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Abstract In 20-year-old longleaf pine, we examined

short-term effects of reduced live leaf area (AL) via canopy

scorching on sap flow (Q; kg H2O h-1), transpiration per

unit leaf area (EL; mm day-1), stem CO2 efflux (Rstem;

lmol m-2 s-1) and soil CO2 efflux (Rsoil; lmol m-2 s-1)

over a 2-week period during early summer. Rstem and

Q were measured at two positions (1.3-m or BH, and base of

live crown—BLC), and Rsoil was measured using 15 open-

system chambers on each plot. EL before and after treatment

was estimated using Q measured at BLC with estimates of

AL before and after scorching. We expected Q to decrease in

scorched trees compared with controls resulting from

reduced AL. We expected Rstem at BLC and BH and Rsoil to

decrease following scorching due to reduced leaf area,

which would decrease carbon supply to the stem and roots.

Scorching reduced AL by 77%. Prior to scorching, Q at BH

was similar between scorch and control trees. Following

scorching, Q was not different between control and scorch

trees; however, EL increased immediately following

scorching by 3.5-fold compared to control trees. Changes in

EL in scorched trees corresponded well with changes in

VPD (D), whereas control trees appeared more decoupled

over the 5-day period following treatment. By the end of the

study, Rstem decreased to 15–25% in scorched trees at both

stem positions compared to control trees. Last, we found

that scorching resulted in a delayed and temporary increase

in Rsoil rather than a decrease. No change in Q and increased

EL following scorching indicates a substantial adjustment in

stomatal conductance in scorched trees. Divergence in Rstem

between scorch and control trees suggests a gradual decline

in stem carbohydrates following scorching. The absence of

a strong Rsoil response is likely due to non-limiting supplies

of root starch during early summer.

Keywords Fire � Longleaf pine � Sap flow �
Stem respiration � Soil respiration � Ichauway

Introduction

Longleaf pine savannas provide good model systems in

which to investigate short-term changes in water and carbon

cycling mediated by fire disturbance. Longleaf pine (Pinus

palustris Mill.) is the key tree species in a complex of fire-

dependent forest ecosystems native to the southeastern

United States, and fire is an important environmental dis-

turbance influencing the structure and function of these

ecosystems (Chapman 1932; Christensen 1977). Long leaf

pine ecosystems have been reduced in extent to ca. 3% of

the pre-European settlement extent of 40 million ha (USDA

Forest Service, Forest Inventory and Analysis, unpubl.

data). Management and restoration of longleaf pine savanna

systems have been accomplished primarily through the use

of controlled burning which has been shown in many eco-

systems to have varying effects on fluxes of carbon and

water (Ford et al. 2008). Although fire is an important part

of these ecosystems, when properly applied results in
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enhanced function, in young longleaf pine stands fire may

result in altered physiological function. These changes may

manifest as reduced growth due to either canopy scorching

or damage to fine roots in upper soil horizons, increased risk

of tree mortality, and/or a potentially ineffective restoration

effort. Understanding the effects of prescribed fire and other

management options on this ecosystem is critical to the

success of management decisions.

Transpiration can change on short- and long-time scales

as stomatal conductance, leaf area, climate, and hydraulic

conductance change (Andrade et al. 1998; Ewers et al.

2001; Schäfer et al. 2000; Bowman et al. 2005; Addington

et al. 2006). With fire as a disturbance, partial canopy

scorching can result in the removal of a considerable

amount of leaf area. Following reductions in leaf area,

increases in transpiration per unit of the remaining foliage

(EL) can result when sap flow (Js) and sapwood area (ASW)

remain unchanged, when stomatal conductance (gs) and

leaf–to–air vapor pressure deficit (D) around the leaf

change, or when the gradient between soil and leaf water

potential weakens (Wsoil and Wleaf, DW). In general, gs and

EL have been found to increase with leaf area removal

(Meinzer and Granz 1991; Reich et al. 1993), but not

always (Whitehead et al. 1996; Pataki et al. 1998; Hubbard

et al. 1999; Maier and Clinton 2006). Adjustments in gs and

EL to compensate for changes in functional AL may

translate into consequent changes in carbon available for

growth and maintenance of respiring tissues.

Carbon dioxide efflux from woody tissues (i.e., stem,

branch, and roots) and soil contributes a large portion of

pine ecosystem respiration (Hamilton et al. 2002; Maier

et al. 2004). Carbon availability via canopy photosynthesis

is tightly linked to stem and soil CO2 efflux (Tang et al.

