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The properties and chemistry of wood are increasingly being 
measured by coupling near infrared (NIR) spectroscopy 
with multivariate analysis to build predictive models based 
on analytical data for specifically targeted properties and/or 
chemical compositions. Advantages of the technique are that 
it is non-destructive, relatively inexpensive and can be rapidly 
applied after models have been developed. Common physical 
(for example, density, microfibril angle) and mechanical (for 
example, stiffness) properties have been predicted for both 
hardwoods and softwoods. Chemical composition of wood cell 
wall polymers (cellulose, hemicellulose, lignin) and extrac-
tives have also been predicted by using models with high 
correlations.1 Spectroscopic analyses have been carried out by 

diffuse reflectance2–5 and transmittance,6,7 the latter technique 
requiring much less material for analysis. Physical properties 
and chemical composition play an integral role in the perform-
ance of wood in service, so models have been developed to 
predict mass losses and/or changes in composition as a result 
of thermal treatment8 or exposure to wood decay fungi.9–11 
Recently, increasing interest in biofuels raises questions about 
the utility of NIR spectroscopy for rapidly assessing feedstock 
qualities, in particular, fuel value.

The higher heating value (HHV) or gross calorific value (GCV) 
of a fuel is defined as the amount of heat released by a speci-
fied quantity (initially at 25°C) once it is combusted and the 
products have returned to a temperature of 25°C, which takes 
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into account the latent heat of vaporisation of water in the 
combustion products. Although the term HHV may have been 
used in the studies cited here, the term GCV is used from 
this point forward to avoid confusion by alternating between 
the two terms. The GCV of wood has been related to its ulti-
mate and proximate analytical data12 as well as the amount 
of fixed carbon.13 Alternatively, equations for estimating GCV 
have been based on the amounts of extractives, lignin, and/
or holocellulose.14–16 The GCVs for lignin and extractives are 
higher than those for cellulose or hemicelluloses, thus the 
extractive-free wood of Gmelina arborea had a lower GCV 
than unextracted wood.17 White16 also studied the effect of 
chemical composition on GCVs and found that linear regres-
sion with lignin content from both hardwoods and softwoods 
together provided a reasonable correlation, which was further 
improved by the inclusion of extractives content into the equa-
tion. Analysis of the extractive-free samples resulted in lower 
GCVs and an improved correlation with lignin content.

Given the relationship between chemical composition and 
GCV, and the ability to predict chemical composition from the 
statistical analysis of NIR spectral data, studies have shown 
that values for GCV can also be predicted.18–20 In addition to 
GCV, Lestander and Rhen18 developed models to predict other 
useful information for biofuels, specifically moisture and ash 
content. Assessments to date show promise for rapid analyses 
that would be useful for applications such as the screening of 
clones from plantations19 or from a wide variety of potential 
feedstock sources that may include hardwoods, softwoods, 
shrubs and grasses;20 however, it should be noted that accu-
racy of the predicted GCVs was less than that for the standard 
laboratory measurement.19,20

Based on the above discussion, it is apparent that GCV can be 
predicted by statistical manipulation of NIR spectra and that the 
signals on which the correlations are derived are likely based on 
the relative proportions of lignin and/or extractives to the cell 
wall carbohydrates (cellulose, hemicelluloses). However, one 
confounding factor for the correlations with lignin and extrac-
tives with GCV is that the studies were based on several different 
species as opposed to one species with samples having different 
lignin and extractives contents. As for the NIR studies, these did 
not relate the variability in chemical composition to variability 
in GCV. To explore this further, we developed NIR predictive 
models from a single species, with specific attention given to 
parallel determinations of lignin and extractive content. Given 
that the variability of extractives content is much greater than 
the lignin content for the softwood selected in the present study 
(longleaf pine), we predicted that the extractives content, and 
not the lignin content, would be the primary determinant for 
variability in GCV.

