales. Additionally,
we suggest that managers use layers of information either
by nesting classes or using the underlying variables of
frameworks rather than classes. Also, we suggest that the
appropriate scale for attributing flow dynamics to the
landscape is the watershed.

We also suggest that regional framework datasets, including
variables used in their construction, should be publicly
available (Frimpong and Angermeier, 2010). Much of the
comparisons in this study were possible because datasets were
available through USGS (Wollock et al., 2004), Ecological
Archives (Falcone et al., 2010) and direct communication with
an author (Poff, 1996). The utility of regional frameworks is
their ability to relate to other datasets. Obviously, the utility of
those frameworks cannot be tested if they have limited access.
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