2005). Stem CO2 efflux declined when substrate avail-

ability was experimentally manipulated by altering the

supply of photosynthates (Edwards et al. 2002) through

stem girdling (Edwards and McLaughlin 1978; Martin

et al. 1994; Lavigne et al. 2004; Wang et al. 2006; Maier

et al. 2010), pruning (Maier and Clinton 2006), or canopy

scorching (Cernusak et al. 2006). Cernusak et al. (2006)

attributed lower rates of stem CO2 efflux following burning

to reductions in canopy photosynthesis. Stem girdling

studies have also shown that much of the temporal and

spatial variability in belowground C allocation and respi-

ration is related to the availability of non-structural car-

bohydrates (Högberg et al. 2001; Johnsen et al. 2007)

supplied by current photosynthesis. Johnsen et al. (2007)

reported reductions in soil CO2 efflux up to 30% within

3 days following stem girdling in mid-rotation P. taeda.

Reductions in leaf area following canopy scorching will

likely compromise the availability of photosynthates with

immediate effects on ecosystem respiration through

reduced stem and soil CO2 efflux.

Our overall study goal was to determine how tree level

carbon and water fluxes were influenced by canopy

scorching. Specifically, our objectives were to examine the

short-term effects of fire-induced leaf area reduction on

transpiration estimated from sap flow, and stem and soil

CO2 efflux in mid-rotation longleaf pine (P. palustris)

plantations. We hypothesized that following scorching: (1)

whole tree water use would be lower in scorch trees

compared to control trees, (2) whereas transpiration per

unit leaf area would show the opposite response, and (3)

lower functional leaf area would cause a reduction in stem

CO2 and soil CO2 presumably due to a decrease in the

production and allocation of photosynthate.

Materials and methods

Study site description

The study was conducted over a 2-week period in early

summer 2002 [day of year (DOY) 150–163] in a 22-year-

old P. palustris Mill. (longleaf pine) monoculture plantation

located at the Joseph W. Jones Ecological Research Center

near Newton, GA, USA (34oN, 84oW) (see Atkinson et al.

1996). The dense tree spacing (1.5 m 9 2 m) had resulted

in an understory essentially devoid of vegetation. The soils

are classified as Typic Quartzipsamment characterized by

coarse sand that exceeds 2.5 m in depth. These soils have

low water holding capacities (18 cm H2O m-1 soil in the

upper 3 m), weak horizon development due to mixing by

soil fauna, low organic matter content, and lack of signifi-

cant silt and clay fractions.

An open-field weather station onsite measured (CR10X,

Campbell Scientific, Inc., Logan, UT, USA) ambient air

temperature (T), relative humidity (RH), solar radiation

and precipitation (P) (1Models HMP35C, LI200SA, and

TE525, respectively; Campbell Scientific, Inc., Logan, UT,

USA) and recorded on 15 min intervals. Two plots within

30 m of one other were established for study. In the study

plots, soil moisture content in the upper 30-cm soil layer

(%) was measured continuously using time domain

reflectometry (TDR Model CS615; Campbell Scientific,

Inc., Logan, UT, USA). Due to failure of TDR probe in one

study plot, soil moisture data presented are from the control

plot only, making analysis of treatment effects on soil

moisture was not possible. However, extant soil moisture

data for a related study from the same site indicated no

significant difference in volumetric soil water content

across treatments (R. Mitchell unpublished data). From

1 The use of trade or firm names in this publication is for reader

information and does not imply endorsement by the U.S. Department

of Agriculture of any product or service.
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ambient T, saturation vapor pressure (es) was calculated

according to Lowe (1977). Actual vapor pressure (ea) was

calculated from fractional RH and es. Mean daytime air

vapor pressure deficit (D) was calculated as the difference

between es and ea. Long-term average daily air temperature

at the site ranges from 21 to 34�C during the summer and

5–17�C during the winter, and mean annual P is 1,310 mm

(Goebel et al. 2001).

Canopy scorching treatment

At the time of scorching, two age classes of foliage were

present; the previous year’s cohort and early production of,

but not yet fully expanded, current year foliage (Sheffield

et al. 2003). On DOY 150, canopy scorching began and

was completed on the next morning (see Guo et al. 2004).

All trees in the scorched plot received the scorching

treatment. Needle scorch was accomplished using a por-

table propane torch and access to the canopy was achieved

with a hydraulic lift. Although longleaf pine can survive

100% crown scorching, care was taken to ensure that (1)

the scorching only desiccated the needles instead of

incinerating them, and (2) the scorching did not damage

terminal buds and branches (Carter et al. 2004). The goal of

the treatment was to reduce photosynthesis and transpira-

tion without impairing foliar recovery.

