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Abstract 
 
The accumulation of small diameter trees (SDTs) is becoming a nationwide concern. Forest management 
practices such as fire suppression and selective cutting of high grade timber have contributed to an 
overabundance of SDTs in many areas. Alternative value-added utilization of SDTs (for composite wood 
products and biofuels) has prompted the need to estimate their spatial availability. Spectral unmixing, a 
subpixel classification approach, and artificial neural networks (ANN) are being utilized to classify SDT 
biomass in Mississippi. The Mississippi Institute for Forest Inventory (MIFI) data base biomass (volume 
per acre) estimates will be used to check the accuracy and compare the two classification procedures. A 
suitable and accurate classification approach will be vital to understanding the spatial distribution as well 
as availability of SDTs and would benefit both forest industries and forest managers in proper utilization 
and forest health restoration. 
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Introduction 
 
Small diameter trees (SDTs) include the small and pole sized classes of the USDA Forest 
Service, Forest Inventory and Analysis (FIA) program. More specifically, small and pole sized 
classes refer to trees less than 5 inches and 5 to 11 inches diameter at breast height, respectively. 
SDTs are often characterized as the leftover underutilized material in the dense understory that 
persists throughout the forest (Levan-Green and Livingston 2001). It is reported that the biomass 
of these SDTs and shrubs is increasing at an average rate of 237 cubic feet per second in the 
United States (Levan-Green and Livingston 2003). Forest management practices such as active 
fire suppression in the western conifers and selective cutting of the eastern hardwoods are 
primarily responsible for the accumulation of these SDTs. The accumulation of SDTs changes 
the forest structure and composition; in effect making forests more vulnerable to fires, insects, 
and diseases. Mapping of SDTs using geospatial technologies might enhance forest manager’s 
and forest industry’s efforts in combating adverse impacts while promoting proper utilization of 
this resource. 
 
Geospatial technologies (Geographic Information Systems and remote sensing) have been 
extensively used for forest biomass mapping (Zheng et al. 2007, Foody et al. 2001, Hall et al. 
2006). Remote sensing approaches have been used to map the biophysical properties of 
vegetation based on the spectral and spatial resolutions of imagery relevant to specific biomass 
studies (Anderson et al. 1976). A number of approaches have been in use to estimate forest 
biomass from remotely sensed data. All approaches rely on spectral information to characterize 
vegetation and other biophysical properties related to forests. Direct radiometric relationships 
(Labrecque et al. 2006), vegetation indices (Wang et al. 2007, Foody et al. 2001, and Heiskanen 
2006), image transformations like principal components, and tasseled cap transforms (Lu et al. 
2002) are commonly employed in image processing approaches to estimate biomass.  
 
The objective of our research was to map the spatial availability of SDT biomass using Landsat 
data and image processing algorithms. Specifically, a supervised image classification (spectral 
angle mapping (SAM)), along with a noise minimization technique (minimum noise fraction 
(MNF)) was applied to classify the biomass within the study area. Five biomass (cubic feet per 
acre) classes of (1) less than 500, (2) 501-1,000, (3) 1,001-1,500, (4)1,501-2,000, and (5) greater 
than 2,000 were identified in Mississippi Institute for Forest Inventory (MIFI) ground volume 
data set and were classified using the SAM technique. 
 
Methods 
 
Study Area 
 
The research was implemented on a single 2001 Landsat ETM+ image (path 22 and row 38) 
image in Mississippi, USA. The study area (Figure 1) covers approximately all or part of 32 
counties in Mississippi. 
    



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Location of the Landsat ETM+ image in Mississippi (left) and associated counties of the 
study area (right). 
 
 
Biomass Ground Truth  
 
Field estimates based on random sample stratified by forest type (+ 15% standard error at 95% 
confidence interval) I am not sure what this refers too? How can you have a standard error on a 
random sample? were collected by crews throughout the study area. The data stored in Microsoft 
Access database at different hierarchies of tree species and plot id? were available from MIFI 
through the College of Forest Resources at Mississippi State University. Information is available 
on tree parameters as well as plot parameters. Data mining techniques (relationships, queries, 
filter, sort, and summarization) these are not “data mining” techniques. These are “database 
queries” were used to identify SDTs from the MIFI database. A many-to-one relation was used 
to aggregate the SDT volume to the plot level. A per-acre conversion factor was used to convert 
the estimates to volume (cubic feet of biomass) per acre. The data were converted into a 
geodatabase using the R statistical software package. We identified five biomass (cubic feet per 
acre) classes of (1) less than 500, (2) 501-1,000, (3) 1,001-1,500, (4) 1,501-2,000, and (5) greater 
than 2,000 were identified (Figure 2). 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. MIFI volume plot used to derive biomass classes based on density histogram breaks. 
Volume and density of SDTs are represented x and y axis respectively. 
 
 
Geospatial Processing 
 
The image pre-processing and classification involved simultaneous usage of biomass classes of 
vector point data, selective MNF components, and the SAM classification algorithm. All 
processing was performed using ENVI 4.3, ERDAS Imagine, ArcGIS version 9.2, Microsoft 
Access, and R statistical software. 
 
