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Hierarchical Bayesian (HB) modeling allows for multiple sources of uncertainty by factoring complex
relationships into conditional distributions that can be used to draw inference and make predictions.
We applied an HB model to estimate the parameters and state variables of a parsimonious hydrological
model – GR4J – by coherently assimilating the uncertainties from the model, observations, and parame-
ters at Coweeta Basin in western North Carolina. A state-space model was within the Bayesian hierarchi-
cal framework to estimate the daily soil moisture levels and their uncertainties.

Results show that the posteriors of the parameters were updated from and relatively insensitive to pri-
ors, an indication that they were dominated by the data. The uncertainties of the simulated streamflow
increased with streamflow increase. By assimilating soil moisture data, the model could estimate the
maximum capacity of soil moisture accounting storage and predict storm events with higher precision
compared to not assimilating soil moisture data. This study has shown that hierarchical Bayesian model
is a useful tool in water resource planning and management by acknowledging stochasticity.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Hydrologic models are used to assess how quantity and the
quality of water will be influenced by environmental conditions.
Data-driven precipitation-runoff models are used to simulate
hydrological cycles, to fill the gaps in streamflow records, and to
forecast future soil moisture content and water yield under differ-
ent scenarios of climate and land use/land cover changes. Because
some key parameters of the model cannot be obtained by physical
measurements, it is necessary to fit the model’s outputs to time
series of observations, usually streamflow, and sometimes in com-
bination with soil moisture. In this paper we demonstrate how a
hierarchical Bayes model can be used to assimilate soil moisture
and stream flow data to better understand hydrological processes.

Soil moisture data should be directly integrated into hydrolog-
ical models, because soil moisture provides a connection between
physical processes at the catchment scale and biological processes
at finer scales. Soil moisture is determined by precipitation, evapo-
transpiration, infiltration, percolation and runoff, and it has major
impacts on a range of hydrological processes including flooding,
erosion, solute transport (Western et al., 2004). Soil moisture data
ll rights reserved.
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are used by hydrologists to understand runoff, including effects of
land-use practice on hydrological processes (Blume et al., 2007)
and by ecologists to understand tree growth, soil biogeochemical
processes, and energy exchange between land and atmosphere.
Subsurface storm flow (fast lateral subsurface flow) is affected by
soil type, biological activity, precipitation characteristics and soil
water content (Kienzler and Naef, 2007). Soil moisture is also likely
to control near stream saturated areas that produce saturation ex-
cess overland flow when a large precipitation event occurs (van
Meerveld and McDonnell, 2005). Thus assimilating soil moisture
data in hydrological models has potential to increase predictability
of storm events.

The many mechanisms involved in connecting precipitation and
streamflow can motivate detailed hydrological models, often with
large numbers of parameters. However, fitting many parameters in
large models is often limited by data. Additional parameters and
complex structure can demand unrealistic calibration efforts with-
out necessarily leading to an improved fit, in part due to poorly
identified parameters. On the other hand, simple models with four
or five parameters based on a quick-flow and slow-flow conceptu-
alization usually provide an adequate fit to daily streamflow data
(Jakeman and Hornberger, 1993; Kuczera and Mroczkowski, 1998).

As with any model driven by multiple sources of information,
uncertainty in hydrological models is large and must be acknowl-
edged in predictions to balance complexity with performance.
However, many of the historical methods are based on optimization
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Fig. 1. Coweeta Basin with stream network (purple lines) and major watersheds
(gray line as boundary) including Watershed 18 (green area) and 27 (yellow area)
which we have focused on in this study (coordinate system: Universal Transverse
Mercator (UTM) in meters). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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and provide point estimates of parameters and point predictions,
rather than uncertainties. In recent years considerable confusion
and debate have focused on the various ad hoc techniques applied
to data assimilation and uncertainty quantification. For multiple
data sets, many of the widely used models are inconsistent. For
example, Mantovan and Todini (2006) point out that Generalized
Likelihood Uncertainty Estimator (GLUE) is not coherent. The
assumption of independent observations allows us to model the
joint likelihood as a product of likelihoods for individual observa-
tions. Autoregressive structures accommodate serial dependence
within a time series, but not between multiple types of observa-
tions that enter models in a variety of ways. Coherent treatment
of uncertainty is possible where conditional independence is im-
posed at the data stage, with stochasticity at the process stage to
describe known (deterministic) and unknown (stochastic) depen-
dence (Clark, 2007). Stochasticity at the process stage allows us to
focus on conditional independence at the ‘data’ stage, and take up
the relationships among state variables at the ‘process’ stage, still
tractable when decomposed into a hierarchical structure. As an
alternative to a simple AR structure, with limited capacity to de-
scribe interactions among variables and uncertainties, we discuss
a hierarchical Bayes approach and show its utility for integrating
observations on stream flow and soil moisture, within a non-linear
model having process uncertainty.