Sap flux measurements

On each of two plots, eight experimental trees were selected

and spanned the range of diameters on each plot (Table 1).

We estimated canopy transpiration rates from the measure-

ments of xylem sap flux density (Js; g H2O m-2 sap-

wood s-1) using 30-mm long, constant heat, thermal

dissipation probes (TDP) (Granier 1985, 1987). For each of

the eight trees on each treatment plot, two sets of sap flux

probes were installed on opposite sides (north and south,

N–S) of the stem at 1.3 m above the ground (BH). We also

installed an additional N–S pair of sap flux probes at

approximately 5 m above the ground surface on three of the

eight sample trees. This height was just below the live crown

on all the three trees (BLC). Each probe set consisted of one

upper heated probe and one lower reference probe. Each

probe contained one thermocouple junction (TC) suspended

in the shaft at 15 mm. The probes were installed by drilling

two holes separated vertically by 5 cm, but not separated

horizontally. We used a guide template to ensure that the

holes were parallel. The probes were coated with thermally

conductive silicone grease before placement in the trees. The

areas around the probe insertion points were protected with

Styrofoam blocks, and the stem of the tree was wrapped 360�
with reflective insulation (Reflectix; Reflectix Inc., Markle-

ville, IN, USA) to shield probes from solar radiation, thermal

gradients, and rainfall. All lead wires were soldered to cop-

per, double shielded cable wires (Model 9927; Belden Inc.,

Richmond, IN, USA). TC wires were differentially con-

nected to a data logger with a multiplexer peripheral (Models

CR10X and AM416, Campbell Scientific, Inc.). Sensors

were queried every minute and these readings were compiled

into 15 min averages. The temperature difference (DT)

between the upper and lower probes was converted to sap

flux density Js using the equation of Granier (1985) with the

maximum DT determined every 24 h. All probes were

monitored continuously during DOY 150–163 during 2002.

Power to the TDP control panels was achieved through the

use of portable generators that maintained a constant voltage

in 12 v deep cycle marine batteries. We omitted all data from

analyses that resulting from voltages of\12.0 v DC deliv-

ered to the TDP control panel.

Sap flow (Q, kg H2O h-1) was calculated by averaging

Js measurements from replicate N–S sensors, multiplying

by cross-sectional sapwood area (ASW), and integrating for

time. At each probe location, we measured over-bark stem

diameter and bark thickness. In longleaf pine, heartwood

begins to form at around the age of 20 and at age 30 is still

predominantly sapwood (Wahlenberg 1946). For calcula-

tions of sap flow, we assumed that the entire cross-sectional

xylem area to be hydro-active sapwood, and thus estimated

ASW from these measurements and the area of a circle (i.e.,

assuming circular symmetry) (Table 1). Increment cores

were also taken at the end of the sampling period to estimate

ASW by visual inspection. No heartwood was visible on any

tree or at any stem position. For the trees that had probes

placed at BLC, sap flow was further scaled to transpiration

per unit leaf area (EL, mmol m-2 s-1) by dividing Q by

estimated projected leaf area (AL, described below) and

integrated over time. We recognize that variation in sap flux

density likely exists along the radial profile for this and

other species (Ford et al. 2004) which could result in

overestimates of Q and consequent, but proportional over-

estimates of EL in both control and scorched trees.

We estimated live AL on each tree following the treatment

using allometric equations developed from nine trees of each

treatment harvested after the experiment in June–July 2002.

For trees harvested from the control treatment, an equation

was developed to predict total foliage mass of the tree from

DBH as follows: (y = log (DBH) 9 3.1397 - 0.0601) 9

CF, where CF is a correction factor = 1.046 (Sprugel et al.

1983) (R2 = 0.85). Predicted dry leaf mass and average

specific leaf area (31.56 cm2 g-1, R. Mitchell, unpubl. data)

were used to convert to AL (Table 1). From the scorched

harvested trees, the foliage remaining on the tree was sorted

into live and scorched categories. The above equation was

used to predict what total live foliage area would have been

before the scorching treatment and then calculated the per-

cent live foliage area reduction.
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CO2 efflux measurements

Mean daily stem and soil CO2 efflux (Rstem and Rsoil,

respectively, lmol CO2 m-2 s-1) measurements were

made using an automated, multi-chamber sampling system

(ACES, Butnor et al. 2005) that consisted of stem and soil

chambers, an infrared gas analyzer (EGM-2, PP Systems)

and a series of solenoids that allowed the sequential mea-

surement of each chamber. The system had an open flow-

through design where CO2 efflux was estimated as the

difference between the CO2 concentration entering and

exiting the chamber.

