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Annual forest inventories present special challenges and opportunities for those analyzing the data arising from them. Here, we address one question currently
being asked by analysts of the US Forest Service’s Forest Inventory and Analysis Program’s quickly accumulating annual inventory data. The question is simple
but profound: When combining the next year’s data for a particular variable with data from previous years, how does one know whether the same model as
used in the past for this purpose continues to be applicable? Of the myriad approaches that have been developed for changepoint detection and anomaly
detection, this report focuses on a simple quality-control approach known as a control chart that will allow analysts of annual forest inventory data to determine
when a departure from a past trend is likely to have occurred.
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Annual forest inventory designs, such as the one initiated by
the US Forest Service’s Forest Inventory and Analysis (FIA)
program, present special challenges and opportunities. One

of those challenges can be thought of in the context of managing
user expectations. Given that new data are acquired each year, users
naturally expect new information to be available each year. This
expectation must be balanced with the realization that many vari-
ables of interest are sampled too sparsely on an annual basis to be
independently estimated over small areas using data gathered exclu-
sively from that small area during a single year. Therefore, most
annually updated estimates must rely on a modeled relationship
between the measurements of successive years. This requires that the
analyst applies a reasonable model in the first place and that the
analyst constantly monitors the data to ensure that some departure
from the model has not occurred. If a departure from the model is
indicated, then a more robust model that can account for the depar-
ture should be developed.

Any model (m) of the trend in a particular variable can produce
an expected value for the next year’s observation (Em[xt]). Occasion-
ally, the next year’s observation (xt) will be quite different from
Em[xt]. This anomaly might be due to natural sample variation in
the variable or it might be due to an actual departure from the
previous trend. Naturally, the early detection of a potential change
in a trend would be greatly beneficial to the analysis of data from
these annual inventories. Many techniques have been proposed to
address similar problems, such as those designed to judge whether
two samples were drawn from the same population (i.e., the two-
sample t-test or the rank-sum test) and those designed to detect a
change point in a trend (i.e., Lai 1995). Here we explore a useful and
simple technique developed in statistical process control, known as
the control chart (Shewhart 1931, Deming 1964).

In manufacturing, a graph known as a control chart is used to
distinguish between inherent process variation and variation that
indicates a change in the process. In its simplest form, the control

chart is a graph of successive sample means or sample ranges. The
chart consists of three lines, a center line, an upper control line, and
a lower control line. If one of the plotted values falls outside one of
the control lines, the process is judged to be out of control. In the
case at hand, if the next plotted value (of difference from the mod-
eled prediction) falls outside the control lines, we would suspect that
there might have been a shift in the trend of the variable of interest.
The inventory analyst would do further diagnostics to determine
whether a shift may have actually occurred and what might have
been the cause of the shift.

Establishment of the three control lines can be quite simple. The
center control line could represent the average of k sample means
for an in-control process (y�k). The upper control line is then com-
puted as UCL � y�k � c�/�n, whereas the lower control line is
computed as LCL � y�k � c�/�n. The SD(�) can be estimated by
using the square root of a pooled sample variance. We set c according
to the relative costs of committing a type I versus a type II error.
Recall that a type I error will be committed if we reject the null
hypothesis when it is true, and a type II error is committed if we fail
to reject the null hypothesis when it is false. For instance, the use of
c � 3 would yield a very small chance of committing a type I error
but a larger chance of committing the type II error of failing to
recognize a true change in the trend. In terms of hypotheses testing,
if we wish to test for a general change in the trend, we might assume
the following null and alternative hypotheses:

H0: There is no change in trend

H1: There has been a change in trend

In general, any control chart can be devised through the formula
E(S) � Z�/2�S, where S is a test statistic and �S is the SD of the test
statistic (Chandra 2001). Rather than using an overall sample mean,
we take the approach in the example below of plotting the detrended
value yt � xt � Em[xt] to compare against a horizontal line equal to
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0 (assuming an unbiased model), as exploited thoroughly by Dem-
ing (1964).

The remainder of this article is arranged as follows. First, we
describe an annual forest inventory sample design and the construc-
tion of a control chart for this design. Next, we present an example
of the use of the chart for consideration of the next measurement,
and finally we give some recommendations for analysts of data aris-
ing from similar designs.

