
Harvest Choice and Timber Supply Models for Forest Forecasting

Maksym Polyakov, David N. Wear, and Robert N. Huggett

Abstract: Timber supply has traditionally been modeled using aggregate data, whereas individual harvest
choices have been shown to be sensitive to the vintage and condition of forest capital stocks. In this article, we
build aggregate supply models for four roundwood products in a seven-state region of the US South directly from
stand-level harvest choice models applied to detailed forest inventories. These models allow for a more precise
accounting of the biological and economic underpinnings of supply and support forecasting of changes in forest
inventories with a high degree of detail. Estimation results support use of the approach. The elasticities of
softwood and hardwood sawtimber supply, 0.34 and 0.31, respectively, are consistent with the elasticities
reported by previous studies. The elasticities of softwood and hardwood pulpwood supply (respectively, 0.062 and
0.025) are much lower than previous studies found for pulpwood supply, and cross-price elasticities indicate a
dominant influence of sawtimber markets on pulpwood supply. Results generally indicate complementarity between
sawtimber and pulpwood supply in the short run. This approach can provide a means of predicting the supply
consequences of exogenous factors that could alter forest inventories, e.g., climate change and invasive species, and
support regular updating of supply models as new inventory data are recorded. FOR. SCI. 56(4):344–355.
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FORECASTING FOREST CONDITIONS requires insights
into the effects of human activities, most especially
timber harvesting. Harvest choices by private and pub-

lic landowners have been studied extensively over the past
three decades, and this body of research shows that landowner
choices are somewhat predictable in the sense that they are
generally consistent with economic theory. That is, timber
harvests and forest investment activities are positively corre-
lated with timber prices and negatively correlated with various
site features that proxy for harvest costs. Accordingly these
analyses reflect an underlying set of production possibilities
and imply an aggregate timber supply that is sensitive to
changes in prices and other factors that affect harvest deci-
sions. Several timber supply models (e.g., Adams and Haynes
1980, Newman 1987) have been estimated from aggregated
inventory data for broad regions, but few studies have explic-
itly linked aggregate timber supply models to observations of
individual harvest behavior (an exception is Prestemon and
Wear 2000). The objective of this article is to use harvest
choice models applied to standard forest inventory data to
derive complete aggregate supply models for a broad region.

Our motivation for constructing these models is to provide
a supply model that can better link wood product market
activities to timber harvest activities in a way that precisely
describes the implications for forest inventories. Harvests can
be viewed as withdrawals from a standing inventory of forests
characterized by variable site qualities, species composition,
and vintages and future supply depends, not only on how much
is harvested, but also on which types of stands are harvested.
Given an initial inventory, production possibilities in any given
period are intrinsically defined by all preceding harvest activ-
ity, biological growth, and other disturbances. Unlike other

natural resources such as fisheries, where inventories might be
adequately described in terms of total biomass, knowing the
quality distribution of forest inventory is essential for defining
future harvest possibilities. To estimate harvest choice models,
we use a two-period formulation of the intertemporal choice
problem (e.g., Max and Lehman 1988, Kuuluvainen and Salo
1991, Ovaskainen 1992, Bolkesjo and Solberg 2003) applied
to individual inventory records (plots). Predicted probabilities
of harvests are then linked to plots, and the area-frame struc-
ture of the inventory is used to simulate regional supply
responses.

We test our models using several panels of US Forest
Service Forest Inventory and Analysis (FIA) forest inven-
tories for seven states in the southeastern United States
(Miles et al. 2001). These ongoing inventories are the best
available and the only comprehensive data on forest condi-
tions in the US and provide insights into management
activities through regular remeasurement of plots. However,
because these inventories are designed to provide precise
estimates of variables that describe standing forests, they are
not optimally designed for the study of harvest choice [1].
As a result, we must design methods that are consistent with
the general economic theory regarding harvest choice, yet
adapted to the idiosyncrasies of survey methods. This ap-
proach is ultimately justified by our need to provide precise
forecasts of FIA inventories to support multiple resource
analysis within a national assessment framework [2].

Theory

Timber supply models summarize the production behav-
ior of forest managers in a market setting. Their conceptual
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foundation is the biological/physical production possibili-
ties of timber growing and inventory adjustment, as well as
information on the objectives of forest landowners. When
sector-level timber supplies are to be examined, the choices
of owners with heterogeneous objectives managing hetero-
geneous forestland must be aggregated. This is the essential
challenge of timber supply modeling. In this section, we
first describe the theory of harvest choice for a well-defined
even-aged management problem. We then describe the
more general cases measured by forest inventory plots and
how to adopt the theory to these more general cases.