We measured Rstem at 1 m above ground height on the

eight experimental trees per treatment that were being

monitored for sap flux. We also randomly selected three of

the eight trees to measure Rstem at BLC, co-located with

BLC sap flow sensors. Stem chambers were constructed of

Teflon film fastened to the bark using closed-cell foam and

double-sided tape and completely surrounded the stem

(Maier and Clinton 2006). Simultaneous measurements of

chamber air- and stem cambium-temperature (at 3 mm

depth, Tstem) were made using type-T thermocouples. Stem

diameter was measured at the mid-point of each stem

chamber location. Mean daily Rstem for each chamber was

calculated from the average of 15–16 diel measurements.

We measured Rsoil using 15 chambers per treatment

placed systematically throughout the study plots: five

chambers each were randomly placed at 0–1.0, 1.0–1.5, and

[1.5 m distances from the nearest tree stem. This design

was used to minimize any bias from root density distri-

bution. Soil chambers were constructed from 25-cm

diameter PVC pipe (491 cm-2, 10 cm height) covered with

a clear LexanTM (Dupont Corp., Wilmington, DE) (Butnor

et al. 2005). Chambers were equipped with a pressure

equilibration port to maintain ambient air pressure.

Chamber air temperature and soil temperature (Tsoil) at

10 cm were measured with type-T thermocouples. Mean

daily Rsoil was calculated from the average of nine diel

measurements.

Statistical analyses

To test the hypothesis that Q was reduced in scorched trees

compared with control trees, we tested for the differences

in daily total Q (n = 8) during DOY 151–161 using PROC

MIXED (SAS v9.1, Cary, NC, USA, SAS 2004). Treat-

ment was modeled as a fixed effect, and consecutive

measurements of Q within each tree were modeled as a

random effect and given AR (1) covariance structure. Post-

hoc comparisons of least-squares means were interpreted as

significantly different at the one-tailed a = 0.05 level.

To test the hypothesis that EL was greater in scorched

trees compared with control trees, we tested for differences

in mean daily EL measured at BLC (n = 3) during DOY

151–161 using PROC MIXED (SAS 2004). Treatment was

modeled as a fixed effect and consecutive measurements of

EL within each tree were modeled as random effects and

given AR (1) covariance structure. Post-hoc comparisons

Table 1 Experimental tree characteristics: diameter at 1.3 m (BH) and 5 m (BLC) above the ground surface, estimated sapwood area (ASW),

projected leaf area (AL) and the ratio of ASW to AL for control and scorched trees

Treatment Tree Diameter (cm) ASW (cm2) AL (m2) pre-scorcha AL (m2) post-scorcha ASW:AL (cm2 m-2) post-scorch

BH BLC BH BLC BH BLC

Control 1 9.6 58.1 3.68 3.68 15.79

2 13.0 113.1 9.53 9.53 11.87

3 15.0 144.0 14.93 14.93 9.65

4 16.8 183.9 21.32 21.32 8.63

5 16.8 11.4 180.0 95.0 21.32 21.32 8.44 4.46

6 18.2 14.9 218.0 162.0 27.41 27.41 7.95 5.91

7 22.9 343.1 56.38 56.38 6.09

8 25.0 18.7 417.6 244.4 74.26 74.26 5.62 3.29

Scorched 1 9.8 60.8 3.92 0.85 71.53

2 12.5 109.4 8.43 1.82 60.11

3 16.0 174.4 18.29 3.96 44.04

4 18.3 13.9 243.3 143.1 27.88 6.03 40.35 23.73

5 19.4 15.0 271.7 151.7 33.49 7.25 37.48 20.92

6 21.1 17.2 309.2 213.8 43.60 9.43 32.79 22.67

7 22.5 356.3 53.34 11.54 30.88

8 28.3 498.8 109.60 23.72 21.03

a Estimates of AL use DBH
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of least-squares means were interpreted as significantly

different at the one-tailed a = 0.05 level. We tested for

differences in the EL versus D relationship between treat-

ments during DOY 151–161 using a repeated-measure,

mixed effects, zero-intercept linear model (PROC

NLMIXED, SAS 2004). Our model took the form:

EL ¼ f Dij; b; ui

� �
þ eij; ð1Þ

where f is a function of known vector covariates (Dij); a

vector of unknown fixed parameters (b); and a vector of

unknown random effect parameters (ui); and eij is unknown

random errors (Peek et al. 2002). The b parameter repre-

sents the rate of increase in EL with each unit D. We

contrasted b parameters between treatments and interpreted

differences as significant at a = 0.05 level.