Recent advances in computation, i.e., Markov chain Monte Carlo
(MCMC), facilitate Bayesian inference in hydrological studies
(Kuczera and Parent, 1998; Campbell et al., 1999; Bates and Camp-
bell, 2001; Marshall et al., 2004). MCMC simulation generates a
sample of latent variables and parameters to produce a Markov
chain that converges to a stationary distribution. The simulated
posterior distribution can be summarized, in terms of uncertainties
on parameters and latent states (Bates and Campbell, 2001) and
used to construct predictive distributions (Clark et al., 2001).

In this study, we implemented a hierarchical Bayesian model to
estimate the parameters, latent variables, and uncertainties in
streamflow predictions for a conceptual hydrological model by
applying MCMC simulation techniques. In particular, we assessed
the effect of inclusion of soil moisture data on the precision of
streamflow predictions, especially during precipitation events.
2. Methods

2.1. Site description

We studied two control watersheds (Watersheds 18 and 27) at
the Coweeta Hydrological Laboratory in the Nantahala Mountain
Range of western North Carolina within the Blue Ridge Physio-
graphic Province (35�030N, 83�250W) (Fig. 1). The Coweeta Basin
of 1626 ha has been a center of forest hydrological research in
the mountains-piedmont of Georgia, South Carolina, North Caro-
lina, and Virginia since 1934 and has been a National Science Foun-
dation (NSF) Long Term Ecological Research Site since 1980 (Swank
and Crossely Jr., 1988). Climate at Coweeta Basin is marine humid
temperate and characterized by cool summers, mild winters and
abundant rainfall in all seasons (Swift et al., 1988). Average annual
precipitation varies from 1700 mm at low elevations (680 m) to
2500 mm on upper slopes (>1400 m). The hydrology is dominated
by rain events, snow usually comprises less than 5% of the precip-
itation. The underlying bedrock is the Coweeta group (Hatcher Jr.,
1979), which consists of quartz diorite gneiss, metasandstone and
peltic schist, and quartzose metasandstone (Hatcher Jr., 1988). The
regolith of the Coweeta Basin is deeply weathered and averages
about 7 m in depth.

Watershed 18 (WS18 12.5 ha) and Watershed 27 (WS27
38.8 ha) support mixed hardwoods. Both watersheds serve as ref-
erence watersheds and have been unmanaged since being selec-
tively logged in the early 1900s. The elevation of Watershed 18
ranges from 726 to 993 m.a.s.l with an average slope of 52 and as-
pect of north-east. Watershed 27 has elevation from 1061 to
1454 m.a.s.l with an average slope of 55 and aspect of north–
north–east. It was partially defoliated by fall crankerworm infesta-
tion from 1975 to 1979.

2.2. Process model

We used a parsimonious daily lumped rainfall-runoff model
with quick and slow flow components ‘‘GR4J” (Modele du Genie
Rural a 4 parametres Journalier) (Perrin et al., 2003), but allowed
for errors at this process level. The GR4J is a modified version of
the GR3J model originally proposed by Edijatno and Michel
(1989) and then successively by Nascimento (1995) and Edijatno
et al. (1999). We modified this model by assigning soil moisture
withdrawal by evapotranspiration and percolation to 0 as soil
moisture approaches the wilting point and less. We chose a
lumped model instead of a spatially-explicitly distributed model
because: (1) spatial variability is relatively low due to the small
size of the two study watersheds; (2) subsoil processes are not
well-understood, especially at the catchment scale (Perrin et al.,
2003); (3) a lumped hydrological model with quick flow and slow
flow components can simulate daily streamflow reasonably well
(Jakeman and Hornberger, 1993); and (4) distributed models
would be extremely slow within an MCMC algorithm.