Harvest Choice

Underlying any economic study of supply is a production
function that translates inputs into outputs. For timber sup-
ply from even-aged management, the inputs generally in-
clude the age of the forest, a, the level of forest management
effort, E, and the quality of the land, q (e.g., Binkley 1987,
Wear and Parks 1994). In the simple, even-aged case, mer-
chantable timber volume per unit area, V, is given by the
yield function,

V � v�a, E; q�. (1)

The marginal physical products of age and management
effort are both positive and decreasing in the relevant ranges
of age and effort. Provided that the forest manager’s objec-
tive function and discount rate can be specified, then the
forest yield function can be used to define whether and
when a forest stand would be harvested. For example,
consider a manager, who faces prices p for timber and w for
management effort (in this case, effort used to reforest the
land after harvest). When the land is maintained indefinitely
in forest use (i.e., forestry is the high-value use), the man-
ager will maximize profit by selecting harvest ages and
levels of effort E to optimize:

�F � max�a, E��
j�0

�

�pv�a, E; q�e�ra � wE�e�raj, (2)

where r is the interest rate and j is the period. The optimum
profit obtained, �F, is the present net value for an infinite
sequence of identical harvest ages. This formulation pro-
vides a valuation for forestland of quality q when there are
no trees present at the beginning of the manager’s planning
horizon (the bareland value). The manager’s problem can
easily be modified to account for standing timber invento-
ries; however, when profit from timber enterprise is the only
argument in the objective function (cf. Hartman 1976) the
solution for optimum age (a*) is unaffected by the manag-
er’s starting inventory of timber. With this definition of
profit, the manager recognizes that there is an opportunity
cost to holding old trees rather than faster-growing young
trees and that this opportunity cost influences the harvest
timing decision.

As long as the manager’s optimum timber profits are
positive and greater than the value of land in alternative
uses, then the manager’s solution to Equation 2 will identify
profit maximizing harvest dates, harvest volumes, and lev-
els of regeneration effort. In a two-period model, in which
landowners simply determine whether to exercise or delay

the harvest, harvests at the optimal age are revealed where
the marginal benefits from delaying the harvest are just
equal to the marginal opportunity costs of the delay (e.g.,
Max and Lehman 1988). However, the pure single-stand,
even-aged management case rarely describes the actual
management scenario. Instead, management is often driven
by complex, multiple benefit objectives, forests are not
even-aged, and harvests remove only a portion of the forest.

When forest management decisions are guided by utility
rather than profit maximization (i.e., objectives include
more than marketable timber products), the forest manage-
ment problem is more complex than the problem described
by Equation 2. For example nonpriced amenity services in
the manager’s objective function or forest-level constraints
may bind on stand-level decisions (see Kuuluvainen et al.
1996, Pattanayak et al. 2002). However, even when these
questions are addressed in the manager’s problem, similar
decision rules result (i.e., harvest occurs when marginal
benefits and costs of delaying harvest are balanced; see
Swallow and Wear 1993). If we define the current price
level as p, the manager’s optimum harvest age, a*, is given by

a*�p; q� � a : MBD�a, E; q� � MOC�a, E; q� (3)

given MOC � 0,

where MBD is marginal benefits of delaying harvest, MOC
is marginal opportunity costs of delay, and a* (optimum
harvest age) depends on market prices (p). This optimum
age is not necessarily the same as that given by the timber-
only solution and may vary over time as prices are revised.
Furthermore, the relationship between MBD and MOC need
not be viewed as strictly deterministic or static and would
embody the risk preferences and price expectations of the
landowner. In addition, this formulation can be generalized
beyond a single timber product to include, for example, both
sawtimber and pulpwood products. The very general notion
is that once the expected marginal returns to delaying har-
vest are no longer greater than the marginal opportunity
costs of delaying the harvests (i.e., returns to harvesting) the
harvest age is defined. This then can be used as a two-period
model where as long as MBD � MOC for delay between
the two periods, then harvest is deferred. Otherwise, harvest
occurs.

