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Abstract. Recent developments suggest that predictive modeling could begin to play a
larger role not only for data analysis, but also for data collection. We address the example of
efficient wireless sensor networks, where inferential ecosystem models can be used to weigh the
value of an observation against the cost of data collection. Transmission costs make
observations ‘‘expensive’’; networks will typically be deployed in remote locations without
access to infrastructure (e.g., power). The capacity to sample intensively makes sensor
networks valuable, but high-frequency data are informative only at specific times and
locations. Sampling intervals will range from meters and seconds to landscapes and years,
depending on the process, the current states of the system, the uncertainty about those states,
and the perceived potential for rapid change. Given that intensive sampling is sometimes
critical, but more often wasteful, how do we develop tools to control the measurement and
transmission processes?

We address the potential of data collection controlled and/or supplemented by inferential
ecosystem models. In a given model, the value of an observation can be evaluated in terms of
its contribution to estimates of state variables and important parameters. There will be more
than one model applied to network data that will include as state variables water, carbon,
energy balance, biogeochemistry, tree ecophysiology, and forest demographic processes. The
value of an observation will depend on the application. Inference is needed to weigh the
contributions against transmission cost. Network control must be dynamic and driven by
models capable of learning about both the environment and the network. We discuss
application of Bayesian inference to model data from a developing sensor network as a basis
for controlling the measurement and transmission processes. Our examples involve soil
moisture and sap flux, but we discuss broader application of the approach, including its
implications for network design.

Key words: Bayesian prediction; carbon–energy–water balance; ecosystem data; research networks;
sensor networks.

INTRODUCTION

Forecasts based on models informed by data and

scenarios for change are a goal of ecosystem science. As

an example, predicted water use by plants in a more arid

climate might require observations obtained from a

range of climates with anticipated boundary conditions,

including soil properties, future water supply, and

atmospheric demand. Predictions could be inaccurate

for many reasons. Extrapolation beyond the observed

boundary conditions might be unavoidable: the range of

climates studied today might not include the combina-

tions of soils and climates that will prevail in the future.

Critical processes might not be observed at the

appropriate scale, prompting, for example, use of what

is known about leaf response to weather as a surrogate

for canopy response to climate. Finally, it may be hard

to integrate observations in a way that allows for

coherent probabilistic statements about predictions.

Prediction is not solely about observations in the

future; the same issues and techniques can apply to

observations from the past or those that could be

obtained now. Indeed, accurate predictions could allow

informed decisions about how to collect data efficiently.

Here we consider prediction concepts that could help

meet the challenges and opportunities of network data.

We point out that prediction concepts apply at all

stages, from data collection to ecological forecasts,

regardless of whether or not predictions apply to the
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future. We use simulated and actual examples to show

how prediction could improve the efficiency of data

collection and coherency for ecological forecasts.

The current and future expansion of networked data

acquisition motivates us to focus on specific challenges

and possibilities of sensor networks (Martinez et al.

2004, Pottie and Kaiser 2005), but the issues are general.

The potential of sensor network data is recognized by

agencies that consider their role in national research

platforms NEON and CLEANER (Collins et al. 2006).

Network data sufficiently dense in space and time could

address such problems as behavioral responses to

weather and climate, population dynamic consequences

of environmental heterogeneity, and element and energy

transfers between the atmosphere and biosphere

(Martinez et al. 2004, Szewczyk et al. 2004, Porter et

al. 2005). With this promise comes challenges. As with

remote sensing, weather, and climate, the size of data

sets can be daunting. Data streams from sensor net-

works can be difficult to transmit, store, mine, analyze,

and comprehend (Lane 1997, Pottie 2001). As a simple

example, understory light levels monitored by sensor

networks could provide an unprecedented perspective

on photosynthetic responses to sun flecks at scales of

minutes (e.g., Naumburg et al. 2001) and climate change

impacts on phenology across years (White and Nemani

2006, Zhang et al. 2006). To satisfy both goals implies

sub-minute-scale observations spanning up to a decade

or more, at 1 051 200 observations per sensor per year.

Batalin et al. (2005) point out that adequate spatiotem-

poral coverage of sunflecks could involve 104 samples

for an area as small as 1000 m2. Because these are ‘‘raw

data,’’ clusters of observations would have associated

metadata that would need to be consulted prior to

analysis, potentially including sensor performance,

battery life, missed transmissions, and so on. Although

climate–phenology models might get by with less

frequent observations, and sunfleck-photosynthetic

models might need high-frequency data only now and

then (e.g., certainly not at night), satisfying both

research needs requires massive data storage and

sophisticated data mining.

Second, data collected at times and places deemed

most ‘‘informative’’ might not match those desired by a

user who would like to assimilate them into predictive

models: ecosystem models often require data distributed

uniformly in space and time. However, even coverage in

geographic space and through time might not provide

adequate coverage of covariate space. Future combina-

tions of soils and climates might not correspond to those

observed today. At a different scale, soil moisture is

more often near field capacity and wilting point than

anywhere in between, yet field capacity and wilting point

are ‘‘most predictable’’ and require the lowest sampling

density.