Minimum Noise Fraction (MNF) 
 
MNF, an orthogonal transformation similar to principal component analysis (PCA) enhances the 
image quality and facilitates end-member spectra selection (Green et al. 1988). MNF identifies 
and separates the spectral dimensionality into components of noise and standard principal 
components based on two transformation approaches (Tiruveedhula et al. 2009). The first 
transform results in a noise covariance matrix that decorrelates and re-scales the noise in such a 
way that noise has unit variance with no correlation among the bands (Lu and Weng 2004, ENVI 
2001). The second transform is a standard PCA approach of the noise-whitened data (ENVI 
2001). Based on the MNF output graph and visual interpretation of the output components 
(Figures 3 and 4), MNF 1 (identical to the original image), and MNFs 5, 6, and 7 (considered to 
be noise) were discarded for analysis. MNF bands 2, 3, and 4 were selected for end-member 
spectral analysis. The spectral analysis graph (Figure 5) confirmed the components that best 
demarcate the biomass classes compared to other components. The selected components were 
used in subsequent steps. 



Spectral Angle Mapping (SAM) 
 
SAM is a physically based spectral classification algorithm that utilizes an n-dimensional angle 
to match image pixels to ground truth data (Kruse et al. 1993). This particular supervised 
classification algorithm based on the similarity between two spectra calculates the angle and 
treats them as vectors in n-dimensional space (Kruse et al. 1993). The calculated angle is then 
used to compare the training mean vector and each pixel vector in n-dimensional space with 
smaller angles representing closer matches to training data and vice-versa (Kruse et al. 1993). 
Biomass ground truth data were overlaid on the selective MNF components to derive the end 
member spectra. SAM, with a maximum angle set at 0.94 radians, was applied to derive the 
biomass end-member classes of (1) less than 500, (2) 501-1,000, (3) 1,001-1,500, (4) 1,501-
2,000, and (5) greater than 2,000 cubic feet per acre. Is this a result? Why did you choose 0.94 
radians? What was your rationale for choosing that number? 
 
Results and Discussion 
 
All Landsat ETM+ image bands 1 (Blue), 2 (Green), 3 (Red), 4 (Near-IR), 5 (Mid-IR), 6 (Mid-
IR) were selected for analysis. The 30 m resolution of these 6 bands best represents the 0.2 acre 
ground biomass plot dimensions. Before classifying the image into biomass classes SAM, the 
MNF linear transformation was applied to the image.  
 
MNF transformation separated the image information into fewer applicable components for the 
biomass classification. High variability (Figure 3) was observed within the MNF components, 
ranging from 702.293067 (component 1) to 1.642768 (component 7). Visual interpretation and 
spectral end-members analysis (Figures 4 and 5) suggested that MNF component 1 (identical to 
the original image), and 5 to 7 (considered to be noise) were discarded from further analysis.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 3. Graph of the components of Landsat ETM+ resulting from MNF analysis. 
 
 
 



MNF components 2, 3, and 4 showed the best end-member separation (Figure 5) relative to other 
components and were retained for the SAM classification. The biomass training data classes 
were used to collect the end-member spectra as part of the SAM process. The application of the 
SAM algorithm yielded a classified image (Figure 6) of all the five input end-members as well as 
an additional unclassified class that included the rest of the unmasked features such as roads and 
water bodies. Visual interpretation of the classification shows that a majority of the area falls in 
the less than 500 cubic feet per acre class, which has the highest density in the study area. In 
addition, it was observed that the higher biomass classes are in close proximity to roads 
supporting the human role in SDT accumulation. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Components and Eigen values derived using MNF transformation. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Graph of the end-member collection spectra for biomass classes with reference to the 
MNF components (left) and selective MNF components 2, 3, and 4 (right). 
 



 
Figure 6. Results of the spectral angle small diameter biomass mapping for the study area in MS. 
 
 
The classification results were validated with an accuracy assessment using 140 ground control 
points (Table 1). The results showed an overall classification accuracy of 61% with biomass 
classes less than 500, 501-1,000, and 1,001-1,500 cubic feet per acre, with high producer and 
user accuracies. The relative low accuracy of the 1,501-2,000 and greater than 2,000 cubic feet 
per acre biomass classes might be a result of the structural differences in canopies of the two 
larger volume classes, which were not dissimilar enough to produce spectral differences that 
were detectable in this study. In addition, the training data for different biomass classes fell  
adjacent to each other that might have rendered to a reasonable decrease in the accuracies. The 
classification accuracy was increased to 67% when the classes were condensed to four (Table 2). 
The overall Kappa statistic (Congalton and Mead 1983), a measure of agreement between 
classified image and ground truth data was 0.51 for all the five biomass classes, and increased to 
0.57 when the classes were condensed to four. Kappa statistic values range from 0 to 1, values 
greater than 0.80, less than 0.40, and 0.40 to 0.80 represents strong, poor and moderate 
agreements respectively (Landis and Koch 1977).  
 
 
 
 
 
 
 



Table 1. Error matrix resulted from SDT biomass classification using SAM (5 biomass classes). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Table 2. Error matrix resulted from SDT biomass classification using SAM (4 biomass classes). 
 
 

 
 
 
Conclusions 
 
Use of Landsat data to classify timber biomass is possible through a combination of MNF data 
reduction followed by SAM classification procedures. The classified biomass geospatial 
products can be used as a baseline estimate by forest industries for effective utilization of SDTs.  
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