To test the hypothesis that Rstem was reduced by the

scorching treatment, we tested for the differences in mean

daily Rstem as a function of treatment, and as a function of

treatment and stem position (BH and BLC) with diameter

as a covariate. Two analyses were done: one used pre-

scorching data (DOY 149–150), and the other one used

post-scorching data (DOY 151–163). In addition, to facil-

itate comparisons of the relative effects of scorching

treatment over time, mean daily Rstem at each stem position

was normalized to the mean Rstem measured on DOY 150

before the scorching treatments began. Treatment and stem

position were treated as fixed effects, and consecutive daily

mean measurements (i.e., DOY 151–163) within each stem

were modeled as random effects using mixed model

repeated measures analysis of variance utilizing an AR (1)

covariance structure (PROC MIXED; SAS 2004).

To test the hypothesis that Rsoil was reduced by the

scorching treatment, we tested for the differences in mean

daily Rsoil as a function of treatment and chamber distance

from the tree. We anticipated that root biomass would be

greater proximal to trees. Two analyses were done: one used

pre-scorching data (DOY 149–150), and the other one used

post-scorching data (DOY 151–163). Treatment and cham-

ber distance were treated as fixed effects, and consecutive

daily mean measurements (i.e., DOY 151–163) within each

soil chamber were modeled as random effects using mixed

model repeated measures analysis of variance utilizing an

AR (1) covariance structure (PROC MIXED; SAS 2004).

Post-hoc comparisons of adjusted least-squares means of

Rstem and Rsoil were made using Tukey’s paired comparison

procedure and considered significant at a B 0.05.

Results

Climate

The study period was characterized by relatively hot and

humid conditions (Fig. 1a). Air temperatures ranged from

17.5 to 37.6�C over the study period and averaged at 26.2�C.

During the day, D ranged from 0 to 3 kPa, and mean daytime

D was moderate at 1.2 kPa. Three precipitation events

occurred during the 2-week period that ranged from 0.3 mm

on DOY 159 to 13.0 mm on DOY 150. Rain events occurred

during the early evening except on DOY 159. Only the

13.0 mm rain event substantially and consistently altered the

soil moisture in the treatment plots. Soil moisture ranged

from 5 to 28% by volume and averaged 10% over the study

period. Mean daily soil temperature at 5 cm (Tsoil) ranged

from 21.1 to 28.6�C and was slightly higher in the control

treatment than the scorched (25.1 ± 0.1�C vs. 24.2 ±

0.1�C, respectively; F1, 24 = 20.03, P \ 0.001).

Sap flow and transpiration

Prior to scorching, sap flow in control and scorched trees was

similar (17.9 ± 4.8 kg day-1 vs. 20.0 ± 5.7 kg day-1,

respectively, Fig. 1b). As the foliage was being scorched
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Fig. 1 Mean daytime air vapor pressure deficit (D), total precipita-

tion (P), and mean daytime solar radiation (a), and whole tree water

use in scorch and control trees (b) during the study period. Canopy

scorching treatment was applied on day 150, and removed ca. 77% of

the leaf area. Vertical bars in lower panel represent the mean of

replicate trees (n = 8); one standard error also shown
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(DOY 150), sap flow substantially decreased (52% lower) in

those trees compared to the control trees indicating that our

experimental treatment was effective in reducing transpira-

tion. Following scorching on DOY 151, both scorch and

controls trees exhibited similar rates of water use, a pattern

that was repeated for several days after the treatment.

However, scorching reduced live leaf area on average by

77%, most of which was the loss of previous year’s foliage

(Table 1). As a result, disproportionately more current-year

foliage remained on the scorched trees, although this foliage

was not yet fully expanded. Due to loss of live leaf area, the

ratio of sapwood area (ASW) to projected leaf area (AL)

increased markedly after scorching (Table 1). Following

scorching, sap flow did not differ significantly between

treatments (F1, 14 = 0.45, P = 0.51) (Fig. 1b), resulting in a

rejection of our first hypothesis that sap flow would be

reduced by reduction in live leaf area in scorched trees. Sap

flow differed significantly among days (F10, 140 = 28.28,

P \ 0.001), driven primarily by changes in atmospheric

conditions; however, trees from both treatment groups

responded similarly (no interaction, F10, 140 = 0.75,

P = 0.67) over the study period.