We consider how the emergence of networked data

collection, particularly with wireless networks, might

benefit from a flexible concept of data and models,

motivated by the need to eventually use those data for

prediction. This goal represents a direct application of

the forecasting techniques that are the focus of this

Invited Feature. We begin by suggesting that ecologists

may not need or even want observations as dense as

traditionally thought. In wireless networks, dense data

collection means not only redundancy, but also rapid

battery depletion, decreased sensor life, and labor to

maintain networks (Cardell-Oliver et al. 2005). These

costs of data collection are specific to wireless networks,

but all data collection efforts entail cost–benefit trade-

offs. Obviously, there is need for capacity to sample

densely (e.g., rapid response to sunflecks), but it would

be valuable to do so only when such measurements are

informative. We then emphasize that ‘‘raw’’ data may

not be the most important product from sensor

networks. We note that many environmental ‘‘data’’

are already highly processed before they are made

available to users. Acceptance of (1) the differential

value of observations and (2) modeling products as data

leads inevitably to the notion of inferential ecosystem

models as arbiters of what is worth collecting. The value

of an observation depends on what can be learned from

it, which depends on a model. The idea of using

predictive models for data collection, rather than solely

for processing data already in hand, shifts attention to

how to control data collection in such a way that it does

not preclude eventual use of those data in models that

will be developed for many purposes. Reactive algo-

rithms that initiate dense sampling following events

(e.g., rainfall Batalin et al. 2005, Cardell-Oliver et al.

2005) provide partial solutions.

Our goal of assessing the value of an observation goes

beyond identifying when a variable is changing to focus

instead on the learning that derives from it. It relies on

capacity to ‘‘predict’’ observations, as opposed to, say,

estimate parameters in a specific model: observations are

the important product for a broad community, whereas

parameter estimates are model (and thus user) depen-

dent. Data suppression is then based on suppressing the

predictable, knowing that predictable observations can

be reconstructed. Models can be simple enough to

benefit from the important relationships that facilitate

prediction, while having few estimated parameters. The

products of the network can be predictive means and

variances, which accommodate not only measurement

error, but also the unknowns associated with processing.

These predictive means and variances can be uniform in

space and time, despite high selectivity in raw data

collection.

The ecosystem models we use as examples differ from

those common in the literature in that they are simple

enough to be transparent and provide predictions that

could be used in many models, and they are constructed

with coherency in mind. Here the term coherence refers

to the fact that there is a joint posterior distribution of

all parameters and latent states in the model. The

uncertainty in model outputs is conditional on the
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uncertainty of model inputs and the model itself, and it

can be expressed as a credible interval with probabilistic

interpretation. Analysis involves only widely accepted

distribution theory. The presented models are intended

only as examples to highlight key concepts.

We begin by summarizing challenges of network data

collection from the perspective of its eventual use in

predictive models. We then use simulated examples to

show how inferential ecosystem models can make data

collection efficient and their role in predicting not only

state variables of interest but also the missing data that

might be needed by a range of different investigators. An

application to transpiration shows the capacity to

transform incomplete information to data products that

are amenable to analysis by a broad user community.

CHALLENGES OF DENSE NETWORK DATA

Dense data streams are expensive to obtain, to

extract, and to interpret, the latter because data sets

can be uneven, interrupted, and/or gap filled with values

lacking estimates of uncertainty. Here we summarize

costs and benefits of wireless sensor network data,

emphasizing their relationship to what might be actually

used by ecologists, involving predictive modeling.

In wireless networks, costs of frequent data trans-

mission include battery depletion, network congestion,

data losses, and maintenance costs that come with

reduced sensor life (Ganesan et al. 2004). As one

example, battery lifetimes in previous deployments of

the WiSARDNet (Flikkema et al. 2006) range from

several weeks to months (Fig. 1). As with any data

collection effort, there is a tradeoff involving the

potential value of high-density observations vs. the

benefits that might come from additional effort devoted

elsewhere. Given that wireless transmissions often

dominate the energy cost of sensor node operation,

censoring of transmissions can dramatically lengthen

battery lifetimes. Hence the tradeoff between dense

measurements vs. battery longevity and maintenance of

the network motivates exploration of the value of an

observation: one that weighs value against cost. Here are

a few prediction concepts that can help address this

tradeoff.

Consider a stream of data fyig¼fyi,1, yi,2, . . . , yi,tg at
location i at times t ¼ 1, 2, . . . . The value of an

observation could be gauged by the extent to which it

reduces the uncertainty about a parameter we wish to

estimate or about a prediction of yi,t at some different

time t or some location i0 where data were not collected.

