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a b s t r a c t

The southern pine beetle (Dendroctonus frontalis, SPB) is the major insect pest of pine species in the south-
eastern United States. It attains outbreak population levels sufficient to mass attack host pines across the
landscape at scales ranging from a single forest stand to interstate epidemics. This county level analysis
selected and examined the best climatic and landscape variables for predicting infestations at regional
scales. The analysis showed that, for a given county, the most important factor in predicting outbreaks
was that the county was classified as in outbreak status in the previous year. Other important factors
included minimum winter temperature and the greatest difference between the average of daily mini-
mums and a subsequent low temperature point, precipitation history either seasonally in the previous
year or difference from average over the previous 2 years, the synchronizing effect of seasonal tempera-
tures on beetle populations and the relative percentage of total forest area composed of host species. The
endroctonus frontalis

inus taeda statistical models showed that climatic variables are stronger indicators of outbreak likelihood than land-
scape structure and cover variables. Average climatic conditions were more likely to lead to outbreaks
than extreme conditions, supporting the notion of coupling between a native insect and its native host.
Still, some extreme events (i.e., periods of very low temperature or very high precipitation) did precede

nalys
rs le
beetle infestation. This a
scale but the driving facto

. Introduction

The southern pine beetle (Dendroctonus frontalis Zimmermann)
s an important pest of pine forests in the southeastern United
tates (Thatcher et al., 1980). The beetle is primarily successful in
oblolly (Pinus taeda) and shortleaf (Pinus echinata) pine species,
lthough it can reproduce successfully in other pine species. A local
utbreak of beetles will start in a single or a few trees and then
pread to the surrounding trees, creating a “spot”. Southern pine
eetles (SPBs) use aggregation pheromones to rapidly recruit con-
pecifics for mass attack and then begin to release anti-aggregation
heromones as the tree is fully occupied to prevent overcrowding.
o successfully reproduce, the beetles first kill a host tree or colo-
ize a recently killed tree. Under optimal environmental and host

onditions, SPB populations may increase exponentially, infesting
ine forests over large areas. Numerous studies have focused on
tand level outbreaks and their control (see references cited in
ettig et al., 2007), and these studies allow us to understand the

∗ Corresponding author. Tel.: +1 352374 5761.
E-mail address: adrian.duehl@ars.usda.gov (A.J. Duehl).
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is suggested that there are predisposing and inciting factors at the large
ading to individual infestations operate at smaller scales.

Published by Elsevier B.V.

factors leading to local outbreaks and the steps that can be taken to
limit spread and minimize infestation initiation. Stand density and
tree age, among other stand-level factors, can increase susceptibil-
ity to infestation, but the true measure of risk is the concurrence of
these predisposing and inciting factors with a population of locally
dispersing beetles (Gara, 1967; Gara and Coster, 1968; Moser and
Dell, 1980; Thatcher et al., 1980; Turchin et al., 1991; Turchin and
Thoeny, 1993; Reeve, 1997). Outbreak data are collected by for-
est managers throughout the SPB’s range, and compiled by state
or federal forest health specialists. These data have enabled pre-
vious studies to examine regional infestation patterns and predict
average infestation distribution (Kalkstein, 1981; Kroll and Reeves,
1978; Mawby and Gold, 1984; McNulty et al., 1998; Gumpertz et al.,
2000). Forest health enterprise team (FHTET) risk maps incorporate
many of these findings at spatial scales that enable forest managers
to evaluate the risk of infestation in their management area (Krist
et al., 2007).
While some studies have predicted yearly infestations at the
county level (Gumpertz et al., 2000; Kramer, 1993), these projects
do not use all of the available county-level data or attempt to
predict risk across the entire southeastern U.S. range of SPB.
The county level is important for prediction because state level