The GR4J has four parameters: the maximum capacity of soil
moisture storage, similar to field capacity of soil, a ground water
exchange coefficient, the maximum capacity of routing storage,
and a time base of a unit hydrograph (i.e., time of concentration
of a watershed, defined as time required for water to travel from
the most hydraulically remote point in the basin to the basin out-
let). We chose Thornthwaite’s method (1948) for estimating poten-
tial evapotranspiration (PET). GR4J uses its two production
parameters (maximum capacities of soil moisture accounting stor-
age and routing storage) to adapt to the various PET estimates;
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thus the simple approach used to estimate watershed PET, pro-
duces the similar streamflow results as PET estimates from more
complex approaches, such as eddy covariance measurements
(Andréassian et al., 2004). More specifically, Oudin et al. (2004)
showed that perturbation errors in the PET were absorbed by the
model’s production (soil moisture storage) reservoir, which con-
trolled the water losses from the model.

The model contains four sub-models (all the units are in milli-
meters unless indicated otherwise):

(1) A soil moisture sub-model;

If we use pt and Et to denote catchment precipitation and PET
respectively on day t, then

NPt ¼ pt � Et and NEt ¼ 0 if pt P Et

NPt ¼ 0 and NEt ¼ Et � pt otherwise
ð1Þ

where NPt denotes net precipitation on day t and NEt denotes net
evapotranpsiraiton on day t.

If NPt is not zero, a part Ft of NPt fills in the soil moisture
storage:

Ft ¼
k1 1� st�1

k1

� �2
� �

tanh NPt
k1

� �
1þ st�1

k1
tanh NPt

k1

� � ð2Þ

where st�1 denotes soil moisture storage level on day t�1, a param-
eter k1 denotes the maximum capacity of soil moisture storage.

The water that is evaporated from soil moisture storage on day t
(SEt) is calculated as:

SEt ¼
st�1 2� st�1

k1

� �
tanh NEt

k1

� �
1þ 1� st�1

k1

� �
tanh NEt

k1

� � ð3Þ

Then the soil moisture level on day t (st) can be updated as:

st ¼ st�1 þ Ft � SEt ð4Þ

Eqs. (2) and (3) result from the integration over the time step of
the differential equations that have a parabolic form with terms in

st�1
k1

� �2
(Edijatno and Michel, 1989; Perrin et al., 2003).

(2) An ‘‘effective precipitation” sub-model which uses soil mois-
ture as input to calculate percolation and then effective pre-
cipitation (i.e., the proportion of precipitation that could
contribute to streamflow);

A percolation leakage on day t (Perct) from the soil moisture
storage is calculated as a power function of the soil moisture con-
tent on day t (Eq. (5)):

Perct ¼ st 1� 1þ 4
9

st

k1

� �4
" #�1=4

8<
:

9=
; ð5Þ

Then the soil moisture content on day t becomes:

st ¼ st � Perct ð6Þ

The effective rainfall on day t (Prt) that reaches the routing pro-
cess is given by

Prt ¼ Perct þ ðNPt � FtÞ ð7Þ

(3) A sub-model that calculates slow streamflow from a non-lin-
ear routing process; and (4) a sub-model that calculates
quick streamflow from non-routing process:

Prt is divided into two flow components according to a fixed
split, 90% is routed by a unit hydrograph UH1 and then a non-linear
routing storage, and the remaining 10% is routed by a single unit
hydrograph UH2. With the ordinates of UH1 and UH2, we can
spread effective rainfall over k4 days for non-linear routing and
2k4 days for direct or quick flow, where the parameter k4 repre-
sents time base of unit hydrography UH1 (unit: days) (Perrin
et al., 2003).