A posterior distribution of a parameter, call it h, which
comes from a model for data fyg, is

pðh j yf g; mÞ} pð yf g jh; mÞpðhÞ: ð1aÞ

On the right-hand side are the likelihood and prior. Both

inference and prediction depend on one or more models

m. We consider explicit examples later. For now

consider that prediction is a natural extension, involving

an integral:

pð y 0f g jm; yf gÞ ¼
Z

pð y 0f g j h; mÞpðh j yf g; mÞ dh ð1bÞ

where the integrand is the likelihood structure and

posterior, respectively. We arrive at a predictive

distribution of fy0g on the left-hand side, which is

conditioned on the model and on the data fyg. This

predictive framework is widely used, to predict the data

themselves (e.g., cross validation, predictive loss), to

transform unevenly spaced observations to uniform

grids (e.g., kriging), and to predict values at different

times (e.g., hindcasting or forecasting). The questions

concerning the value of an observation can now be

framed as (1) how much would an additional observa-

tion affect our estimate of h and/or (2) our ability to

predict fy0g? Before discussing an application, we

consider the role of the data fyg and the model(s) m.

FIG. 1. Battery life plot shows voltage depletion and replacement (step increases in voltage) every few weeks in 2008. Different
rates of depletion depend on network traffic at each node.
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The conundrum of dense data of limited value

The amount of information contained in an observa-
tion is limited if it is redundant (i.e., if it could have been

predicted) based on what is known of the process from
observations and prior analysis. Four of the state

variables monitored in the Duke Forest WISARDNet
(Fig. 2) show different levels of predictability. Soil

moisture is a ‘‘slow’’ variable, changing rapidly during
and shortly after rainfall events and more slowly

thereafter. Between rainfall events, change in soil
moisture can be predictable not only because it changes

slowly, but also because its behavior is strongly
influenced by temperature and soil properties that

govern how fast it can change. The nearly flat portions
of curves in Fig. 2a result from the fact that soil moisture

is increasingly difficult to extract as it approaches the
‘‘wilting point.’’ Clearly knowledge of when it rains

could help predict soil moisture loss. Predictability of
soil moisture loss at a location typically contrasts with
high spatial variation.

Light availability in the forest understory (Fig. 2b) is

an example of a variable that changes rapidly and thus
might be collected at dense intervals. Short-term
sunflecks can have a large impact on carbon assimilation

by plants, depending on the time it takes to activate the
photosynthetic apparatus: the larger the sunfleck, the

longer the duration and the larger the effect. Ecologists
devote substantial effort to measure rapid fluctuations

with minute-scale observations (Naumburg et al. 2001,
Collins et al. 2006). Yet for larger sunflecks even this

‘‘fast’’ variable is predictable based on some simple
relationships; accurate predictions require knowledge of

light availability above the canopy at the time in
question and at the same location on previous days.

The predictability comes from the fact that shadows fall
in about the same location day after day (Fig. 3). Their

locations change slowly during the growing season, and
that too is predictable from solar geometry. Ephemeral

clouds can be monitored by a single sensor open to full
sun. As soon as the relationship is established between
light above the canopy and at a sensor location, cloud

effects observed with an above-canopy sensor become
predictable, using knowledge gained from transmission

obtained on previous days. Granted, coherent represen-
tation of the uncertainty can be challenging, but all of

the components of Eq. 1 are available.
Precipitation is comparatively erratic and essentially

unpredictable based on the recent past. However,
knowledge of precipitation at one location (say, above

the canopy; Fig. 2c) provides information about soil
moisture change at other locations (e.g., Fig. 2a).

Relative humidity (Fig. 2d) is somewhat predictable,
with a clear diel cycle, but varies substantially from one

day to the next. In short, temporal variation in some
meteorological variables (e.g., VPD), which can be

monitored at one landscape location, can far exceed
their spatial variability across nodes within a data

network. Taken together, variables exhibit variation on

a range of scales, and they differ in terms of predict-

ability. The more predictable the variable, the less is

gained from an observation, in the sense that it does not

contribute information that is not already in hand.

In addition to data, the predictive distribution

requires one or more models. Before discussing a

strategy for inferential modeling to guide data collec-

tion, we first recognize that models are already an

important part of ecological data collection: it is not the

use of models that is new here, but rather their use in a

predictive mode.

‘‘Raw’’ data are already cooked

There is a long tradition in the environmental sciences

of confidence in data and skepticism of models. We

argue that a program involving predictive data collec-

tion can include a sparse set of observations supple-

mented by a dense predictive distribution. In other

words, the densely spaced data needed for ecosystem

models would come from models that assimilate data.

This would be a departure from current practice, which

focuses on raw data as inputs. Motivation comes in part

from the challenges of collection, storage, and retrieval

of massive data sets.