dx.doi.org/10.1016/j.foreco.2010.10.032
http://www.sciencedirect.com/science/journal/03781127
http://www.elsevier.com/locate/foreco
mailto:adrian.duehl@ars.usda.gov
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anagement recommendations are generally communicated at the
ounty level for managers to implement within stands. This means
hat resources for monitoring, thinning and SPB prevention will
e utilized more efficiently with an understanding of the year-by-
ear county-level risk. Certain resources are already available at
his scale, such as the spring pheromone survey based on trap cap-
ures of SPB and natural enemies (Billings, 1988; Billings and Upton,
008), and FHTET risk maps (Krist et al., 2007). This examination
ttempted to find important factors that are not already consid-
red in these methods. Some of our earlier work demonstrated that
ounty infestation history is an important and significant predic-
or of infestations, while factors relating to SPB generations are not
Duehl, 2008). The historical data utilized in these studies, along
ith climate and landscape data, will provide a more complete
nderstanding of the determinants of SPB infestation rates across
he southeastern United States.

There are certain large-scale phenomena that are important
redictors of SPB infestation. At the regional level, extreme tem-
erature events will lower infestation likelihood, while extreme
recipitation events will increase infestation probability (Kalkstein,
981). These variables are also important in predicting risk at the
ounty level (Gumpertz et al., 2000). Minimum winter temperature
s another important factor that maintains northern range limits
Lombardero et al., 2000a). Elevation drives many ecophysiologi-
al processes and relates to temperature and species distribution.
rought, at levels severe enough to limit the production of defen-

ive compounds, is also an important factor inciting damage to
tands (Lorio, 1986). The degree of host availability (i.e., the amount
f host species forest cover in a county) also influences infestation
ccurrence (Gumpertz et al., 2000). Some stand-level factors are
lso significant. Stands where trees are in competition for resources
re less able to resist attack (Billings et al., 1985; Lombardero et al.,
000b). Stand-level competition may be captured by proxy, with
he amount of host and human population in a county account-
ng for management intensity. In the southeast, host stands where
uman population is low are many times managed forests, while
igher human population indicates smaller stands and less forest
anagement (Barlow et al., 1998). These factors were then tested

n two statistical models as predictors of infested counties for all
he years of available data (Price et al., 1992).

While some of the dynamics that occur in the SPB system can
e captured at the scale of this study, others cannot. For exam-
le, predation, fungal competition and symbiosis, mite load and
ther factors cannot be considered with currently available data
Hofstetter et al., 2006; Klepzig et al., 2001; Reeve, 1997). While
hese small-scale factors are linked to infestation formation and
xpansion in localized outbreaks, their roles at the regional scale
ave not been determined.

Our objectives were to determine the best variables to predict
PB infestations at the county level, and to use these variables to
ake a regional model of infestation probability. This in depth

ook at the hierarchical relationships between many landscape, cli-
atic and infestation history variables should aid managers with
better understanding of the factors influencing SPB success at

he county level. Furthermore, this regional model will comple-
ent existing, smaller-scale models of within-stand risk, such as

PBMODEL and HOG (Lih and Stephen, 1987) and perhaps better
nform other regional models (Krist et al., 2007).

. Materials and methods
.1. Data and processing

For this study, county-level SPB presence–absence data from
rice et al. (1992) were supplemented by additional data from the
nagement 261 (2011) 473–479