Experimental
Materials
Twenty 70-year-old longleaf pine (Pinus palustris) trees, 
assigned a tree identification number of 1 through 20, were 

harvested from a spacing, thinning and pruning study on the 
Kisatchie National Forest, Louisiana, USA. Discs (5 cm thick) 
were cut at breast height (135 cm from ground level) as a 
common sampling point and mid-height along the bole to 
provide a sample with more intermediate composition. The 
discs were dried under ambient conditions before further 
sectioning into 1 cm thick wood slices from pith to bark. The 
bark was removed and the radial wood slices were cut into 
strips that were sufficiently thin to be ground in a large Wiley 
mill equipped with a 2 mm screen plate. Wood meals were 
stored under ambient conditions until needed.

Extractives and lignin content
Aliquots of wood meals were exhaustively extracted with 
acetone using a Soxhlet apparatus. Extracts were concen-
trated by rotary evaporation, transferred to small vials, evapo-
rated under a stream of nitrogen to afford heavy yellow oils that 
were dried further in vacuo and weighed. Extractive-free wood 
meals were further ground in a small Wiley mill equipped with 
a 40-mesh screen and then analysed for lignin content using 
the acetyl bromide method.21 A separate sample of extractive-
free loblolly pine wood was used with each set of reactions as 
a control. The acetyl bromide solution was freshly prepared 
prior to each determination. An absorptivity value of 23.30 g−1 
L cm−1, determined for softwood lignin,22 was used to calculate 
the lignin content. Appropriate samples were dried in an oven 
(102 ± 3°C) to determine the moisture content necessary to 
adjust the values for extractives and lignin content to a dry-
weight basis.

Calorimetry
Calorimetry was conducted using a Parr oxygen bomb 
calorimeter 6100 (Parr Instrument Co., Moline, IL, USA). GCV 
was determined in triplicate following the instructions in the 
manufacturer’s operating manual.23

Near infrared spectroscopy and multivariate 
analysis
NIR spectra were collected with an ASD Field Spec (Analytical 
Spectral Devices, Boulder, CO, USA) spectrometer at wave-
lengths between 350 nm and 2500 nm. A fibre-optic probe 
oriented perpendicular to the sample surface was used to 
collect the spectra. The samples were illuminated with a DC 
lamp oriented at 30° above the sample surface and rotated at 
45 rpm to minimise specular interference and surface hetero-
geneity. Three spectra were collected for each sample.

Multivariate analysis of the data was performed using 
the Unscrambler (version 8.0) software (CAMO Software, 
Woodbridge, NJ, USA). The NIR data were first averaged to 
one spectrum per sample. Multiplicative scatter correction 
(MSC) was applied to the spectra to reduce the scatter by 
removing the additive and multiplicative effects.24 Partial least 
squares (PLS) regression was used to determine the calo-
rific value, extractives and lignin content in the samples. Two 
thirds of the samples were used for a calibration set, while 
the remaining one third was employed as the test set. Models 
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were generated and fitted using full cross validation and up to 
five factors. The models were assessed using several common 
measures of calibration performance: the correlation coeffi-
cient, R2, is a measure of the strength of the fit to the data; and 
the standard error of calibration or prediction (SEC or SEP) is a 
measure of the calibration or prediction error in the fit.

Results and discussion
Calorimetry
The GCVs were determined in triplicate and averaged. 
A summary of the results is provided in Table 1 for all 40 
samples together (all), and separately for the 20 samples 
taken at breast height (BH), the 20 samples taken at mid 
height (MH), the 27 calibration samples and the 13 test set 
samples. The mean values from the unextracted breast-height 
samples are plotted in Figure 1, providing significant varia-
tion ranging between 20 MJ kg−1 and 24 MJ kg−1. The samples 
were also extracted and all the extracted samples exhibited 
lower GCVs, between 19 MJ kg−1 and 21 MJ kg−1 (Figure 1). In 
a previous study, White16 reported that the GCV of southern 
pine wood with an extractives content of 5.4% was lowered 
by 0.65 MJ kg−1 following extraction. In this current study, the 
change in GCV following extraction was noticeably variable 
between the samples, ranging between 0 MJ kg−1 and 4 MJ kg−1. 