Large-scale efforts could entail massive quantities of

raw data, much of which may be difficult to extract, and

it will include unknown errors. Mining the data for

domains of interest will be difficult. It could be

overwhelming to mine even the metadata for clues on

uncertainty that should impact analysis. We begin by

pointing out that (1) many of the ‘‘raw’’ data accumu-

lated by ecologists are already the products of models

and (2) analysis of model products is often not

fundamentally different from analysis of data.

Most observations obtained with the aid of an

instrument involve both measurement and processing.

Transducers for most environmental variables quantify

voltage or current, which are translated by a model. The

models range from empirical calibrations to physical

models. The transducers themselves are noisy, can drift

over time, and are prone to numerous failure modes.

For example, time domain reflectometry (TDR) does

not directly measure soil moisture but rather the travel

time of an electromagnetic wave traversing the soil

medium over the length of the TDR rod. Water

molecules contribute most to the dielectric properties

and hence are mainly responsible for slowing the

electromagnetic wave. Empirical calibrations are used

to relate dielectric properties of the medium and soil

moisture, often expressed as a polynomial. Errors

include drift from these idealized curves when factors

such as salinity or charged clay particles modulate

propagation of the electromagnetic wave. Likewise,

remote sensing products are highly processed, both

spectrally and spatially. GIS layers often derive from

spatial models and classification algorithms, and they

involve transformations to rectify remotely sensed

images.
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Post-processing is no longer just an option for many

applications, often being required to correct or even

generate data that were missed. As an example of the

latter, gap-filling procedures are routinely applied to

generate continuous sequences in eddy-covariance

measurements. Models are calibrated for conditions

when eddy-covariance measurements are known to

approximately document ecosystem sources and sinks,

and are used to predict missing data when eddy-

covariance measurements are absent (due to sensor

failure) or their basic assumptions are violated (flow is

not fully developed turbulence, advective fluxes do not

balance the depth-integrated sources from fluxes, or the

high-frequency spectra losses are large; see Cava et al.

2004, Richardson et al. 2006, Stoy et al. 2006).

Faulty or anomalous data (Ni et al. 2009) can arise

from transducer failures (e.g., short or open circuits

caused by weather, aging, or damage by animals). These

are often expressed as stuck/constant data streams.

Transducer hardware may drift due to aging, introduc-

ing bias, or have soft failure modes that result in noisy or

wandering readings. Over time, they are replaced with

FIG. 2. Examples of four variables measured in the Duke Forest wireless sensor network. For panels with multiple curves, the
variable is measured at multiple nodes (soil moisture and photosynthetically active radiation [PAR]). Those with single curves are
measured at a single, centrally located tower (precipitation, relative humidity). The short sequence here spans 18 days. Soil moisture
was measured using Decagon EcH2Oprobe EC-20 capacitance-based transducers (Pullman, Washington, USA); photosynthetically
active radiation was sensed using GaAsP photodiodes (Hamamatsu, Japan); and a Vaisala WXT510 integrated weather station
(Helsinki, Finland) sampled precipitation and relative humidity using piezoelectric and capacitive sensors, respectively. Numbers
on the x-axis represent fractions of the year 2006.
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new technologies having different properties. Data may

also be missing due to depletion of batteries, a

hardware/software fault in the sensor node, or human

error.

Given that many environmental data already involve

integrating observations and models, it should not be

controversial to suggest that future, massive data

collection efforts could not only embrace, but also

formalize, inferential modeling as a basis for data

collection, not just analysis. Wireless networks should

particularly benefit from this effort. Statistical models

assume that data include a random element, acknowl-

edging that observations differ from the underlying

‘‘truth’’ by uncertainty in measurement. Modeling can

account for these uncertainties. In our examples, we

emphasize control of costly wireless transmissions,

estimation of missing data, and drift of measurements;

however, in our experience, other types of failures (e.g.,

transducer faults) can be easily detected or modeled

similarly.

In summary, raw data, processed data, and models

share systematic bias, uncertainty, and missingness. Raw

data are not necessarily more accurate, more precise, or

more useful than processed versions of those data, which

can combine external knowledge of interactions and

measurements and yield estimates of uncertainty.

Recognition of these relations suggests not only a role

for interference and ecosystem models at the data

collection stage, but also ways to exploit inferential

tools to make data collection efficient.

BAYESIAN LEARNING FOR DATA COLLECTION

AND PREDICTION

Bayesian learning entails updating knowledge as data

accumulate. Although results are specific to the model

that is applied (Eq. 1), sensitivity to a specific model

should be minimized. Models change, tending to become

more complex as understanding improves and accumu-

lating observations allow for inference on a broader

range of state variables and parameters. For purposes of

data prediction we desire a minimal model aimed at

exploiting relationships that aid prediction of state

variables. In a soil moisture example that follows, the

model is limited to simple relationships involving

atmospheric demand and current soil moisture, relative

to field capacity, wilting point, and several fitted

parameters. Although a water balance model could

involve many more parameters, predicting soil moisture

does not require a highly complex model.