USDA Forest Service. The temporal extent of the combined data
was from 1960 to 2004 and their spatial extent covered the SPB’s
southeastern range from Texas to Virginia. While infestations occur
on occasion further north and regularly in a discontinuous area of
their range extending from Arizona through northern Nicaragua,
we were unable to collect infestation data from these parts of the
range. Additional variables used for this analysis were separated
into four distinct groups: infestation history, land cover, human
population and climate. The infestation history variables recorded
for each county included regional infestation level and focal county
history. Regional infestation level was the percent of the 20 coun-
ties nearest the focal county that were infested in the previous
year. Focal county history was the infestation condition of the focal
county itself in previous years. This included presence–absence
data on county infestations in the previous year and 6, 7 and 9
years in the past to capture eruptive population cycles and delayed
density dependence (Duehl, 2008). County level SPB infestations
experience significant cycles during the years examined and nat-
ural enemy populations build up over the course of an infestation
and these data capture both elements. The host species cover data
were derived from county summaries of USDA Forest Service Forest
Inventory and Analysis (FIA) data. These data have been collected
and compiled since 1930 to inventory the condition of United States
forests. The forest monitoring component of the FIA program uses
remote sensing and ground surveys to get an estimation of forest
cover and composition (USDA, 2010). Using FIA county cover esti-
mates we were able to assure consistent data quality across states.
Since FIA surveys were carried out approximately every 10 years
over the time period examined, the values were linearly interpo-
lated for the 10 years between surveys. Data collected from the
county summaries were hectares of forest cover and hectares of
host cover. We defined host as loblolly (P. taeda L.) and short-
leaf pines (P. echinata Mill.). SPB can successfully reproduce and
increase their population in other pines, but these two species
are the most conducive to SPB success (Thatcher et al., 1980) and
are both widely distributed and consistently surveyed. Additional
information calculated for each year was percent change in both
host and forest cover. Additionally, the number of hectares of host
was divided by hectares of forest to get a proportional measure-
ment of host relative to total forestland. The other variable tested
that related to land form was the average elevation for the county
derived from a 15-m digital elevation model (USGS, Seamless 2007).

Human population data were extracted from United States Cen-
sus Bureau records (NHGIS, 2010). The variables considered were
total population per county, population per 0.4 ha, percent popu-
lation change from the previous measurement, and absolute value
of the population change. Because Census data are collected and
reported every 10 years, the latter two measures of population
change for intervening years were calculated with linear interpo-
lation.

Climate-related variables used in this study were derived from
National Climatic Data Center Summary of the Day data. For each
weather station, about 227 regional stations, the data available
were minimum and maximum daily temperatures and daily pre-
cipitation in millimeters (NCDC, 2010). The counties were joined
to the data collected at the weather station nearest to the county
center (ESRI, 2004). We considered various spatial interpolations,
but for weather data at this scale interpolation does not signifi-
cantly increase accuracy (Jarvis and Stuart, 2001). The first variables
tested were minimum yearly temperature and maximum yearly
temperature. However, minimum yearly temperature only par-

tially described the potential for cold temperature mortality of
the SPB. A very cold day in November may cause mortality to
less cold-tolerant life stages, while a colder day in January might
not cause any mortality (Lombardero et al., 2000a). Insects can
modulate their cold tolerance by desiccating and lowering their
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Table 1
The classification accuracy of the two statistical models. The CART model with limited variables performed best both in terms of overall accuracy and also in classification
agreement. The variable numbers of total counties stem from missing variables in some years and the variables chosen by the models.

Total miss-classified Total counties Overall classification accuracy (%) Cohen’s kappa
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to the complete data set generated the tree (Fig. 1) and the asso-
ciated cross-validation classification table (Table 2). As with the
logistic model, the accuracy for predicting un-infested counties was
much higher than the accuracy when predicting infested coun-
ties. The tree showed that infestation history, relative minimum

Table 2
The classification accuracy of the CART model applied to the whole data set and
selecting from all available variables. The model makes fewer errors when predicting
uninfested counties than those that have infestations.

Predicted Observed
CART 1546 23,432
CART limited variables 2508 34,291
Logistic all 2909 37,657

rystallization points (Lombardero et al., 2000a). Thus, in addition
o minimum winter temperature, we determined the day during
he winter when minimum temperature was the most different
rom the average minimum over the previous 20 days. That mini-

um temperature, the relative minimum, and its difference from
he average minimum over the previous 20 days were recorded.
hese temperatures were linked to infestations recorded in the
ollowing summer.

Average temperature and total precipitation were
alculated for the whole year and also seasonally for win-
er (December–February), spring (March–May), summer
June–August), and fall (September–November). The previous
ear’s seasonal precipitation was considered as an explanatory
ariable for the current year’s infestations. In the case of precipita-
ion, the departure from the average over all the years examined
nd the previous year’s precipitation were also calculated. For
oth of these values the previous year, 2 years ago and total for the
revious 2 years were calculated; the latter consisted of adding
he previous two together. This enabled the model to account for
rought or wet periods lasting multiple years.