Thus, determinations of the extractives content were also 
made and these varied greatly (between 0 and 21%); the non-
volatile extractives in pines are a complex mixture of resin 
and fatty acids accompanied by small amounts of neutral 
compounds including diterpene alcohols and methyl esters. 
Figure 1 shows that the variation in GCV for the unextracted 
breast-height samples closely followed that for the extractives 
content. This relationship was further analysed and confirmed 
using a standard linear regression. It can be seen in Figure 2 
that there is a strong correlation (R2 = 0.94 and a standard error 
of estimation (SEE) of 0.23 MJ kg−1, providing the linear equa-
tion: GCV = 20.12 + 0.17EC, in which, GCV is as defined (MJ kg−1) 
and EC is the extractives content (%). A similar relationship 
has been reported by Demirbas,25 producing a linear equa-
tion (correlation coefficient not reported) relating extractives 
content to GCV. Fuwape reported a statistically significant 
(a = 0.05) correlation coefficient of determination (R2 = 0.52) 
for the sapwood of Gmelina arborea, but not for the heartwood 
(R2 = 0.17).17 Similar results were obtained with the samples 
at mid-height; although a weaker coefficient of determination 
was obtained (R2 = 0.88; SEE = 0.22 MJ kg−1) from the narrower 
range of values for GCV and extractives content.

The acetone extracted samples also exhibited variation in 
GCV, albeit less than their unextracted counterparts. Thus, 
it was of particular interest to determine if that variation 
(Figure 1) could be attributed to the variation in lignin content 

Property Sample Range Mean Standard deviation
GCV*
(unextracted) 
 
 

All 20.2–23.6 21.2 0.80
BH 20.2–23.6 21.4 0.92
MH 20.4–22.9 21.0 0.61
Calibration 20.4–23.6 21.2 0.83
Test 20.2–22.4 21.2 0.78

Extractives* 

 
 
 

All 0.0–20.6   5.9 5.03
BH 1.1–20.6   7.8 5.37
MH 0.0–17.2   4.0 3.90
Calibration 0.0–20.6   5.8 5.07
Test 0.9–14.8   6.1 5.15

GCV* 
(extracted) 
 
 
 

All 19.5–20.6 20.1 0.25
BH 19.5–20.6 20.1 0.29
MH 19.7–20.6 20.1 0.22
Calibration 19.6–20.6 20.1 0.26

Test 19.5–20.4 20.2 0.24

Lignin*
(extracted) 

 
 
 

All 26.6–31.5 28.2 1.06
BH 26.6–29.1 27.8 0.70
MH 26.6–31.5 28.6 1.20
Calibration 26.6–31.5 28.3 1.18

Test 26.9–29.4 27.9 0.72

*GCV (MJ kg−1), extractives and lignin content (%). 
BH, breast height; MH, mid-height.

Table 1. Statistics for gross calorific value (GCV), extractives and lignin content.
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for the extracted samples. Plotting GCV and lignin content 
appeared to show overlapping patterns for the mid-height 
samples (Figure 3); however, a standard linear regression 
of the data from the mid-height samples indicated a poor 
correlation (R2 = 0.32; SEE = 0.18 MJ kg−1). It should be noted 
that relationships of GCV to lignin content reported in the 
literature were based on analyses of an extremely diverse set 
of samples (for example, corncob, wood, straw and bark)14 
or different hardwood (yellow-poplar, red oak, maple, bass-
wood) and softwood species (Engelmann spruce, western 
redcedar, southern pine, redwood).16 The amounts of protein, 
extractives and ash, aside from the cell wall polymers (cellu-
lose, hemicelluloses and lignin), undoubtedly covered a wide 
range of values for these samples. Removal of the extractives 
dramatically improved the linear relationship between GCV 
with lignin content.14,16 It may be argued that there could be 

confounding factors, given the differences in the lignin struc-
ture between softwoods, hardwoods and grasses. Therefore, 
these studies did not address the question of whether the 
lignin content alone, for a single tree species, has a signifi-
cant effect on GCV. For the longleaf pine samples used in the 
present study, it is clear that differences in GCV are primarily 
dictated by differences in extractives content and not lignin 
content.

Near infrared spectroscopy and multivariate 
analysis
Initial analyses using PLS regression showed no large 
regression coefficients below 1100 nm and that there was 
slight improvement in prediction power when the wave-
length range was reduced to 1100–2500 nm, similar to the 
results observed by Gillon et al.20 The resulting calibration 

Figure 1. Variation of gross calorific value (both extracted 
and unextracted samples) and extractives content for the 20 
longleaf pine trees sampled at breast height.