Models help determine the value of an observation in

terms of its contribution to prediction: if an observation

adheres to a pattern that can be predicted based on

previous observations and the model, then it has limited

value. We could use the width of the predictive interval,

say a quantile for the predictive density in Eq. 1b, as a

criterion. We are interested not only in how well we

could have predicted the observation, but also in how

much it contributes to the prediction of others. This

contribution comes indirectly, through its contribution

to estimates of parameters in the model. The sensitivity

of the posterior (Eq. 1a) to an observation, in part,

determines how the observation contributes to predic-

tion of other observations (Eq. 1b). Once parameter

values are well described, in terms of a narrow posterior,

additional observations may not have much additional

impact on prediction of new observations. Thus,

predictive distributions of data become an important

element of our approach. The approach assumes in-

network capacity for minimal computation (Collins et

al. 2006, Flikkema et al. 2006, McIntire et al. 2006) to

implement the prediction/decision algorithms that con-

trol data transmission. Because the approach we

describe is based on computation that occurs primarily

outside the network (parameter estimation), there are no

new hardware requirements. Our approach uses plug-in

values for a simple model and decisions based on

thresholding of prediction error. Algorithms are easily

implemented in the low-power processor chips typically

used in wireless environmental sensor nodes. The energy

saved can be substantial: the required processing uses

roughly 2% of the energy that is required for commu-

nication of the data between two sensor nodes. Because

the data must be conveyed from sensor node to node on

the way to the destination, with each hop using

FIG. 3. Light availability in the understory can be predictable, because canopy openings cast shadows at similar times each day,
progressing with the season.
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additional energy, the savings can quickly increase with

the size of the network.

Controlling the process by suppressing the predictable

Here we provide an example of how inferential

ecosystem models can control efficient data collection,

while simultaneously assuring that underlying variables

of interest are represented to a desired precision. There is

a huge literature on data suppression and compression,

based on distributed statistical signal processing and

information theory (Xiao et al. 2006). Our goal is to

modify ecosystem models similar to those that will ingest

data as basis for data collection. Of course, the full range

of models to which sensor network data will be applied

in the future is unknown at the time of data collection, a

point to which we return below. For now we simply state

that the details of a model used at the time of data

collection can impose few constraints on the future value

of data, largely because models used for data collection

are principally concerned with data prediction (e.g., soil

moisture), rather than the parameters for a specific

model (e.g., rate parameters).

As a specific example, let yt represent soil moisture at

time t that increases when there is precipitation pt and

declines due to evapotranspiration demand E and

drainage D. The model is intentionally simple, describ-

ing a one-dimensional integrated soil column. Our goal

is to track soil moisture (within the root zone) over time,

using both data and a model to help identify ‘‘valuable’’

observations, ones that contribute important informa-

tion. By learning about both the model and the sensors,

we will determine how to transmit sparse data while

maintaining acceptable (and known) uncertainty. The

sparse data stream will prolong battery life, while

allowing us to ‘‘reconstruct’’ soil moisture at dense

intervals. A simple rule applied here is to transmit only

the unpredictable observations.

A simple dynamic model for soil moisture is

ytþ1 ¼ f ðyt; pt; hÞevt ð2aÞ

f ðyt; pt; hÞ ¼ yt þ pt � Eðyt; h1; h2Þ � Dðyt; h3Þ ð2bÞ

vt ; N ð0; r2
eÞ ð2cÞ

where the function f in Eq. 2a is the process model Eq.

2b and has terms for the previous soil moisture value,

precipitation gains, and evapotranspiration and drain-

age losses. The exponential in Eq. 2a makes the process

error lognormal. The loss terms in Eq. 2b have simple

functional forms that rely on unknown parameter values

for the point of incipient plant stress due to soil moisture

limitations h1, wilting point h2, and field capacity h3.
Because soil moisture models can be arbitrarily complex

(future users of the data will not all apply the same

models to these data), we do not focus on the

interpretation of these parameter values. Their role here

is to simply improve our ability to predict soil moisture

by calibrating a few key relationships. In other words,

wilting point and field capacity are parameters that help

us predict how rapidly moisture is lost from the soil.

This ‘‘process model’’ in Eq. 2b has error described by vt
(Eq. 2c), which quantifies its uncertainty.