Another complicating factor and one that is particularly
germane when one is modeling choices based on observa-
tions from the FIA inventories is that a forest plot may not
have a unique age. Our harvest choice model can, however,
readily be generalized to address this situation. That is, the
decision to harvest should follow a similar two-period cal-
culus in the multiple age case as long as convexity condi-
tions hold and future volumes can be predicted [3]. The
decision still hinges on a comparison of the benefits and the
costs of delaying harvests so as long as the MBD and MOC
values can be calculated for the stand for the evaluation
period, and then the decision rules regarding harvest choice
might be deduced. The complication means that the stan-
dard and convenient growth model (Equation 1) does not
apply to the analysis. Rather, a two-period model is implied
where harvest occurs (H � 1) when the MBD is equal to or
less than the MOC for a forest plot where these values
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depend exclusively on the attributes of the plot (which may
or may not include a unique age record) and the ability to
forecast end-of-period values,

H � �1 if MBD(q) � MOC(q)
0 otherwise �. (4)

That is, the decision variable in this formulation is sim-
ply whether or not to harvest at the beginning of the analysis
period (rather than the age at which a harvest might occur)
and depends on the benefits and opportunity costs of har-
vesting. It therefore depends on the ability to estimate net
harvest benefits for the two periods being analyzed.

Yet another complication arises when only a part of the
stand is harvested (e.g., a third alternative of thinning or
selective harvest). We can readily extend model 4 to allow
for three choices: “partial harvest,” “complete harvest,” and
“no harvest.” If we view “marginal opportunity cost of
delay” in model 4 as the “marginal benefit of harvest” and
define MB(hq) as the marginal benefit of management
decision h conditional on q (where h could reflect any
number of choices, including no action), then 4 can be
expressed as

H � max�h�MB�h�q�. (5)

This model could be generalized to any number of manage-
ment decisions as long as we can predict growth of the stand
and calculate the marginal benefits of each management
decision.

Aggregate Supply

The challenge of modeling and evaluating timber supply
is in constructing some meaningful aggregation of the in-
dividual stand harvest decisions to define the relationship
between aggregate harvest quantity and price. Neoclassical
models of supply build on the assumption of a typical
producer and, accordingly, develop from a prototypic pro-
duction function such as Equation 1 (see Bolkesjo and
Solberg 2002). However, because timber inventories are
heterogeneous in terms of vintage, species, and condition
(they can be viewed as complex capital stocks), and timber
is produced from forests allocated to a variety of uses with
joint products, the simple production function does not hold.
Instead, each forest quality type can be viewed as having a
distinct production function. This argues for constructing
timber supply from a systematic aggregation of individual
harvest choices across the quality distributions defined by a
forest inventory:

St � �
j�1

J

Aj � v�qj� � 	�hj�q, pt��, (6)

where Aj is the area of forest in quality class j [4], 	 is the
harvest intensity of management decision hj (from Equation
5), which depends on the quality class of the stand as
described above and is a function of quality distribution of
the forest existing at the beginning of the period (indexed by
t) and price (p). Harvest volume (v) is indexed by quality
classes that are defined by variables such as diameter, site
index, and forest management type. For a clear felling, v is

simply equal to the standing merchantable volume at the
beginning of the period. Harvest intensity is equal to 0 for
no harvest and 1 for final harvest. In the case of partial
harvests, it can be defined as a function of variables that
describe the quality distribution of material on the plot, as
well as on revenue and cost variables as found in the harvest
choice equation. Each price yields an aggregate harvest
response (i.e., for all plots), and the supply model can be
approximated by simulating these harvest responses across
a range of prices.

The supply model can be extended to address K multiple
timber products by indexing the harvest volume by product
class so that supply of product k is defined as

Sk,t � �
j�1

J

Aj � vk�qj� � 	�hj�q, pt�� �k. (6
)

Empirical Models
Harvest Choice Model

An empirical application of the harvest choice model
described in Equation 5 requires observations of harvest
decisions for a sample of forest plots along with estimates of
the benefits for each of all possible management decisions
including no harvest. With forest plot measurements at
times t and t 
 n, the utility-maximizing landowner faces a
choice among several management options, for example, no
harvest, partial harvest (including thinning), or final harvest.
Extending the two-period harvest choice model (Provencher
1997, Prestemon and Wear 2000) to multiple management
decisions, the benefits of each choice h � H can be ex-
pressed as