Pre-treatment estimates of EL were similar in control

and scorched trees (0.63 ± 0.03 vs. 0.47 mmol m-2 s-1 ±

0.11 SE, respectively, Fig. 2). For the 5 days following the

scorching treatment, EL in scorched trees was significantly

greater than in controls and averaged 3.4 times greater over

that period (F1, 4 = 14.79, P = 0.02). No response in sap

flow after removing 77% of AL suggests an adjustment in

EL of the remaining foliage sufficiently enough to account

for the observed no change in whole tree water use, con-

firming our second hypothesis. Like sap flow, EL differed

significantly among days (F10, 40 = 31.89, P \ 0.0001) as

climate varied; however, the magnitude of the increase in

EL in the scorched trees was greater on days with high

D (interaction F10, 140 = 0.75, P = 0.67, Fig. 3). Scorched

trees had a significantly greater increase in EL with

increasing D compared to the control trees (b = 1.19 vs.

b = 0.42, F1, 5 = 6.86, P = 0.047).

Stem CO2 efflux

Prior to scorching, Rstem in the control trees was significantly

greater than that in the scorched trees (2.60 ± 0.17 vs.

1.71 ± 0.17 lmol m-2 s-1, respectively; F1, 18 = 13.93,

P = 0.002). Rstem increased linearly with stem diameter and

was greater at BLC than at BH (2.94 ± 0.20 vs.

1.37 ± 0.14 lmol m-2 s-1, respectively; F1, 18 = 37.39,

P \ 0.001). The differences between Rstem at BLC and BH

were consistent between treatments (no significant interac-

tion, F1, 18 = 1.04, P = 0.32). Thus, normalizing the data

with respect to pretreatment Rstem rates corrected the data for

these size- and location-dependent effects.
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EL = 1.19 D. Canopy scorching treatment was applied on day 150,

and removed ca. 77% of the leaf area. Symbols represent the mean

(n = 3); error bars are one standard error. Asterisks indicate

significant differences between scorch and control on those days at

a = 0.05 (one-tailed)
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Following scorching, normalized Rstem was lower in

scorched trees compared with control trees (treatment

effect F1, 28 = 22.3, P \ 0.0001), and the effect of

scorching increased in magnitude over time (treatment by

time interaction, F13, 259 = 5.33, P \ 0.0001, Fig. 4).

Normalized Rstem in scorched trees was noticeably lower

than controls 3 days after treatment and significantly dif-

ferent after 6 days at BH and BLC. From this point until

the end of the experiment, normalized Rstem in scorched

trees was 18–34 and 16–25% lower than in control trees at

BH and BLC, respectively. There was no treatment by

position (F1, 28 = 0.06, P = 0.80) or treatment by position

by time (F13, 259 = 0.70, P = 0.76) interaction effects on

normalized Rstem. However, there was a strong position by

time interaction (F13, 259 = 5.56, P \ 0.0001). Within a

treatment, Rstem at BLC initially increased and then grad-

ually declined relative to the rates at BH.

Soil CO2 efflux

We found no support for our fourth hypothesis—that Rsoil

would decrease in response to the loss of AL via scorching.

Prior to scorching, there was no significant difference in

mean Rsoil between treatments (F1, 24 = 0.22, P = 0.64;

Fig. 5a). Following scorching, Rsoil ranged from 1.5 to

3.7 lmol m-2 s-1 and was strongly correlated with chan-

ges in control plot soil moisture in control (R2 = 0.70,

P \ 0.0001) and scorched (R2 = 0.65, P = 0.0003) trees.

There was no consistent treatment effect on mean Rsoil

(control 2.53 ± 0.11 lmol m-2 s-1, scorch 2.68 ±

0.11 lmol m-2 s-1, F1, 24 = 0.95, P = 0.34). Five days

after scorching began (DOY 155), Rsoil increased in the

scorched plot relative to the control and then converged

again near the end of the measurement period (treatment by

time interaction, F13, 312 = 9.42, P \ 0.001).

There was no treatment by chamber distance interaction

(F2, 24 = 0.90, P = 0.42) or treatment by chamber distance

by time interaction (F26, 311 = 1.20, P = 0.23); however,

Rsoil was dependent on chamber distance within the plot.

Rsoil was greater in chambers within 1.0 m of the tree stem

than at distances greater than 1.0 m (F2, 26 = 6.03,

P \ 0.01) (Fig. 5b). In addition, there was a strong

chamber distance by time interaction (F26, 311 = 1.85,

P = 0.01). Following the maximum Rsoil measured on

DOY 151, Rsoil at distances \1.0 m declined at a slower

rate than at distances greater than 1.0 m.

Discussion

On a whole-plant level, trees did not decrease the amount of

water transpired (Q) after removal of 77% of their live leaf

area by scorching. Several mechanisms could be involved

in this outcome: (1) after scorching, the ratio of sapwood

area to leaf area markedly increased (Table 1) causing

adjustments to gs and increases in transpiration rate of the

remaining live foliage (EL); however, before scorching, the

younger needles may have accounted for more than a pro-

portional share of total transpiration so that the adjustment

in gs in the younger unscorched needles is somewhat

overestimated based on sap flow and (2) loss of waxy

cuticle during scorching that allowed continued transpira-

tion in the scorched needles albeit at a much reduced rate.