In addition to the process, we require models for data

collection. We have multiple sensors j, each having error

described by variance r2
z and drift parameter dj, which

accumulates with time tj since the jth sensor was

calibrated. The jth sensor measures a value zj,t. There

are calibration data wt, which we assume to be sparse

and to have known error variance, but no systematic

bias. In other words, the calibration data are taken to be

the standard. Here are data models for the sensor

observations zj,t and the calibration data wt:

lnðzj;tÞ; N
�

lnðytÞ
�

1þ djðt � tjÞ
�
;r2

z

�
ð3aÞ

dj ; N ð0; vdÞ ð3bÞ

vd ; IGðs1; s2Þ ð3cÞ

lnðwtÞ; N
�

lnðytÞ; r2
w

�
ð3dÞ

where IG stands for inverse gamma density. The

random specification for drift parameters (Eqs. 3b, c)

means that we view them as exchangeable, being drawn

at random from a population of sensors that can drift at

different rates. We assume that the error variance r2
w

(Eq. 3d) is known, through previous calibration. The

parameters of the model are estimated through calibra-

tion. This is known as a state-space model, which is

hierarchical, having error in the underlying process (Eq.

2) and in the data-generating mechanism (Eq. 3).

A decision about whether to transmit an observation

depends on whether it could have been predicted, within

an acceptable error limit. Once we have learned about

parameters in the process model 2 and in data collection

3, we predict what a sensor will measure based on past

observations. Here is a simple plug-in version of the

model, with hats indicating values that are represented

by estimates or predictions:

lnðẑj;tÞ ¼ lnðŷtÞ
�

1þ d̂jðt � tjÞ
�

ð4aÞ

lnðŷtÞ ¼ f ðŷt�1; pt�1; ĥÞ: ð4bÞ

In Eq. 4a, the soil moisture yt is predicted based on the

deterministic part of data model (Eq. 3a), the previous

prediction for yt�1 (Eq. 2b), and the best available

estimates of parameters. Thus, the predicted measure-

ment ẑj,t relies on the current estimate of the sensor’s

accumulated drift. Now if the measurement zj,t falls

outside the acceptable bound for error,

jẑj;t � zj;tj. e

then the observation is transmitted. If not, it is
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suppressed. The smaller the value of parameter e, the
more observations will be transmitted, and vice versa.

Implementation requires (1) a ‘‘training period’’

during which we learn about parameter values, through

modeling of the data collected; (2) transmission of those

parameter values to individual nodes; (3) new data

transmission only for ‘‘unpredictable’’ observations; and

(4) modeling to recover the unobserved changes in soil

moisture. If too many transmissions are suppressed,

then the value of e can be reduced. Here we describe

these steps in the context of a simulated process and

data as described by the model above (Fig. 4a). The

underlying soil moisture is shown as a solid black line.

Five sensors are shown in different colors, with

calibration data as red dots. To emphasize that the

approach does not depend on a flawless network, we

also assume that the entire network is down for a time

interval.

FIG. 4. (a) Simulated data using the model from Eq. 2. The underlying (unknown) soil moisture is shown as a solid black line.
Each of five sensors is shown as a solid, colored line. The lines diverge from the true values over time, due to sensor drift. The
calibration data are intermittent and are shown as red circles. No data are available for the period shaded in blue. The black dashed
lines are 90% predictive intervals from the hierarchical Bayes model. (b) Posteriors for drift parameters corresponding to each of
five sensors. Vertical dashed lines are volumes used to simulate data.
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Training period.—Data collected from the network

are used to estimate parameters. The full posterior is

p(fyg, h, fdg, r2
e , r2

z j fzg, fwg, fpg, r2
w), showing the

variables and parameters that must be estimated to the

left of the vertical bar, and those that are known to the

right of the vertical bar. Marginal posteriors for the

parameters in this example are shown in Figs. 4 and 5.

The unknown states fyg (Fig. 4a), process parameters h
(Fig. 5), and parameters from the data models (Fig. 4b)

can be estimated from the data observed by the

network. The 95% predictive intervals for soil moisture

(dashed lines in Fig. 4a) show that, despite sensor drift

and even complete network failure, soil moisture can be

accurately predicted. For this particular example, the

estimates of drift parameters are somewhat biased (Fig.

5b), but these parameters are not the main goal of the

analysis. Most importantly, their specific values do not

have large impact on predictive capacity (Fig. 4a).

Updating nodes.—To make predictions, sensor nodes

within the network need only the capacity to plug

parameter values into Eqs. 4a and b. The frequency of

updating nodes with new parameter estimates can be

based on experience with ‘‘acceptable error.’’ For this

FIG. 5. (a) Posterior estimates for process parameters that control evapotranspiration rate and (b) variance for the drift
parameters. These are largely nuisance parameters, needed primarily for prediction of soil moisture.
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example, we will see that predictive capacity declines

with accumulated sensor drift.

Efficient transmission.—Based on the updated param-

eter values and plug-in predictions from Eq. 4,

observations are transmitted or not. As emphasized

above, unpredictable observations (outside the 2e
envelope) are always transmitted. Fig. 6 shows sup-

pressed and transmitted observations for this example as

dots.