�t�h� � u�h� � p�tvt�q�h� � c�q� � ��q�

� �E
p�t
1vt
1�q�h� � c�q� � ��q��, (7)

where u(h) is the nontimber utility associated with the stand
under management decision h, pt is the vector of prices of
roundwood products, vt(q�ht) is the vector of volumes of
roundwood product harvested in period t with management
decision h implemented in period t, and vt
n(q�ht) is the
vector of roundwood volumes in period t 
 n if manage-
ment decision h was implemented in period t, c is the cost
function that depends on site characteristics, �(q) is the
discounted residual value of the harvested stand (equal to
the familiar bareland value if a clearcut is implemented, � is
the discount factor, and E is the expectations operator. If
h � no harvest, vt(q�ht) � 0 and vt
n(q�ht) are the volumes
of roundwood products in the stand grown for n years; if
h � partial harvest, vt(q�ht) are the volumes of the removed
roundwood products and vt
n(q�ht) are the volumes of
roundwood products in the retained part grown for n years;
and if h � final harvest, vt(q�ht) are the volumes of round-
wood products in the stand and vt
n(q�ht) are the total
volumes of roundwood products in the regenerated stand
grown for n years.

Unobservable components of value may also accrue to
management choices. For empirical work we rely on these
benefits being correlated with observable physical qualities
of the stand. Many formulations have been proposed, from
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Hartman’s model (1976), which simply assumes that non-
timber values are positively correlated with age, to specific
functional forms, which link stand growth to the provision
of wildlife habitat (e.g., Swallow et al. 1993, Uusivouri and
Kuuluvainen 2005). Here we simply assume that total ben-
efits have measurable and random components, (�t(h) �
	t(h) 
 
(h)t), and that benefits are a function of manage-
ment decision, prices, and observable attributes of the stand
such as volume and site characteristics that affect growth,
nontimber utilities, and management costs, 	t(h) �
	t(h, p, q). A rational landowner is expected to choose a
management decision with the greatest benefits. The prob-
ability of selecting management decision h is

Pr�h�p, q�

� Pr�	t�h, p, q� � 
t�h� � 	t�k, p, q� � 
t�k�

�k � H, k � h)

� Pr�	t�h, p, q� � 	t�k, p, q� � 
t�k� � 
t�h�

�k � H, k � h). (8)

Assuming that random components are independent and
identically distributed (i.i.d.) with a type I extreme value
distribution, the probability of choosing management deci-
sion h can be estimated using a conditional logit model
(McFadden 1973):

Pr�h�p, q� �
exp�	t�h, p, q��

�k�H exp�	t�k, p, q��
. (8
)

The estimated discrete choice model can then be used to
assign predicted probabilities of harvest to each plot within
the inventory, given a set of prices, and harvests can be
simulated using random number draws evaluated against the
distributions of these predicted probabilities.

Model Validation

Model validation of discrete choice models is challeng-
ing because estimated models yield probabilities of man-
agement choices that need to be compared with discrete
outcomes. For example, the model predicts that a sample
plot has an 0.85 chance of remaining unharvested, a 0.03
chance of being finally harvested, and a 0.12 chance of
being partially harvested. Evaluating performance of the
model based on the percentage of correct predictions pro-
vides only limited insights, especially where low probability
events are involved. For example, assigning the manage-
ment activity according to the highest probability yields no
harvest for most of the sample plots because the no harvest
decision often has the highest probability. Substantial im-
provement in the predictive power of the low-probability
events might not register any change in the percentage of
correct predictions.

To account for these issues, we evaluated the forecasting
performance of the conditional logit model using informa-
tion indices and statistics developed for evaluating perfor-
mance of discrete choice models by Hauser (1978, see Wear
and Bolstad 1998 for an application to land use modeling).
The information index, I(A; X), quantifies the additional

information provided by the explanatory variables through
the estimated model in comparison with a null model,

I�A; X� �
1

N �
n�1

N �
h�1

H


nh ln�p�ah�xn�

p�ah�
�, (9)

where p(ah) is the prior likelihood of the management
decision h (based on the null model), p(ah�xn) is the man-
agement decision h predicted by the model, and 
nh is the
binary variable indicating management decision h observed
at sample plot n. The information index is computed by
summing over all observations in the data set (N), and the
contribution for each observation is positive when the prob-
ability of the correct choice from the predicted model is
greater than the probability for the null model, negative
when the modeled probability is lower than the null, and
zero when the null and modeled probabilities are equivalent.
The information index can be compared with the expected
information provided by the model

EI�A; X� �
1

N �
n�1

N �
h�1

H

p�ah�xn�ln�p�ah�xn�

p�ah�
�. (10)