An Annual Forest Inventory Design
For illustrative purposes, we will use the US Forest Service’s FIA

units’ temporally rotating, panelized forest inventory sampling de-
sign as an example. Here we give a brief explanation of the design,
which is well documented in Reams et al. (2005). In this design, the
sample plots are located in proximity to a systematic triangular grid
consisting of g mutually exclusive interpenetrating panels. The pan-
els are spatially balanced and contain an approximately equal num-
ber of sample plots. That is, if the total sample size is n, then each
panel consists of approximately n/g plots. The sequence of panels is
measured in order, with one panel measured each year, after which
the panel measurement sequence reinitiates. Therefore, if panel 1
was measured in 2001, it will also be measured in 2001 � g, 2001 �
2g, and so on. Panel 2 would then be measured in 2002, 2002 � g,
2002 � 2g, etc. Scott et al. (2005) describe the estimation methods
that FIA uses for within-panel estimates for this design. Patterson
and Reams (2005) gives an introduction to methods of combining
FIA panels for the establishment of time series. Since the initiation
of the rotating panel design for FIA, there have been quite a few
papers focusing on using trend models for the purpose of improving
annual estimates, such as Van Deusen (1996, 1999), Roesch et al.
(2003), Roesch (2007), Johnson et al. (2003), and Czaplewski and
Thompson (2009).

Without loss of generality, we will restrict this discussion to the
case of five annual panels (g � 5) sampling a defined area through
time. One panel will be measured each year, and starting with year 6,
20% of the plots (i.e., one panel) will be remeasured each year.
Roesch (2008) gives a useful explanation of this sample frame for the
interested reader.

Estimates of In-Control Variance
Assume that a process that has not been determined to be out of

control prior to time t is in control at time t. We can then estimate
the in-control process variance using the g prior panels measured
from time t � g through time t � 1:

�̂0
2 �

1

g �
i�t�g

t�1 1

�ni � 1�
�
j�1

ni

� xi, j � x� i�
2, (1)

where x�i is the sample mean at time i.

Example Data
The data were collected in Alabama and Georgia from 1997

through 2007. These data are available to the public online (US
Forest Service 2010). In this study, we will focus our interest on
estimates of basal area per acre over six broad ecological classifica-
tions for plantations of three size classes and natural stands. The
ecological classifications were obtained by pooling categories within
the FIA variable ECOSUBCD, described in McNab et al. (2005).
Table 1 lists the ECOSUBCD classifications as they were pooled
into one of six groups (EcoClass) for this study.

We partitioned the data from stocked plantations using the FIA
stand-size class code, which is a classification of the stand based on
the diameter distribution (US Forest Service 2008). Stand size class
1 has at least 25% of the stocking in sawlog sized trees (dbh of at least
11.0 in. for hardwoods and at least 9.0 in. for softwoods) and 50%
of the stocking in trees that are at least 5.0 in. diameter. Stand size
class 2 has less than 25% of the stocking in sawlog sized trees with
50% of the stocking in trees that are at least 5.0 in. diameter. Stand
size class 3 consists of stands with at least 50% of the stocking in trees
with diameters less than 5.0 in.

Figure 1 gives the proportion of land in each stand classification
throughout the period of interest for each EcoClass. In a production
system, a figure like Figure 1 could give a quick visual indication of
whether a particular population partition is large enough to support
an adequate sample. Population partitions that do not appear to be
large enough could be pooled with other population partitions.
Alternatively, the small partition could remain autonomous and
have no control chart produced, or it could have a control chart
produced but ignored.

Because our interest is in basal area per acre by stand origin and
size and more than one of these conditions may exist on a plot, we
consider the value of the basal area per acre estimate for each con-
dition to be proportional to the area of the condition on the plot.
This suggests the use of a weighted mean for our estimate of basal
area per acre in each category. That is, for the basal area per acre
estimate for condition k at time i, x�k,i � �j�1

ni wk,i xk,j, where the wk,j

are the normalized weights such that �j�1
ni wk,j � 1.

In the sequel, we will drop the subscript for condition. In this
case, for a weighted mean, we require an adjustment to the process
variance estimator (Equation 1):

�̂0w
2 �

1

g �
i�t�g

t�1 1

�1��
j�1

ni
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2� �j�1

ni
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2, (2)

Note that Equation 2 reduces to Equation 1 when the weights are
equal (i.e., wj � 1/ni).

Table 1. Ecological classifications used in this study as combined from those described in McNab et al. (2005).