Temperature was also used to calculate voltinism or the num-
er of generations per year. We used the G-function (Powell et al.,
000; Powell and Logan, 2005) to calculate the number of gen-
rations that should occur given a specific temperature regime.
wo additional variables, winter and spring seasonal focusing, were
enerated to depict how oviposition times are related to emer-
ence over the course of both seasons. These variables were linked
o infestations in the same year. Changes in emergence occur
ecause temperature-mediated development occurs at different
ates across insect life stages. This can cause certain developmental
tages to predominate and lead to synchronized emergence. These
wo variables show how 15 days of oviposition relate to emergence.
he focusing variables were calculated by following development
ourly and using the G-function to see how 15 days of ovipo-
ition lead to emergence and oviposition in the next generation
Duehl, 2008; Powell et al., 2000); essentially, if emergence is over
shorter period focusing has occurred, while a longer period indi-

ates defocusing. Winter focusing was based on eggs laid between
ctober 15th and October 30th and spring focusing was calculated

rom eggs laid between March 3rd and March 18th. We hypothe-
ized that winter focusing leads to synchronous spring emergence
nd attack with more outbreaks in counties experiencing these
onditions. In contrast, spring focusing decreases synchronization,
reating a more continuous searching population better able to
ompete for ephemeral resources.

.2. Analysis procedures

All of the listed variables were organized into a spreadsheet
uch that each county was linked to all the variables for each
ear. To determine how these variables related to the occurrence
f infestations, we employed two different statistical models. We

sed stepwise logistic regression in SAS (with SLENTRY and SLSTAY
et to 1) to construct a sequence of reduced models, and Akaike’s
nformation Criterion (AIC) to pick the best model (Allison, 1999;
osmer and Lemeshow, 2005; SAS, 2000–2004). We then dropped
ighly correlated variables and refitted the model. Beginning with
90.4 0.46
92.7 0.48
92.3 0.41

the model fit before removing correlated variables allowed us to
determine the most predictive variables out of the full set before
eliminating redundancies. The second statistical model we con-
sidered was a Classification and Regression Tree (CART) analysis.
We used R to run this statistic and chose this method because
CART shows the natural breaks in the data and the relative pre-
dictive power of specific variables along with their hierarchical
relationships (CRAN, 2010). We selected a cut point of 1% to pre-
vent overfitting and to identify the most critical factors underlying
data (Breiman et al., 1984).

3. Results and discussion

Both statistical models considered in this analysis were suc-
cessful in separating infested from un-infested counties. The
distribution of those infested versus un-infested counties over all
recorded years was unbalanced between groups, with only about
10% of counties showing infestation in a given year. Because of
the imbalance, the statistical models made better predictions of
the relatively common un-infested counties while not handling the
uncommon infested counties as well (Table 1). For example with
the full CART model, looking at the producers errors of those coun-
ties the model classified as un-infested, only 1% was in error, while
of those classified infested, 63% was erroneous.

The CART method finds natural breaks and hierarchical structure
and while it may not have performed better than logistic regres-
sion, it was able to show specific relationships between explanatory
variables. Logistic regression instead fits a curve using the best
variables together and then classifies counties by their infestation
probabilities, showing the relative influence of individual variables
but not identifying cutoff points within variables. We used a 0.5
probability threshold, classifying counties with a probability of
infestation greater than 0.5 as infested and those with less than 0.5
as un-infested (Allison, 1999). The imbalance between infested and
un-infested counties hindered the ability of the model to explain
much of the variation in the data (Hosmer and Lemeshow, 2005).

In CART the variable defining the root node is the best separa-
tor of infested versus un-infested counties. The additional variables
selected are, in descending importance, the best at separating the
remaining variability. CART requires the user to input a minimum
increase in explanatory power for adding variables, which keeps
the tree compact (Breiman et al., 1984). Applying the CART model
0 1 Commission error (%)

0 21,147 289 1
1 1257 739 63
Omission error (%) 6 28
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ig. 1. The CART selected using all the available variables and a cutoff point of 0.
inimum, coldest point on a winter day relative to average temperature over prev

pring, days of emergence from 15 days of oviposition March 3rd–18th; fall precip,
recip diff previous 2 years, the departure from the average over all examined years

emperature, and winter focusing, in that order, were the important
actors for predicting outbreaks.