The information index I(A; X) is normally distributed
with a mean of EI(A; X) and a variance of V(A; X),

V�A; X� �
1

N �
n�1

N ��
h�1

H

p�ah�xn��ln�p�ah�xn�

p�ah�
��2

� ��
h�1

H

p�ah�xn�ln�p�ah�xn�

p�ah�
��2�, (11)

which provides a test of the accuracy of the model.
The index of the prior entropy,

H�A; X� � � �
h�1

H

p�ah�ln�p�ah��, (12)

defines the uncertainty inherent in the null model and allows
measuring the proportion of uncertainty explained by the
estimated model

U2 �
I�A; X�

H�A; X�
. (13)

Furthermore, the log-likelihood ratio (LLR) � 2n � I(A; X)
is �2 distributed with degrees of freedom equal to the
number of coefficients in the model and allows testing the
significance of the empirical model, i.e., the null hypothesis
that the model provides no additional information compared
with the alternative model.

Aggregate Supply Model

The harvest choice model as implemented above pro-
vides a means of predicting the probability of harvesting for
each forest plot within a measured inventory and a given
price level consistent with historical behavior. Although the
price is constant for all plots across the inventory during the
historical period, observed revenue levels and revenue
changes vary due to considerable variability in the volume
and volume growth estimated for each plot. We can there-
fore deduce the effects of a price change on harvesting
activity through the revenue argument in Equation 8 by
simulating harvest outcomes for multiple price realizations.
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Equation 8 can be used to generate a vector of harvest
probabilities for any price scenario. Accordingly, by apply-
ing Equation 8 to a forest inventory, we can generate a set
of timber supply responses for a price scenario by aggre-
gating harvested volume over probabilities of all modeled
management decisions:

Sk,t � �
j�1

J �
h�H

Aj � vk�qj�

� 	�hj� � Pr�hj�q, pt� �k. (14)

This defines the mean expected timber harvest response,
given the distribution of forest types and area expansion
factors at the beginning of the period. Because of the error
structure of the harvest probability model, Equation 14 can
generate multiple realizations of supply for any given price.
To summarize the full supply model, we generate a large
number of estimates of timber supply across a broad range
of prices using the harvest probability model applied to the
measured inventory. We summarize these simulated data
(pseudodata) with K regression equations that define the
natural log of each timber output as a function of the natural
log of all timber prices. Because prices are exogenous for
the individual decisionmakers, this can be viewed as a pure
model of timber supply conditioned on the existing inven-
tory (i.e., supply is identified with respect to demand):

ln�Sk,t,It
� � �t � �

l�1

K

�tln�pl� � 
k �k. (15)

The I in the subscript of supply defines Equation 15 as a
set of timber supply functions conditioned on the inventory
at the beginning of the period. First, we estimate the supply
Equation 15 for each state. Defining a regional supply
requires a horizontal summation of the resulting supply
curves. We accomplish this by scaling the supply according
to the time period between inventories (i.e., we define an
annual supply rather than periodic), calculating the pre-
dicted supply for each state for a common set of price
realizations [5], and summing up the supply responses for
each of these price realizations. As a final step we estimate
the supply Equation 10 for these aggregate responses to
define a set of supply elasticities for each forest product.

Data and Estimation
Forest Inventory Data

With this general theoretical and empirical framework
we investigate harvest choice and timber supply implica-
tions for a seven-state region in the southeastern United
States. Alabama (AL), Florida (FL), Georgia (GA), North
Carolina (NC), South Carolina (SC), Tennessee (TN), and
Virginia (VA) reflect a wide variety of forest and social
conditions for testing our methods. Along the Atlantic
Coastal Plain, forest cover primarily comprises pine types
interspersed with lowland (wet) palustrian hardwood for-
ests. A large portion of VA, NC, and SC along with a
smaller portion of GA and AL is contained within the
Southern Appalachian Mountain Piedmont region. Here
mixed pine-hardwood and especially upland hardwood

types predominate. A smaller, yet significant, portion of the
region is in the Southern Appalachian Mountain region.

Each of these seven states has been surveyed multiple
times by the FIA program of the US Forest Service. How-
ever, the dates of forest surveys are different across the
seven states. Accordingly, we estimate harvest choice mod-
els for each state individually and account for aggregate
supply through a horizontal summation of annual state level
supply curves.