EcoClass ECOSUBCD

1. Southern Appalachian Piedmont 231Aa, 231Ab, 231Ac, 231Ad, 231Ae, 231Af, 231Ag, 231Ah, 231Ai, 231Aj
2. Coastal Plains, Middle Section 231Ba, 231Bb, 231Bc, 231Bd, 231Be, 231Bf, 231Bj
3. Southern Cumberland Plateau Section and the

Central Interior Broadleaf Forest Province
223Ee, 223Ef, 223Eg, 231Ca, 231Cb, 231Cc, 231Cd, 231Ce, 231Cf, 231Cg

4. Southern Ridge and Valley and the Blue Ridge Mountains 231Da, 231Db, 231Dc, 231Dd, 231De, M221Dc, M221Dd
5. Gulf Coastal Plains, Lowlands and Flatwoods Sections 232Bg, 232Bh, 232Bi, 232Bj, 232Bk, 232Bl, 232Bm, 232Bn, 232Bo, 232Bp, 232Bs,

232La, 232Lb
6. Southern Atlantic Coastal Plains and Flatwoods Sections 232Ca, 232Cb, 232Cc, 232Cd, 232Ce, 232Cf, 232Cg, 232Ja, 232Jd, 232Je, 232Jf, 232Jg
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Figure 1. The proportion of land in each stand classification throughout the period of interest for each EcoClass.
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Suppose we consider three potential models for the trend in the
population mean:

M1: X� t � X� t�1,

M2: X� t � b0 � b1X� t�1, and

M3: X� t � b0 � b1X� t�1 � b2X� t�2.

The expected value (or prediction) of x�t�1 (E[x�t�1]) under M1
would simply be x�t, whereas the respective regression estimators
would be used under M2 and M3, with the parameters being esti-
mated from the data obtained up through the prior year.

To construct the control charts, we set y � x�t�1 � E(x�t�1), under
each of the three models. The mean line is drawn at y � 0, and the
control lines are established as described above. We produced charts
using a setting of c � 2 and c � 3. Setting c � 2 will result in a
control chart that would be relatively sensitive to the commission of
a type II error, as opposed to the higher setting c � 3, which would
be more sensitive to the commission of a type I error. In practical
terms, the higher setting for c will signal the possibility of a change in
the trend less often, as a higher threshold has to be crossed. Fewer
false alarms will have to be responded to, but there is a higher
probability that a true change in the trend will be missed. In addi-
tion, the three models have different memory lengths. Therefore, we
would expect to see lagged reactions between models, within the
control chart, due to a true change in a variable’s trend. Our purpose
for introducing three different models is not to use the control chart
to choose the best model but rather to show how control charts
differ in sensitivity to models of varying memory length and how
these differences might be used as an interpretation mechanism. We
compare the models beginning in the year 2004 through the year
2007, under the assumption that there would be enough supporting
data for the models in most of the conditions by that time.

Results and Discussion
Tables 2 and 3 give a synopsis of the resulting 144 control charts

into one of four outcomes:

1. The process was in control for the entire observation period (I)
2. The process was out of control for the entire observation period

(O)
3. The process came into control during the observation period

(i)
4. The process went out of control during the observation period

(o).

Note that the fourth outcome (o) is the one that would trigger an
alarm. The alarm would signal a possible change in trend or the

possible rejection of the assumed trend model when combining the
next year’s data, for a particular variable, with data from previous
years. In the two tables, the outcomes are given in a 3-tuple for M1,
M2, and M3, respectively, for each stand classification and EcoClass
combination. That is the 3-tuple Iii indicates that outcome I oc-
curred for M1, whereas outcome i occurred for M2 and M3. Table
2 gives the results when c was set equal to 2, and Table 3 gives the
results when c was set equal to 3.

We had 144 potential charts (four stand classes in six EcoClasses
for three models and two settings of c). We grouped the models in a
chart for each stand class and EcoClass. Of the charts resulting from
a setting of c � 2, 24 were in control for the entire observation
period of 2004–2007, 14 were not in control for the observation
period, 25 started out of control but came into control before the
end of the observation period, and the rest went out of control
during the observation period.

In comparing Table 2 with Table 3, note the outcome o occurred
nine times in Table 2, when c was set equal to 2, and only three times
in Table 3, when c was set equal to 3. Setting c � 3 is a very common
recommendation in the process control field because there is usually
a high cost associated with a triggered alarm, such as shutting down
an entire production line. In the case at hand, we are more con-
cerned with making the invalid assumption that the next year’s data
are compatible with previous years’ data in the same way (or under
the same model) as has been assumed true in the past. This concern
is better addressed by setting c lower, as we have done for the results
summarized in Table 2.