Reconstructing the data.—Full posterior distributions

of fyg can be recovered by post hoc out-of-network

processing, facilitated by the fact that prediction rules

used to transmit data are known. Specifically, models

for the missing data are constrained by knowledge now

encoded by the model and data collection history,

including parameter values. Consider the conditional

posterior for an untransmitted sensor observation:

p
�

lnðzj;tÞ j yt; ẑj;t; e; :::
�

} N
�

lnðytÞ
�

1þ djðt � tjÞ
�
; r2

z

�

3 I
�
ðẑj;t � eÞ, zj;t ,ðẑj;t þ eÞ

�
ð5Þ

where I is the indicator function, equal to 1 when its

argument is true and 0 when false. This is the density we

would use to describe uncertainty in the missing value zj,t.

The first density on the right hand side of Eq. 5 is

potentially broad, but it is constrained by the indicator

function, which relies on that fact that the suppression

interval used by the sensor is known. This knowledge

constrains the estimates of missing data, which, in turn,

allow for more accurate prediction of soil moisture.

Simulating the posterior distribution of unknowns is

termed Markov chain Monte Carlo and is now in

FIG. 6. (a) Observations sent (because they fell outside the prediction window) and (b) suppressed (because they could be
predicted). Colors match those for sensors in Fig. 2. Increasing numbers of observations are transmitted over time as sensors drift
out of calibration, a source of error that can be estimated and known at each sensor node.
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common use for inference. Here we are applying it to the

problem of predicting values of missing or uncertain data.

Using the suppression scheme described above results

in limited transmission (Fig. 6), but does it permit us to

infer the details that matter? The suppression scheme

imposed here is severe, resulting in infrequent trans-

mission despite substantial change in soil moisture level

until sensor drift becomes substantial. The set of nodes

that transmit most are not necessarily those with the

greatest drift, but rather depends on how well the drift is

estimated and, in this example, the sign of the drift. Only

when accumulated drift begins to result in large errors

does transmission begin to increase for all nodes (Fig. 6).

Based on sparse data we can recover detailed

information on soil moisture. The data collection shown

in Fig. 6 is the basis for 95% predictive intervals (dashed

lines) in Fig. 7. Based on transmission of a fraction of

the data we not only reconstruct the series, but can also

provide uncertainties. We have intentionally ignored

spatial redundancy in this example, yet there are clear

opportunities for exploiting correlation to further reduce

data transmissions.

Predicting transpiration

What would data provided by a scheme described

here look like, and what would be the implications for

forecasting water use when and where data were

unavailable? D. M. Bell, E. J. Ward, R. Oren, P. G.

Flikkema, and J. S. Clark (unpublished manuscript) and

E. J. Ward, D. M. Bell, J. S. Clark, H. S. Kim, and R.

Oren (unpublished manuscript) consider the challenge of

gap-filling the discontinuous sequences of observations

that are used for analysis of water balance.

Transpiration rates depend on water conductance

through sapwood, driven by soil moisture, temperature,

light, and vapor pressure deficit (Oren and Pataki 2001).

It is estimated based on sap-flux data. Granier-type

transducer probes exploit the fact that the flux of water

through xylem can be related to the temperature

difference between a heated and an unheated probe.

Sap-flux measurements at sensor nodes can be unreli-

able, due to battery life and several transducer failure

modes. The investigator is confronted with a discontin-

uous set of observations that must be filled in if they are

to be used in most models of water, CO2, and energy

exchange. The problem is a direct extension of the

transmission suppression issues described previously:

How well can missing values be predicted on the basis of

a simple model and estimates of parameters for both the

process and observation system?

As with soil moisture, we have a process model, in this

case describing how stomatal conductance Gt is affected

by vapor pressure deficit Vt, light availability Qt, and

soil moisture Mt. Stomatal conductance affects evapo-

transporation, which, in turn influences measured sap

flux Jt (Fig. 8). Details of the model are beyond the

scope of this summary and detailed in Bell et al.

(unpublished manuscript) and in Ward et al. (unpublished

manuscript). In brief, we apply a state-space version of

the model used in (Ward et al. 2008). The counterpart

for Eq. 2, i.e., the process model, could be summarized

this way:

Gt ¼ f ðGt�1; Vt�1; Qt�1; Mt�1; hGÞ þ vt

vt ; Nð0; r2
eÞ: ð6Þ

FIG. 7. Predictive intervals for soil moisture (dashed lines) based on data transmitted in Fig. 4a (and shown here as colored
lines) compared with the underlying true value (solid black line) and calibration data (red dots).
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The mean function f( ) describes how conductance is

regulated by environmental variables and capacitance,

i.e., the lagged influence of the previous value Gt�1. The

counterpart for Eq. 3, the observation model for probe k

in tree i, is summarized as follows:

Jik;t ; N
�

EðGt; Vt; TtÞ/iksi; r2
J

�AL

AS

ð7Þ

where the mean function is the product of stand

evapotranspiration E( ), the effect of probe depth /ik

and canopy stature si on the sap flux measurement Jij,t.