Until the late 1990s FIA surveys were conducted on a
periodic basis (all plots within a state were remeasured
during a single year every 5–10 years) using a variable
radius plot design. Since then, FIA has converted to an
annual approach (approximately 20% of plots are remea-
sured annually and all sample plots are remeasured on a
5-year cycle) with a fixed radius plot design. In each state,
we selected the most recent pair of inventories with the
same design to estimate these models. In FL we use two
periodic inventories (1987 and 1995) with the variable
radius plot design. In other states, we use two inventories
with the fixed radius plot design: AL 2000 and 2005, GA
1997 and 2004, NC 2002 and 2006, SC 2001 and 2006, TN
1999 and 2005, and VA 2001 and 2007. In AL, TN, and
GA, the beginning inventory was a periodic inventory and
the second was an annual inventory, and in NC, SC, and VA
both inventories were annual inventories conducted over a
5-year period, so the actual remeasurement period in these
six states varied between 1 and 8 years.

FIA data are stored in tables, three of which are used for
our analysis (Miles et al. 2001). The plot, condition, and tree
tables provide information on the overall plot characteris-
tics, discrete landscape features, and measures associated
with individual trees larger than 1 inch in diameter, respec-
tively. Each plot represents a larger portion of the landscape
to estimate the total inventory; the representative area is
called the expansion factor.

Data on volumes by product classes, harvest choices,
location (relative to the general regions described above),
and other site characteristics were compiled for matched
plots for the t and t 
 1 inventories. Volume of growing
stock and volume of sawtimber volume were calculated
from the plot records. We estimated the pulpwood volume
as the difference between the sawtimber volume and the
total growing stock volume. As a validation step we used
expansion factors to generate total values for survey units,
which could then be compared with published reports (for
example, the following reports for North Carolina: Sheffield
and Knight 1986, Johnson 1991, Brown 2004) and confirm
accuracy of the algorithms employed in this analysis. Grow-
ing stock and trees per acre were delineated by broad
species type, i.e., softwood and hardwood, using the species
group variable recorded in the FIA database.

Several other variables were calculated for each plot by
combining information from the plot, condition, and tree
tables in the FIA database. Forest type and stand origin were
combined to create a broad management class variable
coinciding with the definition in published reports. The five
broad management classes were natural pine, planted pine,
oak-pine (further referred to as mixed pine), upland hard-
wood, and lowland hardwood. Dummy variables were used
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to identify the major physiographic class (xeric, mesic, or
hydric) and the substate survey unit (e.g., mountain, coastal
plain, or piedmont) for each plot location.

We determined whether the stand was harvested during
the remeasurement period and identified the type of harvest
using information about removals in the FIA data set. To
calculate volume removed during the remeasurement pe-
riod, annual removed volume is multiplied by the length of
the remeasurement period. The removals rate is defined as
the ratio of removed volume to the sum of removed and
retained volume. We define a final harvest if the removals
rate is greater than 75%, and a partial harvest if the removals
rate is between 5 and 75%. The removals rate for a partial
harvest was calculated as the average removals rate from all
stands that were identified as partially harvested.

Other Data

To compute the revenue variables needed for the harvest
choice model, we required prices, volume of removals dur-
ing the observation period, and volume of the retained part
of the stand at the end of the observation period for four
major products (softwood sawtimber, softwood pulpwood,
hardwood sawtimber, and hardwood pulpwood) and for
each of the possible management decisions (final harvest,
partial harvest, and no harvest). Product prices were defined
as the average of stumpage prices recorded during the
observation period for each survey unit by Timber Mart
South, a regionwide price reporting service (Norris Foun-
dation). The volumes of the removals for the management
decision final harvest were taken from the initial inventory.
Total volume of removals for the management decision
partial harvest is calculated by applying harvest intensity to
the volume of growing stock. The proportions of softwood,
softwood sawtimber, and hardwood sawtimber in the re-
moved part of the stand are different from proportions in the
original stand. For example, more sawtimber is extracted
during selective harvest of natural pine stands. We model
the proportion of roundwood removed using removals data
of partially harvested stands and proportions of these prod-
ucts in the original stand as explanatory variables. The
retained volumes of the four roundwood products after
partial harvest are calculated by subtracting removed vol-
umes from the volumes of these products in the original
stand.