We also tested the variables selected for the best logistic model
n CART (Fig. 2 and Table 3). Again we determined that the infesta-
ion presence–absence data from 1 year ago were the best separator
nd had even more predictive ability in this case. Using limited
ariables increased the total model error along with omission
rror although commission error (the number of false positives)
ecreased. These patterns of results are similar to the logistic model
hat used the same variables.

The two models parsed out the predictive abilities of the vari-
bles in different ways but with similar result. CART did not use
ny of the landscape variables other than county history. After this

ariable for the initial branch, both CART runs we discussed here
sed temperature and then a precipitation variable. The inclusion
f focusing, a variable based on temperature-mediated develop-
ent, showed that there is an important link between emergence

able 3
he classification accuracy of the CART model applied to the whole data set and
electing from the variables chosen for the logistic model. The overall accuracy
s lower than the unconstrained model but more infested counties are classified
orrectly.

Predicted Observed

0 1 Commission error (%)

0 30,428 768 2
1 1740 1355 56
Omission error (%) 5 36
prune the tree. Legend: 1 year ago, 0/1 was the county infested last year; relative
5 days; winter, days of emergence from 15 days of oviposition October 15rd–30th;
ecipitation September–November; summer precip, cm precipitation June–August;
ch of the previous 2 years summed together; min temp, lowest yearly temperature.

synchronicity and temperature that influenced success. Logistic
regression uses one equation to predict the log likelihood of infes-
tation for a county. Thus, the circumstances where a particular
variable may be important for prediction are unclear. The rela-
tive power of the variables is demonstrated by the size of their
respective parameter estimates and chi square values, but this
does not elucidate any hierarchical structure. We tested adding
squared terms for the explanatory variables because of the non-
linear fits between infestation probability and variable level. The
squared terms were statistically significant (in terms of p-values)
but did not affect classification accuracy enough to justify their
inclusion.

The order of the seven variables added during the selection
process for the logistic model primarily reflects the importance
of infestation history. The county infestation occurrence in the
previous year was the first variable selected, followed by forest
cover and then the infestation status of the 20-county region sur-
rounding the focal county. The fourth variable was focal county
6 years ago and the fifth variable was the total precipitation
over the previous 2 years. Additional variables selected with AIC
were discarded upon examination of the correlation matrix. It
demonstrated that within families of variables – precipitation, tem-
perature, land cover, and history – there were high correlations.
The final model contains only the variables with the most influ-

ence from each family of explanatory variables (Table 4). The final
logistic model (Table 4) was used to generate a classification table
(Table 5). The classification table shows that logistic regression
made fewer errors relative to infested counties than to un-infested
counties.
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Fig. 2. The CART created from a limited set of variables and a cutoff point of 0.01 to prune the tree. 1 year ago, 0/1 was the county infested last year; winter, days
of emergence from 15 days of oviposition October 15rd–30th; min temp, lowest yearly temperature; avg temp, average temperature over the year; winter precip, cm
precipitation December–February; fall precip, cm precipitation September–November.

Table 4
The parameters chosen for logistic regression after consideration of the correlation table. The chi-square shows the relative influence of the different variables and the
estimate shows the value of the parameter in the equation.

Parametera df Estimate Standard error Wald chi-square p > chi-square

Intercept 1 2.24 0.35 40.90 <.0001
1 year ago 1 −1.96 0.06 931.27 <.0001
20 county region 1 −2.54 0.12 476.69 <.0001
6 years ago 1 −0.9690 0.057 291.7515 <.0001
Forest cover 1 −0.0007 0.00006 141.16 <.0001
Relative minimum 1 −0.0229 0.0026 76.59 <.0001
Total precip prv 2 years 1 −0.00008 0.000001 70.32 <.0001
Avg spring temp 1 0.0413 0.0059 49.46 <.0001

infest
a ay rel
c ay.

o
9
u

T
T
C
t

a 1 year ago, 0/1 was the county infested last year; 20 county region, percent of
go; forest cover, acres of forest in the county; relative minimum, coldest winter d
m over the previous 2 years; avg spring temp, average temperature over March–M
The accuracy of the models can be evaluated through a number
f different measures. The overall classification accuracy was above
0% for all models, this was mainly due to accurate predictions of
n-infested counties. These counties accounted for about 90% of

able 5
he classification of infested (1) and un-infested (0) counties by logistic regression.
ounties with a model prediction less than 0.5 were classified as un-infested while
hose higher were classified as infested.