A groundwater exchange term Gt interacts with both non-linear
routing and quick streamflow and is calculated as:

Gt ¼ k2
Rt�1

k3

� �7=2

ð8Þ

where a parameter k2 denotes exchange coefficient (unitless), a
parameter k3 denotes the maximum capacity of routing storage,
and Rt�1 denotes the water level in the routing storage on day t�1.

Let q1t denote the output from UH1 on day t, we update Rt as
(Eq. (9)):

Rt ¼maxð0; Rt�1 þ q1t þ GtÞ ð9Þ

The output of the routing reservoir on day t (Qrt) is then calcu-
lated as (Eq. (10)):

Qrt ¼ Rt 1� 1þ Rt

k3

� �4
" #�1=4

8<
: ð10Þ

Let q2t denotes the output from UH2 on day t, then the direct
(quick) flow on day t (Qdt) is calculated as (Eq. (11)):

Qdt ¼maxð0; q2t þ GtÞ ð11Þ

Additional details on the model (i.e., determining the ordinates
of the unit hydrographs) are contained in Perrin et al. (2003). The
model has been applied to more than 2000 catchments with differ-
ent sizes in different climate regions of the world (personal com-
munication with Andreassian Vazken, one of the model
developers for GR4J), so there is prior information available for
the four parameters (k1–k4) that require estimation.

2.3. Hierarchical Bayesian model

Hierarchical Bayesian models accommodate decomposing high-
dimensional problems into stages within a consistent framework
(Clark, 2005) including data (Eq. (12a)); process (Eq. (12b)); and
parameter (Eq. (12c)).

pðparameters;processjdata;priorsÞ
/ pðdatajprocess;data parametersÞ ðaÞ
� pðprocessjprocess parametersÞ ðbÞ
� pðall parametersjpriorsÞ ðcÞ

ð12Þ

Our hierarchical model structure was designed to estimate the
components of streamflow generation (Fig. 2), including the
parameters, latent states of soil moisture and streamflow, and
uncertainties. We assumed the major uncertainties of the model
include change in soil moisture and streamflow (termed ‘‘model
misspecification” or ‘‘process error”). Thus, the sub-models for soil
moisture (Eqs. (1)–(4), referred as f2), slowflow, and quickflow
(Eqs. (8)–(11), referred as f1) were stochastic, while the sub-model
of effective precipitation (Eqs. (5)–(7)) was treated deterministi-
cally (Fig. 2A). A state-space model, which accounted for temporal
dependence, was implemented for soil moisture (Fig. 2B).

Let qt represent log streamflow at time t (log(Qrt + Qdt)), which
was influenced by soil moisture at time tst, the routing process
(Eq. (10)), non-routing processes (Eq. (11)) in the GR4J model,
and lognormal error r2

1,

qt � Nðf1ðst; k2; k3; k4Þ;r2
1Þ ð13Þ



Fig. 2. Model structure for the hierarchical Bayes analysis based on Eq. (12) (A: boxes contain model elements. Sources of stochasticity are italics.) with the state space
portion for soil moisture sub-model (B: the upper data level consists of observations z, the middle process level include the unobserved latent process s, and the parameter
level contains maximum capacity of soil moisture accounting storage, and the variances for the process error and observation error. The lower two levels are not observed and
must be estimated).
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where ‘‘�” represents ‘‘is distributed as”, N is a normal distribution,
and k2–k4 are the parameters of the process model GR4J.

Soil moisture changed from time t�1 to time t due to addition
by precipitation pt, losses through evapotranspiration determined
by temperature tt, and normal error r2

2,

st � N f2ðst�1; pt ; tt ; k1Þ;r2
2

� �
ð14Þ

We considered the effects of sampling, or observation errors, for
the measurements of streamflow and soil moisture. Let yt repre-
sent the observations of log streamflow at time t, zt represent the
observations of soil moisture at time t. The lognormal observation
error model for streamflow and normal observation error model
for soil moisture were:
yt � Nðqt ; s2
1Þ ð15Þ

zt � Nðst; s2
2Þ ð16Þ

For Gibbs sampling, the conditional density for streamflow at
time t was:

pðqt jst ; yt; k2; k3; k4;r2
1; s

2
1Þ / Nðqt jf1ðst ; k2; k3; k4Þ;r2

1Þ
� Nðyt jqt ; s2

1Þ ð17Þ

The conditional density for soil moisture at time t (Clark and
Bjørnstad, 2004) included the observation at time t, zt, and the
state of the process immediately before and after t (i.e., st�1, and
st+1),
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pðst ; jst�1; stþ1; zt; pt ;ptþ1; tt; to
tþ1; k1;r2