To calculate the expected revenue at the end of the
period, we forecast the volumes in each product class. The
changes in softwood and hardwood growing stock volumes
and changes in the proportion of softwood and hardwood
sawtimber during the remeasurement period were forecast
with regression using unharvested plots. Because of varia-
tion in the remeasurement period among individual FIA
plots, especially in the states where FIA is in transition from
periodic to annual inventory design, the change in softwood
and hardwood growing stock was normalized to the average
remeasurement period. The change in hardwood and soft-
wood growing stock is a function of age, mean quadratic
dbh of the growing stock trees, volume of softwood and
hardwood growing stock, site index, and basal area of
softwood and hardwood trees with dbh �12.7 cm (5 inches)

at the beginning of the remeasurement period. The basal
area of trees with dbh �12.7 cm is included to account for
ingrowth, as volume of these trees is not recorded in the FIA
database. As the stand grows the proportion of sawtimber
volume increases, especially in pine plantations. A change
in the proportion of sawtimber in softwood and hardwood
growing stock is a function of the proportion of sawtimber
and mean quadratic dbh of the growing stock trees at the
beginning of the period.

These models were applied to every stand to calculate
the volumes of four roundwood products for each of three
possible management decisions: the stand is not harvested
(models are applied to the parameters of the original stand);
the stand is partially harvested (models are applied to the
retained part of the stand, basal area is reduced proportional
to the assumed harvesting intensity, and dbh and age are not
changed); and the stand receives a final harvest (volumes,
dbh, age, and basal area reset to 0). Following Equation 7,
the discounted revenue for a specific management decision
was calculated as

R�q�h� � p�tvjt�q�h� � �
p�t
1vt
n�q�h��. (16)

Harvest choice models were estimated for AL, FL, GA,
NC, SC, TN, and VA using conditional logit models. For
each of the states we estimated a single model of harvest
choice with forest management type-specific coefficients
for discounted revenues and choice-specific constants. For
the state of FL we used two periodic inventories with an
8-year remeasurement period. For the states of AL, GA,
NC, SC, TN, and VA, where we modeled change between
a periodic inventory and an annual inventory or between
two annual inventories, the remeasurement periods in our
samples varied between 1 and 8 years with a mean remea-
surement period of about 5 years. Because probabilities of
harvest or partial harvest are proportional to the observation
(remeasurement) period, we also incorporated log of the
remeasurement period into the model,

Ph �
exp��fh � �fR�q�h� � �hS � 
hD � �hO � �hT�

�
k�H

exp��fk � �fR�q�k� � �kS � 
kD � �kO � �kT�
,

(17)

where �fh is the forest type-choice specific constant (�h �
0 @h � H), �f is the forest type specific coefficient for
discounted revenue, S is the proxy for harvesting costs
(slope or hydricity of the soil, depending on the state), D is
the tree diversity index (Shannon’s index), O is the owner-
ship (private or public), �h, 
h, and �h are estimated coef-
ficients (�h � 0, 
h � 0, �h � 0 @h � H), f is the forest type
(pine plantations, natural pine, mixed pine, upland hardwoods,
and bottomland hardwoods), T is the log of the remeasurement
period, and �h is the coefficient (�h � 0 @h � H). Furthermore,
we introduced dummies for physiographic regions: “Coastal
plains” for AL and GA and “South” for FL to capture regional
differences in harvesting behavior. For AL, GA, NC, SC, TN,
and VA, the unit of observation was a “condition,” a part of the
plot, and we used “condition proportion” as a weight in model
estimation.
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Results
Harvest Choice Models

Estimation results are presented in Table 1. Based on the
LLR test against the model with an intercept only, we reject
the null hypothesis that the equations have no explanatory
power (P � 0.01) for all cases.

The intercepts for forest type-choice combinations define
a matrix of probabilities for management alternatives: the
greater the value of a particular constant, the higher the
probability of the corresponding alternative, ceteris paribus.
Constants corresponding to no harvest, which have the
highest probabilities, are restricted to zero for model iden-
tification and constants for the harvest alternatives (with
lower probabilities) are all negative, as expected.

We expect the probability of selecting each management
alternative to be positively related to the discounted value of
its net revenue. Twenty-eight of twenty-nine coefficients for
the discounted revenue variable are positive (the exception
is the coefficient for upland hardwoods in GA) and 12 are
significant at the 1% level. Only the coefficient for hard-
woods in AL, GA, NC, and SC are not significant at 10%.
This is probably related to the lower frequency of harvest in
hardwood and mixed forest types in these states.