Individually or in combination, these mechanisms could

have certainly been a factor in our observed increase in EL.

The immediate increase in water use on the scorched

trees illustrates a strong coupling between D and EL

(Fig. 3) immediately following treatment. Although this

coupling clearly exist in both treatments, a response of

similar magnitude was not observed in the control trees; the

average EL in the scorched stems was 3.4 times that of the

control stems over the 5-day period following scorching.

On days with rain events, EL in both control and scorch

stems decreased to similar values.

The hydraulic system of leaves accounts for most of the

resistance to water flow in trees and leaf hydraulic

and stomatal conductance largely control transpiration and

photosynthetic rates (Sack and Holbrook 2006; Tsuda and

Tyree 2000; Aasamaa et al. 2001). Since damaged foliage

was primarily the older of two needle cohorts, scorching

effects may have been less than first assumed (e.g., younger

foliage likely had higher photosynthetic and transpiration

rates per unit leaf area compared to older foliage). In this

species, AL does not reach maximum until September

(Sheffield et al. 2003); hence, stomatal adjustment in the

not yet fully expanded current-year foliage would not seem
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to have reached the capacity needed to fully account for the

observed post-treatment water use. However, comparing

the observed mean daily rates of EL from this study with

mean daily rates for this species in another study at the

same site (Ford 2004; Ford et al. 2008) suggests that

adjustments in gs to the scorching treatment in our trees

may fully account for the increased EL. Ford (2004)

observed mean daily EL of up to 5.4 mmols m-2 s-1

which is in line with the estimated mean daily EL of up to

5 mmols m-2 s-1 in our scorched trees; hence, our esti-

mates of EL are reasonable and represent an adjustment in

gs that may alone explain estimated post-treatment whole-

tree water use.

Stem CO2 efflux

Rstem declined in response to scorching. Rstem in scorched

trees stabilized at roughly 66 to 86% of control Rstem about

8 days after treatment (Fig. 4). This response is most likely

due to a direct effect of reduced carbohydrate supply from

canopy photosynthesis. A decline in Rstem could have been

observed if the rate of transport of dissolved CO2 from

respiration in the xylem stream had increased (Teskey et al.

2008; Teskey and McGuire 2002; McGuire et al. 2007;

Steppe et al. 2007); however, we did not observe increased

Js or Q in our study, so this indirect mechanism is not likely

to explain our results. The majority of Rstem in our trees
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likely originated from the metabolism of cambium and

phloem tissue near the stem surface (Maier and Clinton

2006); however, we caution that our measurements of Rstem

probably underestimated true stem respiration because

some portion of respired CO2 will become dissolved in the

xylem stream. Depending on the species, underestimates of

total stem respiration can be as high as 45% (Teskey and

McGuire 2002). The large reductions in leaf area in scor-

ched trees likely compromised carbohydrate supply and

transport, thus reducing substrate supply for stem metab-

olism. Reductions in carbohydrate supply from canopy

pruning (Lavigne et al. 2004), girdling (Ogawa 2006) or

phloem chilling (Johnsen et al. 2007) lowered Rstem within

several days. Maier et al. (2010) found that Rstem in young

loblolly pine stems was reduced to 10–40% several days

after phloem girdling. Cernusak et al. (2006) found that

Rstem declined in several tropical savanna tree species

following fire disturbance that reduce canopy leaf area.

Wang et al. (2006) showed that the magnitude of diel Rstem

in Pinus koraiensis Sieb. & Zucc. stems was correlated

with radiation intercepted the previous day. The results of

these studies indicate a close coupling between Rstem and

carbon supply from recent photosynthesis.

For a given diameter, Rstem was greater in upper com-

pared to the lower stem positions. Rstem is generally greater

within or near the crown compared at BH (Damesin et al.

2002; Pruyn et al. 2002; Ceschia et al. 2002). We also

found that over the study period, Rstem at BLC was more

dynamic than at BH. Relative to Rstem at BH, Rstem at BLC

increased more early in the study when soil water supply

was high and decreased more as soil water content declined

(Fig. 4). This suggests that Rstem at BLC is more closely

coupled with canopy metabolism than Rstem at BH. Pruyn

et al. (2002) observed 50% higher rates of both mass- and

volume-based respiratory potentials near tree tops in young

Pinus ponderosa trees. They suggested that higher rates in

the crown were due to the fluxes being measured more

proximal to the source of current photosynthate.