2; s
2
2Þ

/ Nðstjf2ðst�1; pt; tt ; k1Þ;r2
2Þ � Nðstþ1jf2ðst ;ptþ1; ttþ1; k1Þ;r2

2Þ
� Nðztjst ; s2

2Þ ð18Þ

The three densities on the right hand side of (18) represented
the arrow pointing from st�1 to st, the arrow pointing from st to
st+1, and the arrow pointing from st to zt in Fig. 2B.

We also assimilated the log measurement error described by
variance s2

p in observed precipitation po
t ,

logðpo
t Þ � NðlogðptÞ; s2

pÞ ð19Þ

We did not include measurement errors for temperature be-
cause they were small.

To complete the Bayesian model, we require prior distributions
for unknown parameters. For convenience we used priors that
were conjugate with the likelihood (Calder et al., 2003), such that
prior and posterior distributions had the same form. The variance
parameters r2

1, r2
2, s2

1, s2
2, s2

p had inverse gamma (IG) priors, conju-
gate for the normal likelihood. We used ‘‘noninformative” priors,
meaning that prior distributions were rather flat and only weakly
influenced parameter estimates since we knew little about the
model and observation errors (Hartigan, 1998; Clark and Bjørnstad,
2004). A noninformative inverse gamma density prior had param-
eter values that were small. Based on the previous studies, the con-
jugate priors for the parameters of k1, k2, k3, k4 followed a
multivariate log-normal distribution without covariance between
parameters (20):

logðk1; k2; k3; k4Þ � NðlogðBÞ;diagonalðVBÞÞ ð20Þ

where B = (350, 0.0001, 90, 1.7), diagonal(VB) = (0.4, 2.0, 0.1, 0.2)
(Note: The values of B were from Perrin et al. (2003), while VB

was weakly informative)
Table 1
Summary of posterior distributions of the four process parameters for Watershed 18 (th
moisture data, and the column of ‘‘NO SM” represents those from the model not assimila

Parameters Mean Median

SM NO SM SM NO SM

k1 (mm) 280 825 280 819
k2 (unitless) 0.0017 0.00034 0.00088 0.0001
k3 (mm) 738 378 737 382
k4 (day) 0.82 0.64 0.82 0.63

Table 2
Summary of posterior distributions of the four process parameters for Watershed 27 (th
moisture data, and the column of ‘‘NO SM” represents those from the model not assimila

Parameters Mean Median

SM NO SM SM NO SM

k1 (mm) 194 550 194 548
k2 (unitless) 0.0020 0.0015 0.00010 0.00083
k3 (mm) 266 145 266 144
k4 (day) 0.82 0.85 0.82 0.85

Table 3
Summary of posterior distributions of the four process parameters for Watershed 18 (WS18
of precipitation were not accounted for.

Parameters Mean Median

WS18 WS27 WS18 WS27

k1 (mm) 282 194 282 196
k2 (unitless) 0.0026 0.0016 0.00083 0.0016
k3 (mm) 677 266 675 262
k4 (day) 0.82 0.82 0.82 0.82
Combining the data, process, and parameter models, we had the
joint posterior

pðk1; k2; k3; k4; s; q;r2
1;r

2
2; s

2
1; s

2
2; s

2
pjpo; t; y; z;priorsÞ ð21Þ

/
YT

t¼1

Nðytjqt; s2
1Þ
YT

t¼1

Nðztjst; s2
2Þ

YT

t¼1

Nðqt jf1ðst; k2; k3; k4ÞÞ;r2
1Þ
YT

t¼2

Nððstjf2ðst�1; pt; tt ; k1Þ;r2
2Þ

YT

t¼1

Nðlogðpo
t Þj logðptÞ; s2

pÞ

Nðlogðk1; k2; k3; k4Þj logðBÞ;diagonalðVBÞÞ
IGðr2

1jar1 ;br1
Þ

IGðr2
2jar2 ;br2

Þ
IGðs2

1jas1 ; bs1
Þ

IGðs2
2jas2 ; bs2

Þ
IGðs2

pjasp ;bsp
Þ

In order to estimate the importance of assimilating soil mois-
ture data, we also developed a hierarchical model without assimi-
lating soil moisture data and then we compared the predictions of
streamflow from both models.