For brevity, we present only the control charts for the setting of
c � 2 in EcoClasses 5 and 6, both on the coastal plain with a mix of
natural stands and plantations. We see in Figure 2 for EcoClass 5
that the three models give very similar results in all three size classes
in the plantations. In the charts for plantation size class 3 and natural
stands, plotted values do occur slightly outside the control zone.
Note, however, that the three models show coincident results in the
out-of-control region in both cases. In lieu of any prior or subse-
quent differentiation of the model results, an undifferentiated out-
of-bounds result would probably be due to sampling variation as
opposed to a true change in trend. However, because there was, in
both of these cases, some prior within-bounds differentiation be-
tween the models, a deeper investigation into a potential change in
trend is warranted.

Figure 3 plots the results for EcoClass 6. Note that these results
for plantation size class 2 give a much clearer indication of a change
in trend than the more subtle results in Figure 2. In this figure, the
longest memory model (M3) is clearly differentiated and out of
bounds.

Table 2. A synopsis of the control charts (with c � 2) as a 3-tuple
of four potential outcomes for models M1, M2, and M3, respec-
tively, for each stand classification and EcoClass combination.

Stand classification

EcoClass

1 2 3 4 5 6

Plantations
Size class 1 IIi III OOO iii III III
Size class 2 ooo Iii iii OOO III ooO
Size class 3 iiO IIO iOO III ooo III

Natural stands iiO iio iii iOO iii Iii

The potential outcomes were as follows: the process was in control for the entire observation
period (I), the process was out of control for the entire observation period (O), the process came
into control during the observation period (i), and the process went out of control during the
observation period (o).

Table 3. A synopsis of the control charts (with c � 3) as a 3-tuple
of four potential outcomes for models M1, M2, and M3, respec-
tively, for each stand classification and EcoClass combination.

Stand classification

EcoClass

1 2 3 4 5 6

Plantations
Size class 1 III III OOO III III III
Size class 2 III Iii iii IIO III IIi
Size class 3 iiO IIo iOO III III III

Natural stands Iii III III ioo III III

The potential outcomes were as follows: the process was in control for the entire observation
period (I), the process was out of control for the entire observation period (O), the process came
into control during the observation period (i), and the process went out of control during the
observation period (o).
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Figure 2. The control chart for the detrended basal area estimates for the three models (M1, M2, and M3) in each of the stand
classifications for EcoClass 5. Values falling above the top line (the upper control limit) or below the bottom line (the lower control limit)
are out of control.
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Figure 3. The control chart for the detrended basal area estimates for the three models (M1, M2, and M3) in each of the stand
classifications for EcoClass 6. Values falling above the top line (the upper control limit) or below the bottom line (the lower control limit)
are out of control.
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Conclusion
The control chart is a simple and useful way for practitioners to

determine whether a change in a past trend is likely to have occurred.
As in most time series approaches, decisions will be made with more
confidence as the length of annual observations increases. As with
the advantage of increasing sample size, this effect is asymptotic in
nature. The control chart approach for detecting changes in trend is
only helpful for well-observed trends, i.e., those that are expected to
be in control most of the time. When a chart is never in control, it is
usually assumed to indicate that not enough data are available. In
this example, this can be the result of either high within-condition
variance, especially in the natural stands, or a small amount of a
condition within an EcoClass.

The interested reader can reproduce all of the charts by down-
loading the data from the website given above and following the
procedure that we describe. Charts that stay in control through the
entire observation period show no evidence of a change in trend and
do not need to be considered further. Charts that are out of control
for the entire observation period result from conditions for which
there are too few observations and should therefore be ignored. This
is in keeping with the historical use of control charts: the charts are
not considered valid or useful until the process is in control (that is,
we have enough information to begin monitoring the chart). Once
the process is in control, the charts provide an occasional momen-
tary distraction for the engineer (or scientist) but are otherwise ig-
nored until the process goes out of control. Analogously, in annual
forest inventories, an analyst would keep using a particular estimator
for combining the next year’s data with the previous years’ data as
long as the control chart based on the estimator’s underlying as-
sumptions does not suggest that a change in those assumptions is
appropriate. Once the chart goes out of control, the inventory ana-
lyst, much like the engineer who would shut down the production
line until the problem is resolved, would reconsider the optimal use
of the next year’s data and develop a model that is appropriate for the
new conditions.
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