A decrease in Rstem represents primarily loss in stem

growth respiration. Maier et al. (2010) found that reduc-

tions in Rstem corresponded well with changes in stem

soluble sugar and starch concentration and concluded that

reductions in non-structural carbohydrate supply con-

strained growth respiration and hence, apparent stem res-

piration. In addition, severe crown scorch can have

significant long-term impacts on stem growth (Johansen

and Wade 1987) and ecosystem productivity (Cernusak

et al. 2006).

Soil CO2 efflux

We did not find evidence to support the hypothesis that

reduced leaf area from the scorching treatment reduced

Rsoil during our measurement period. Instead, Rsoil in the

scorched plot increased temporarily relative to the control

plot. While C supply to the roots may have decreased with

reductions in AL, the lack of response in Rsoil may indicate:

(1) root and microorganism respiration relied on a sec-

ondary source of carbon (e.g., stored carbohydrates) (Guo

et al. 2004); (2) during this time of the year when above-

ground growth is normally rapid, proportionally less C is

allocated belowground; or (3) a combination of the two.

For example, girdling 11-year-old loblolly pine trees dur-

ing the fall when root starch concentrations were low

reduced Rsoil by 10–30% and responses were observed

within 3 days of treatment; however, girdling in the spring

did not reduce Rsoil presumably because root starch was

plentiful (Johnsen et al. 2007). Similarly, in longleaf pine,

C allocation belowground is the greatest during the spring

and early summer (Sword-Sayer and Haywood 2006), and

starch concentrations belowground are at maximum in June

and July. Similar to the loblolly pine study by Johnsen et al.

(2007), Rsoil did not respond to a reduction in the flow of

carbohydrates due to a non-limiting supply of root starch

during our early summer study period. Further, repeated

sampling in these stands has shown no reduction in root

biomass (Guo et al. 2004) or root growth and mortality

(Guo et al. 2008) due to the scorching treatment. Hence,

the lack of Rsoil response belowground, but the presence of

Rstem response aboveground supports the contention (cf.

Guo et al. 2004) that in this disturbance-driven system, the

relationship between current carbohydrate supply and

belowground dynamics is decoupled, particularly during

the periods of the greatest belowground C allocation and

storage.

Soil chamber distance had a strong effect on Rsoil, which

increased with proximity to tree stems. Rsoil was strongly

related to changes in soil moisture and Rsoil greater than

1 m from a tree stem declined with decreases in soil water

content at a faster rate than Rsoil close to stems. The sig-

nificant soil chamber distance by time interaction indicates

that small roots and associated soil microbes distal to the

stem are more sensitive to changes in soil moisture than

roots more proximal to tree stems.

Conclusions

Even though it has been shown that longleaf pine has high

water use efficiency (Ford et al. 2008), our study suggests

that this may not be the case immediately following fires

that result in substantial loss of leaf area. If the dissimilar

rates of EL between treatments in this study were partially

due to tissue damage in scorched foliage, then during

particularly dry periods, this response to fire could result in

extreme moisture stress possibly leading to mortality, or at
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least result in reductions in growth, in addition to responses

reported by others (Cary 1932; Boyer 1994; Boyer and

Miller 1994). Hence, taken together, these results support

findings that using prescribed fire in young longleaf pine

stands brings risks via canopy scorching that may translate

into reduced long-term growth due to altered physiological

function.

Our observed response in whole tree water use (Q) to

leaf area reduction was unexpected. Our expectation was a

reduction in water use proportional to reductions in leaf

area following scorching with some stomatal adjustment,

as opposed to no change in Q. The relationship between EL

in the scorched trees and D (Fig. 3) suggests that the direct

linkage between atmospheric conditions and water loss

may have been enhanced by damaged tissues in the scor-

ched foliage. The combination of water loss due to dam-

aged foliage and stomatal adjustment in remaining live

foliage may together better account for the observed

increase in EL. The decline in Rstem was likely a function of

reduced carbohydrate supply. In these trees, Rstem origi-

nates primarily from respiration of cambial and phloem

tissues near the stem surface. While variation in sap flux

density can greatly influence Rstem, it had little effect in our

study as rates of Js between treatments were similar. We

therefore conclude that reduced Rstem in these trees was a

result of reduced transport of photosynthate to stems. In

contrast to Rstem results, Rsoil did not decrease following

canopy scorching. This may be because these stands have

large carbohydrate reserves in roots and are able to main-

tain root metabolism, at least in the short-term. Hence,

given the emphasis on restoration of this beleaguered

ecosystem, careful planning to avoid canopy scorching

would minimize impacts of fire management.
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