Predicted Observed

0 1 Commission error (%)

0 33,564 765 2
1 2144 1184 64
Omission error (%) 6 39
ed counties out of the nearest 20; 6 years ago, 0/1 was the county infested 6 years
ative to average over previous 15 days; total precip prv 2 years, total precipitation

all counties (Table 1). Another measure of classification agreement
is Cohen’s kappa, a more conservative measure representing how
well a model performs relative to a random classification. Kappa
values for our models ranged from 0.41 to 0.48, indicating that a
disconnect existed between overall accuracy and prediction quality
across classification groups. It is manifested as an over prediction of
infestation although there was also a fair amount of false negatives.

4. Conclusions
This modeling exercise expanded the extent and breadth of
variables examined for their influence on SPB infestation. Previ-
ous research (Gumpertz et al., 2000; Kalkstein, 1981; Kroll and
Reeves, 1978; Mawby and Gold, 1984) elucidated many relation-
ships between individual explanatory factors and the likelihood of
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PB infestation, but herein we demonstrated the relative power and
ierarchical relationships between a suite of variables. The com-
lexities of infestation formation and spread make it difficult to
etermine what factors are most important (Fettig et al., 2007).
his analysis clearly showed that a consideration of local infestation
istory, followed by temperature and precipitation, will give the
learest picture of infestation likelihood. This is not different from
urrent recommendations but is confirmed by a greater breadth
nd depth of data. Additionally, the specific relationships between
he variables and infestation elucidated by this research give man-
gers a broader basis to predict how infestations may develop or
ollapse in their stands.

Both models picked infestation history variables as the most
mportant in the system, agreeing with our other work (Duehl,
008) and also that of other authors (Gumpertz et al., 2000; Mawby
nd Gold, 1984). We showed that an infestation either in the pre-
ious year, further in the past or in the region around the focal
ounty always increases the probability of infestation in the focal
ounty. This contrasted with Gumpertz et al. (2000) by extending
he range of prediction and in the logistic model, demonstrating the
ower of infestation 6 years ago. Although both approaches suggest
hat larger regional infestation patterns are important, in our case
he infestation rate of the 20-county region and in Gumpertz et al.
2000) the neighborhood of spatial autocorrelation. At the county
evel, infestation history must implicitly capture many infestation
elated factors: sufficient populations of beetles, available host and
uitable environmental conditions in the previous year. Beyond
hese factors the additional environmental variables added in the
nalyses capture changes that make a given year unique, specifi-
ally altering county level populations.

Climatic variables were ranked second in the level of impor-
ance with temperature leading precipitation in predictive power.
ut of the temperature variables considered, seasonal average tem-
erature, annual minimum temperature and relative minimum
emperature were the most important variables. One manage-

ent implication of our findings is that a very cold winter or a
old snap will decrease the likelihood of infestation even if there
ere high populations of beetles in the previous year (Ungerer

t al., 1999). While average temperature likely correlated with
he center SPB geographic range, minimum temperatures strongly
nfluence yearly population success (Ungerer et al., 1999). The
easonal focusing variables also had explanatory power, indicat-
ng the temperature influences on development are important in
etermining population success (Powell et al., 2000). Of the precip-

tation variables considered, seasonal precipitation in the current
ear and the difference in precipitation over the previous 2 years
rom the average over all examined years were the most impor-
ant. Precipitation can be related to how able a tree is to defend
tself (Herms and Mattson, 1992), with the trees diverting more
esources to secondary metabolism and defensive chemicals dur-
ng periods of drought (Lombardero et al., 2000b). In general, high
evels of fall precipitation lead to higher levels of infestation the
ollowing year. In some regions this may occur because soil satura-
ion increases root anoxia, but in others high fall precipitation may
esult in healthier, faster growing trees that provide beetles with a
ore nutritious substrate (Lombardero et al., 2000b).
There are some differences in the predictions between the two