Figure 2. Gross calorific value (unextracted samples) as a 
function of extractives content for the 20 longleaf pine trees 
sampled at breast height.

Figure 3. Variation of gross calorific value (extracted samples) 
and lignin content for the 20 longleaf pine trees sampled at 
mid-height.

Figure 4. NIR predicted vs measured extractives content for 
unextracted samples.
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for extractives content is shown in Figure 4, providing strong 
calibration statistics (R2 = 0.88; SEC = 1.75%) while employing 
only two factors (Table 2). This was obtained using a set of 
samples with a large range of extractives values (0.0–20.6%). 
The test set performed reasonably well with a R2 = 0.78 and 
SEP = 2.51% (Table 2). Similarly good calibration statistics 
were reported by Kelley et al.1 for extractives content from 
ground samples of loblolly pine (R2 = 0.86; RMSEC = 2.3%; 
four factors), using a larger extractives range (2.8–26.9%). 
These extractive ranges are not uncommon for pine stem 
wood, when including both heartwood and sapwood. In a 
study by Esteves and Pereira,8 pine extractives content was 
determined by successive Soxhlet extractions using dichlo-
romethane followed by ethanol and, lastly, water. The calibra-
tion models gave increasing R2 values with increasing extrac-
tive ranges from successive extractions. The total extractives 
content provided the greatest range and highest R2 of 0.84 
(with an RMSEC of 5.48%). Acetone used for the present 
study is an efficient solvent with the capacity to remove 
the predominantly resinous extractives in pine wood. The 
wide range of values for extractives content we determined 
resulted in a high value for R2 that compared well with the 
corresponding values (R2, wide range of values for extrac-
tives content) based on total extractive content obtained 
cumulatively by sequential extraction with solvents having 
low to high polarities.8

GCV has also been studied with NIR spectroscopy and 
provided strong correlations. The same was expected in this 
study, especially given the higher GCV for extractives (rela-
tive to the cell wall polysaccharides) and the wide range of 
extractives content. The unextracted samples provided a 
good calibration model for GCV (Figure 5) with strong calibra-
tion statistics as listed in Table 2 (R2 = 0.85; SEC = 0.32 MJ kg−1; 
two factors). Gillon et al.20 previously applied this to a range 
of forest fuels that included leaves, needles, twigs, bark, leaf 
and needle litter. A strong calibration model was obtained 
(R = 0.95; SEC = 0.42 MJ kg−1), in which these samples provided 
a very large range of calorific values (17.05–24.59 MJ kg−1) and 
standard deviation (1.44 MJ kg−1). This is widely known to result 
in improved correlations. However, Maranan and Laborie19 

obtained excellent results (R = 0.97; RMSEC = 0.05 kJ g−1; four 
factors) despite the very limited range of GCV encountered 
(18.71–19.68 kJ g−1). This was based on second derivative 
NIR spectra from milled hybrid poplar samples. In our study, 
the GCV results based upon NIR spectroscopy were less 
accurate than those obtained using the standard laboratory 
method, similar to that observed in previous studies.19,20 In 
this present study, the GCV model for the extracted samples 
provided a poor R2 of 0.37 but with a SEC = 0.21 MJ kg−1 (Table 
2), with the possibility of fitting up to five factors. It can be 
seen in Table 1 that the range of values and standard devia-
tion for the extracted samples were much smaller than those 
for the unextracted samples.

The lignin data from the extracted samples provided a reason-
able calibration with three factors (R2 = 0.71; SEC = 0.64%). 
This was further improved when using five factors producing 
a R2 = 0.92 and SEC = 0.34% (Table 2). Jones et al.2 obtained 
similar calibration statistics (R2 = 0.85; SEC = 0.48%; four 
factors) in a study using radial strips of loblolly pine. Their 
test set produced poorer results (r2 = 0.51; SEP = 1.21%), which 

Property Sample No. of factors R2 SEC/SEP

GCV 
(unextracted)

Calibration   2 0.85 0.32
Test   2 0.72 0.41

Extractives Calibration   2 0.88 1.75
Test   2 0.78 2.51

GCV 
(extracted)

Calibration   2 0.37 0.21
Test   2 0.05 0.24

Lignin 
(extracted)

Calibration 3 (5) 0.71 (0.92) 0.64 (0.34)
Test 3 (5) 0.33 (0.71) 0.72 (0.83)

SEC/SEP for GCV (MJ kg−1), extractives and lignin content (%).