2.4. Model implementation

The initial values for the water levels of the two storage compo-
nents (soil moisture storage and routing storage) were estimated
based on the initial values of k1, k3 (Edijatno et al., 1999). TDR soil
moisture data were expressed as a percentage of volume whereas
e column of ‘‘SM” represents the results from the Bayesian model assimilating soil
ting soil moisture data).

Lower 2.5% quantile Upper 2.5% quantile

SM NO SM SM NO SM

277 730 283 935
2 0.000078 0.000015 0.0083 0.0019

672 294 810 466
0.75 0.51 0.90 0.82

e column of ‘‘SM” represents the results from the Bayesian model assimilating soil
ting soil moisture data).

Lower 2.5% quantile Upper 2.5% quantile

SM NO SM SM NO SM

190 482 197 627
0.000072 0.000083 0.0095 0.0078
236 123 300 170
0.73 0.67 0.93 0.99

) and 27 (WS27) when soil moisture data were assimilated but the observation errors

Lower 2.5% quantile Upper 2.5% quantile

WS18 WS27 WS18 WS27

274 190 289 201
0.00014 0.00422 0.0064 0.00527
600 229 762 303
0.69 0.70 0.94 0.96
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most hydrological models use the unit of mm or cm. Hence, we
converted TDR based percentage measurements to soil water con-
Fig. 3. Prior (red) and posterior (black) density probability distributions of the four param
k2, unitless; k3, mm; k4, days.)
tent in mm (i.e., percentage � soil depth) in the upper 60 cm soil
layer.
eters at Watershed 18 (the upper four, A) and 27 (the lower four, B). (Units: k1, mm;
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We implemented MCMC in R (R development core team, 2008)
for observations from 1999 to 2002. The algorithm included Gibbs
sampling and adaptive Metropolis–Hastings steps (Haario et al.,
2001; Marshall et al., 2004) to draw samples alternatively from
the conditional posteriors for each of the unknowns, including
the latent variables and parameters (Clark and Bjørnstad, 2004).
The adaptive algorithm is characterized by a proposal distribution
based on the estimated posterior covariance matrix of the param-
eters, which is updated automatically. The posterior covariance
matrix is calculated based on past iterations.
2.5. Model diagnosis

We evaluated convergence by simulating Markov chains from
different starting values and multiple chains. Convergence re-
quired 1000–5000 iterations. These pre-convergence ‘‘burn-in’’
Fig. 4. Comparison between measured and posterior medians of the soil moisture
levels (mm) at the upper 60 cm soil during the calibration period (2000–2002) at
Watershed 18 (A) and at Watershed 27 (B). The centers of the red circles correspond
to posterior medians at Y-axis and measurements at X-axis. The sizes of the red
circles are proportional to the measurements. Blue bars represent 95% credible
intervals (lower 2.5% quantiles–upper 2.5% quantiles) of the posteriors. The black
line represents 1:1 line. The closer the red circles and blue bars to the 1:1 line, the
better the model simulations are. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
iterations were discarded and an additional 10,000 iterations were
saved for the analysis.
3. Results and discussion