The leaf area to sapwood area ratio AL/AS is dimension-

less.

An example application of the model fitted to 10 trees

in the Duke Forest, North Carolina, is shown for three

FIG. 8. (a, b) Variables measured in sensor networks, (c) estimated conductance, and (d) predicted (red) and observed (black)
sap flux for three Liquidambar trees. Large differences between trees result in part from canopy status. Key to abbreviations: VPD,
vapor pressure deficit; Q, photosynthetically available radiation; Js, sap flux; caun, Carya species; list, Liquidambar styraciflua; litu,
Liriodendron tulipifera; qual, Quercus alba. Julian date is day of year, e.g., day 1 equals 1 January.
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trees in Fig. 8d. Each sequence contains a substantial

gap. The underlying conductance is estimated for four

different species in the stand (Fig. 8c), with the strong

diel pattern responding to light (Fig. 8a), temperature

(Fig. 8b), vapor pressure deficit (Fig. 8b), and soil

moisture (not shown). The differences among individu-

als in Fig. 8c in large part reflect the different sizes of

trees in the study, with large trees having more canopy

exposure and, thus, more light. This is clear in Fig. 8d,

where the first of three Liquidambar trees does not have

direct exposure to sunlight. The main point for emphasis

here is that strong relationships between state variables

that are measured (Fig. 8a–b) and observations allow for

prediction of state variables that are not observed (Fig.

8c) and data that could not be collected (Fig. 7d).

An important advantage of the modeling approach

applied here is that it provides probabilistic statements

not only about parameters and latent states (credible

intervals are not shown in Fig. 8c to reduce clutter), but

also on the observations themselves. In Fig. 9 we show

the variance on predictions for conductance Gt for times

when observations were obtained (black in lower panel)

vs. when they were not (red). Several trees contribute

information at any one time, and not surprisingly we

find a decline in the variance of the posterior as numbers

of trees contributing data increase (upper panel in Fig.

9).

The predictive intervals on observations are valuable,

because they report uncertainty that is estimated on the

basis of all data collected in the network. This

information can be critical, even for informal inspection,

when an investigator would like to assess the uncertainty

associated with particular observations. For a formal

analysis, the predictive variance can enter as a weight for

the observation, determining its relative contribution.

EMERGING PERSPECTIVES ON DATA AND THE ROLE

OF MODEL-BASED INFERENCE

The products of data collection driven by inferential

models could be extended to not only (1) raw data and

(2) metadata, including the model used to generate

predictions, but also (3) predictive means and variances

for the observations and latent states that ecologists will

be most interested in using in subsequent analyses.

Because models used at the data collection stage are

simple, containing only relationships that help to predict

missing observations, the predictive intervals are not

particularly sensitive to specific model assumptions.

Models can be informed by relationships that involve a

small number of parameters, such as considered here, or

they can rely largely on spatial covariance structure,

where predictive information comes from proximity to

samples at other locations. In the former case, it is

important to obtain adequate coverage of covariate

space (to assure parameter estimates required for

prediction); in the latter case, we require adequate

coverage of geographic space. Models can learn from

both, and sampling design (e.g., Xia et al. 2006) and

suppression schemes (Silberstein et al. 2007, Howard

and Flikkema 2008) can exploit these relationships as

basis for design of networks and algorithms.

Predictive distributions of data not yet collected, as

opposed to raw data, can be more directly used in

subsequent analyses, because they can be evenly

distributed in space and time, and observation errors

are already accommodated and enter as part of the

prediction variances. By contrast, the corresponding raw

data could require a sophisticated and time-consuming

treatment by each new user having varying capacities to

handle them appropriately, including proper interpreta-

tion of metadata on sensor and network problems.

There are many advantages to a standard and trans-

parent protocol for each type of error about which the

developers have most insight.

The concern that predictive distributions are condi-

tioned on assumptions is an important one. Yet this is

true for any statistic, including a simple mean and

FIG. 9. Variances for posterior estimates of daytime
conductance Gt plotted against (a) numbers of trees with active
sensors and (b) as densities of estimates. The estimates for times
of missing data (in red) are more uncertain.
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variance of observations, which would ignore instru-

ment bias and errors that fluctuate in time. Reverting to

raw data does not obviate the problem of data

uncertainty, it just puts it off to the next stage of

analysis, where it could be more difficult to accommo-

date. Ignoring uncertainty could mean that raw data

misrepresent the processes of interest, to the extent that

such biases and missing values exist.

Sensing networks that react to change in the environ-

ment (Batalin et al. 2005, Cardell-Oliver et al. 2005,

Collins et al. 2006) represent an important first step in

the direction we consider here. Ecologists have a long

tradition of data modeling, once data are in hand. We

simply consider how extending that approach to the

data collection stage can help to maximize explanatory

power for a given (minimum) expense, while improving

access and interpretation for users with a range of

objectives.
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