odels. The CART model did not select landscape structure vari-
bles (these only played a minor role in the logistic model), but
nstead captured appropriate locations through county infestation
istory. Additional explanatory power came not from landscape
eatures but factors that were more varied year-to-year such as
eather patterns. Yearly average temperature implicitly reflected

ertain landscape characteristics albeit indirectly, through such
eatures as topography, proximity to water and latitude. Beetles
re more successful in moderate conditions (Lorio, 1986; Wagner
nagement 261 (2011) 473–479

et al., 1983/1984) and average temperature may best approximate
appropriate climate. Winter precipitation recharges the water table
before trees begin transpiring in the spring. This measure may have
stood in for the resistance characteristics of trees (Kalkstein, 1981;
Lombardero et al., 2000b), particularly the resistance change from
the previous year. Total precipitation difference over the previous 2
years captured water availability and may have been a good proxy
for beetle population levels with both the previous year’s success
and current year’s condition (Lombardero et al., 2000b).

Logistic regression added the percent of infested counties in the
20-county region to the previous year’s history and increased pre-
diction quality with greater spatial extent. Total precipitation over
the previous 2 years was the environmental feature selected by
the logistic model. The inclusion of infestation 6 years ago as an
explanatory variable indicated that cycles of beetle activity may
also play an important role in determining overall infestation like-
lihood (Duehl, 2008; Turchin et al., 1991).

The objective of determining the likelihood of range expansion
and future infestation patterns can only be partially addressed. The
SPB is most successful when it has abundant host material and
large local populations. Additionally, examining the relationships
between individual temperature variables and success shows that
for the most part infestations will occur under average conditions
within its current range (Duehl, 2008). Our analyses indicate that
extreme conditions with the exception of drought, like those pre-
dicted to occur with climate change (IPCC, 2001), are less likely
to lead to beetle success. To the north there are some susceptible
hosts that have historically only experienced occasional infesta-
tions or been protected by extreme winter temperatures that could
be exposed to consistent beetle populations. Beetle populations
may also help regulate the distribution of certain tree species and
changing climate will alter the frontiers of this relationship (Bentz
et al., 2010). Additional research is needed to show how successful
the SPB can be in alternate hosts. Given the preference for aver-
ages it is unlikely that the SPB will be highly successful outside of
its native range. That said, changing climates will change the geo-
graphic location of historically average conditions as well as the
physiological condition of the trees on the landscape. These impacts
will have unknown consequences for forest, stand and individual
tree resistance to insect damage.

These models can help managers determine the probability of
SPB infestation in a county. However, the problem is that these
models only explain a small amount of the total variability in infes-
tation occurrence. Many infested and un-infested counties were
misclassified by these methods. We examined the influences of
landscape, precipitation and temperature at this scale in another
publication (Duehl, 2008). Therein we demonstrated that each
independent variable only explained a small amount of the vari-
ability in infestation occurrence. We hypothesized that a combined
analysis would show that climatic, landscape and infestation his-
tory variables complement each other to explain more of the total
variation in infestation occurrence than would be expected from
their individual relationships. The analysis described here does
show how the various individual explanatory variables fit together
to explain infestation incidence, and the hierarchical relationships
within those predictions. However, the variables used in this anal-
ysis still explain limited variability in the data. More research is
needed to identify and capture other potentially important features
of the system, such as natural enemies and smaller-scale landscape
structure; these will enable the creation of a model more applica-
ble to management. Until a more robust SPB prediction model is

developed, managers should continue to utilize spring pheromone
surveys (Billings, 1988) to predict shifts in SPB population trends,
particularly to detect when outbreaks are likely to first occur or to
collapse. They should also reference the FHTET SPB risk maps that
incorporate landscape and climate variables (Krist et al., 2007).
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