3.1. Posteriors from the Bayesian models

The posteriors of the exchange coefficient (k2) for both water-
sheds were close to 0, consistent with the previous knowledge of
impervious bottom of the soil layer, preventing water from
exchanging between the vadose zone and ground water (Tables 1
and 2). The posteriors for the maximum capacity of accounting
storage (k1) and routing storage (k3) at the low elevation Wa-
tershed 18 were larger than those at the high elevation Watershed
27. This is consistent with a decrease in soil depth with elevations
(Swank and Crossley Jr., 1988). The posteriors of the time base of
Fig. 5. Comparison between measured and posterior medians of streamflow (mm)
during the calibration period (2000–2002) at Watershed 18 (A) and 27 (B). The
centers of the red circles correspond to posterior medians at Y-axis and measure-
ments at X-axis. The sizes of the red circles are proportional to the measurements.
Blue bars represent 95% credible intervals (lower 2.5% quantiles–upper 2.5%
quantiles) of the posteriors. The black line represents 1:1 line. The closer the red
circles and blue bars to the 1:1 line, the better the model simulations are. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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the unit hydrograph (k4) for both watersheds were less than 1 day,
most likely due to the small size of the watersheds (Tables 1 and 2).
The upper 2.5% quantile of the posteriors of k4 from the model
assimilating soil moisture data was larger at Watershed 27 than
at Watershed 18. The same applied to the median, mean, lower
and upper 2.5% quantiles of the posteriors of k4 from the model
Fig. 6. Streamflow (mm) predictions by assimilating soil moisture data (A and C) and no
(1) and at Watershed 27 between 1994 and 1999 (2). We did not include the predictions o
levels of soil moisture and routing storage. The centers of the red circles correspond to
intervals (lower 2.5% quantiles–upper 2.5% quantiles) of the predictions. The black line r
the model simulations are. Since the time step in the predictions is daily, we plotted t
Watershed 27 (A2 and B2). The larger streamflow predictions which were missing from A
this figure legend, the reader is referred to the web version of this article.)
not assimilating soil moisture data, likely due to that Watershed
27 is three times as large as Watershed 18.

Assimilation of soil moisture data increased precision of esti-
mates of the maximum capacity of soil moisture storage k1 (277–
283 mm at Watershed 18 and 190–197 mm at Watershed 27 by
assimilating soil moisture data, 730–935 mm at Watershed 18
t assimilating soil moisture data (B and D) at Watershed 18 between 1986 and 1999
f the first years for both watersheds to avoid the effect of initial values for the water
medians at Y-axis and measurements at X-axis. Blue bars represent 95% credible

epresents 1:1 line. The closer the red circles and blue bars to the 1:1 line, the better
he predictions every 30 days (A1 and B1) for Watershed 18 and every 15 days for
and B were represented in C and D. (For interpretation of the references to colour in
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and 482–627 mm at Watershed 27 when not assimilating them).
There were two other differences if the soil moisture data were
Fig. 7. The sensitivity of the posterior distribution to the prior distribution for the four pa
prior2: green) at Watershed 18 (the upper four, A) and 27 (the lower four, B). (Units: k1
not assimilated compared to the model with soil moisture data:
(1) the estimated maximum capacity of the soil moisture storage
rameters (prior1: red; posteriors using prior1: black; prior2: yellow; posteriors using
, mm; k2, unitless; k3, mm; k4, days.)
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was larger, and (2) the estimated maximum capacity of routing
storage was smaller (Tables 1 and 2). The estimated maximum
capacity of soil moisture storage from the model that included soil
moisture data was for the upper 60 cm. If the soil moisture mea-
surements were not included, the estimated maximum capacity
of soil moisture storage applied to the entire soil depth, and thus
was larger and had greater variance. In addition the maximum
capacity of soil moisture storage and maximum capacity of routing
storage had compensating effects.

The difference of the parameter estimates between the simula-
tions accounting for and not accounting for observation errors of
precipitation were small except for k3 at Watershed 18 (Table 3).
With the exception of k2, credible intervals were larger when
observation errors were ignored. We expect that the benefit of
assimilating observation errors will increase for larger watersheds
with higher spatial variability (Kavetski et al., 2006a,b).

With the except for the exchange coefficient (k2), the prior and
posterior distributions differed substantially for the process
parameters. Posterior modes for k1, k3, and k4 had low prior prob-
abilities, indicating they were mainly determined by data at both
watersheds (Fig. 3). The prior and posterior distributions of k2 were
close, implying that the prior played a significant role in determin-
ing posterior. The sensitivity of posteriors to priors was discussed
later in the paper.