Table 2. Calibration statistics for gross calorific value (GCV), extractives and lignin content.

Figure 5. NIR predicted vs measured gross calorific value for 
unextracted samples.
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was attributed to the diverse origins of their test set. In this 
present study, the test set also provided poor results (R2 = 0.33; 
SEP = 0.72%), which may have been partly due to actual differ-
ences in lignin content between the extracted calibration and 
test sets. It can be seen in Table 1 that the test set has a 
smaller range and standard deviation than the calibration set. 
Furthermore, these results show the lignin model to be poorer 
than the extractives model when using the same low number 
of factors. This was also observed by Kelley et al.1 in which the 
results from the lignin model (R2 = 0.66; RMSEC = 1.1%) were 
poorer than that for the extractives (R2 = 0.86; RMSEC = 2.3%). 
They noted that the majority of the lignin values were clustered 
close to the mean. However, in a NIR study of transgenic aspen 
trees, excellent lignin models were obtained for wood meal 
pellets (for example, R2 = 0.98; SEC = 0.57%; three factors),7 
although these were obtained from samples providing a 
much larger lignin range (10.7–24.6%) and higher standard 
deviation of 4.2%. Using different types of forest biomass, 
such as twigs and needles, can provide much property vari-
ability as compared with using stem wood from one species. 
Nevertheless, in some cases, stem wood can also provide high 
levels of variability within a single species.

The plot of the regression coefficients (Figure 6) provides 
a spectroscopic insight into the relationships between GCV 
with both extractives and lignin content. Gillon et al.20 noted 
that the high correlation values they obtained in several 
absorption bands show that the NIR spectrum is strongly 
correlated with GCV. The plots listed are for the GCV and 
extractives content from the unextracted samples and the 
GCV and lignin content from the extracted samples. The 
same close relationship between the GCV (unextracted) and 
extractives content shown in Figures 1 and 2 is observed in 
Figure 6, with very similar plots, indicating that the same 
molecular features were responsible for the good calibra-
tion models. This provides further support, based on spec-
troscopy, for the relationship between GCV and extractives 
content. Two of the largest regression coefficients for these 
two plots were at bands centred around 1705 nm corre-
sponding to the first overtone of aliphatic and aromatic 
CH stretching in CH2 groups present in both lignin and 
extractives and also at 2295 nm, which is due to OH and 
C–O stretching.26 Similar high regression coefficients for 
the prediction of GCV from hybrid poplars were reported 
at 1725 nm and 2270 nm.19 The GCV plot for the extracted 
samples is very different from the unextracted plot (Figure 
6), with very few of the same clearly defined bands. The 
plot for lignin content is complex with many peaks, some 
of which are found in the extracted GCV plot but to a much 
lesser magnitude. One of the high regression coefficients 
for the plot of lignin content was for the band found around 
1675 nm6,27 and is assigned to CH in the aromatic skeletal 
structure lignin.26 Another band around 2255 nm, due to CH3, 
has previously been found to be the strongest loading vector 
for lignin in a study of Eucalyptus camaldulensis.27 These 
bands, amongst others, are also present in the extracted 
GCV plot.

Conclusions
A strong relationship between the GCV (unextracted) and 
extractives content has been demonstrated in this study of 
longleaf pine stem wood and an apparently weaker relation-
ship between the GCV (extracted) and lignin content. The 
strength of these relationships strongly correlated with the 
amount of property variability in the samples. It has also been 
demonstrated that NIR spectroscopy can be used to rapidly 
determine GCV and chemical composition, with this technique 
also providing spectroscopic support to the strong relationship 
between GCV and extractives content. Model improvement is 
still necessary if this technique is to be used as a replacement 
for the standard bomb calorimetry method, but may be used 
when a rapid throughput of samples is necessitated. Thus, 
with further improvements, it may be possible to apply this 
to solid wood, greatly reducing the sample preparation and 
analysis time.
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