The posterior medians of the soil moisture levels from the state-
space model were close to the measured data for observed values
<250 mm for both watersheds (Fig. 4). The model underestimated
soil moisture level at higher levels. The extremely large values of
the soil moisture measurements could be due to measurement er-
rors as the observations did not fall within the credible intervals of
the posteriors.

Generally, the posterior medians of streamflow from the model
for both watersheds followed the measured streamflow, and the
streamflow observations fell within the credible interval of the
streamflow posteriors (Fig. 5). The model tended to under-estimate
streamflow when the measured daily streamflow was >40 mm/
day.

3.2. Streamflow predictions

Bayesian posteriors can be used for prediction. The posteriors
are probability-based, as are predictions. We applied the model
and the posteriors of the parameters and variances for different
times (1985–1999 for Watershed 18 and 1993–1999 for Wa-
tershed 27) from that used to generate the posteriors, and esti-
mated the predictive intervals for streamflow to assess the
predictability of the GR4J model. We compared the predictions
from the model assimilating soil moisture data with those from
the one that did not (Fig. 6). The predicted medians of streamflow
at both watersheds followed the measurements closely, with un-
der-estimates when it was >25 mm at Watershed 27, and overesti-
mates when it was <10 mm at Watershed 18 (Fig. 6). The
streamflow measurements all fell within the predictive intervals.
The over- and under-estimations were due to the uncertainties in-
volved in model parameters, model, and observations.

Soil moisture integrates many of the biological and physical
processes that regulate streamflow, including precipitation, water
uptake, soil texture, and other soil physical attributes, so stream-
flow can be predicted with higher precision if soil moisture data
is assimilated, especially during storm events (e.g. streamflow
observations > 5 mm/day). Although our model still tended to
over- or under-estimate streamflow for certain days when the soil
moisture observations were assimilated, the extent of over- and
under-estimations were not as large (Fig. 6) compared to the mod-
el without soil moisture data. This finding is further evidence that
assimilation of soil moisture is particularly effective during storm
events, as suggested from previous Kalman filter results (Aubert
et al., 2003).

3.3. Sensitivity of posteriors to priors

All inference is subjective. Bayesians make the subjectivity ex-
plicit, through tractable prior parameter values. In a classical set-
ting, many aspects of data modeling that need careful thought
are not apparent, fostering the ‘‘illusion of objectivity” (Berger
and Berry, 1988; Clark, 2007). A posterior may be robust to differ-
ent priors. The sensitivity of the posteriors to the prior assump-
tions can be explored by changing the priors (Clark, 2007).

We explored two sets of priors for the four process parameters,
both were multivariate log-normal distributions but differed in
their mean values. One set, based on Perrin et al. (2003), was used
for our simulations in Section 3.1 (prior 1), the other set was de-
rived from watershed size and long term annual temperature
according to Kuczera and Parent (1998) (prior 2). From the sensi-
tivity analysis at both watersheds, the posterior distributions of
k1, k3 and k4 were not sensitive to priors, and mainly determined
by data (Fig. 7). The posterior for k2 was sensitive to the prior spec-
ification. From previous studies of the GR4J model and our knowl-
edge of Coweeta Basin, a prior mean value for k2 close to 0 was
consistent with posterior inference. The prior and posteriors of
k1, k3 and k4 were well displaced from one another, which may
be due to the fact that the hydrological conditions at Coweeta Ba-
sin differ from those where the model was applied before.
4. Conclusion

By applying Bayesian inference, we were able to assimilate
uncertainties associated with parameters, observations and model
structures, and to determine the value of soil moisture data for
streamflow prediction. The parsimonious model GR4J can be used
for meaningful prediction. By assimilating both soil moisture and
streamflow measurements, we achieved a more precise predica-
tion for streamflow, especially during storm events.

The coherent assimilation of uncertainties in hydrological mod-
els using hierarchical Bayesian models not only provides better sci-
entific understanding on hydrological cycles and admits the field
data needed to reduce the prediction errors (e.g. soil moisture
data), but also presents more useful information than point esti-
mates to facilitate water resource planning and management by
acknowledging stochasticity.
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