The coefficients for public ownership indicate some dif-
ferences between harvest probabilities for public and private
lands. Public forests are less likely to be finally or partially
harvested (except in TN, where public forests are more
likely to have a final harvest). Nine of 14 coefficients are
significant (P � 0.10). This is generally consistent with the
assumption that public forests are managed primarily for
environmental, aesthetic, and recreational uses. However,
this result may obscure differences between management of
state forests with more of a profit-making mandate and
national forests where recreation and other nontimber val-
ues are more dominant. Sample size precluded us from
distinguishing between these different public ownership
types.

We expect that the probability of final or partial harvest
is negatively associated with the slope of the site and
hydricity of the soil due to higher harvesting costs on steep
slopes or poorly drained sites. Steep slopes negatively affect
the probability of final harvest in AL, GA, NC, TN, and VA,
whereas hydric soil decreases the probability of final har-
vest in FL (P � 0.10).

We hypothesize that tree diversity (e.g., diversity of
species, age, or diameter) is a factor that could affect

Table 1. Estimation results for harvest choice models for seven states (AL, FL, GA, NC, SC, TN, and VA)

Variable
Choice

(harvest)
Forest
type

States

AL FL GA NC SC TN VA

Intercept Final PP �3.9204* �1.1203* �3.5398* �3.4278* �3.7395*
NP �4.2646* �1.3006* �3.1581* �3.7623* �3.9559* �3.2914* �3.8845*
MP �4.2220* �1.9583* �3.3687* �4.3220* �4.1080*
UH �4.5914* �2.9978* �3.4092* �4.4656* �4.5123* �3.6090* �4.7867*
BH �5.0128* �2.3792* �4.3441* �5.1123* �4.8019*

Partial PP �3.2691* �2.4654* �3.8737* �2.8378* �3.7880*
NP �3.9683* �1.9584* �3.8271* �4.4040* �4.6515* �4.6589* �3.6636*
MP �4.2376* �2.2059* �4.3372* �4.4481* �4.7579*
UH �4.5705* �3.2497* �4.8562* �4.9374* �5.3784* �4.6569* �3.9959*
BH �5.4343* �2.8043* �5.2927* �5.0846* �5.9089*

Discounted revenue PP 0.0015* 0.0039* 0.0009* 0.0008† 0.0013*
NP 0.0006† 0.0006‡ 0.0003‡ 0.0004‡ 0.0006* 0.0012* 0.0004†
MP 0.0005‡ 0.0006† 0.0002 0.0004‡ 0.0005
UH 0.0002 0.0016* �0.0010 0.0004 0.0001 0.0010* 0.0007*
BH 0.0001 0.0004* 0.0000 0.0008‡ 0.0004

Public Final �0.6140 �0.9310* �2.0170* �2.3008* �1.5879† 1.1848* �0.0171†
Partial �1.4456† �0.4474* �0.3709 �0.4315 �0.6085 �2.3299* 0.0004

Slope Final �0.0214‡ �0.0389† �0.0243† �0.0241 �0.0375* �0.7177‡
Partial �0.0046 �0.0160 0.0101 0.0018 �0.0103‡ �2.2853*

Hydric soil Final �0.4749*
Partial �0.0682

Diversity Final �0.4515‡
Partial 0.6802*

Coastal plain Final 0.1581 �0.0783
Partial 0.5978* �0.5999*

South Final �0.6306*
Partial �0.3453†

Log(remeasurement Final 1.4239* 1.0517* 1.1992* 1.0977* 0.7547 1.0283*
period) Partial 1.1523* 1.4860* 1.0066* 1.5567* 1.0520* 0.8258*

No. observations 2,005 5,185 2,549 2,968 2,247 1,703 2,396
McFadden pseudo-R2 0.10 0.07 0.08 0.12 0.11 0.09 0.05
LLR �902 �3015 �1134 �794 �704 �636 �776

PP, pine plantations; NP, natural pine; MP, mixed pine; UH, upland hardwoods; BH, bottomland hardwoods.
* Significant at 1%
† Significant at 5%.
‡ Significant at 10%.
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choices between partial harvest and final harvest (Sterba et
al. 2000). In mixed stands (which are often also uneven-
aged), it might be most profitable to selectively harvest
more valuable species and/or mature trees. The coefficient
for the Shannon’s diversity index indicates that diverse
stands are more likely to be partially harvested in TN.

The positive coefficients for natural logarithm of the
remeasurement period for final and partial harvest outcomes
in the models for AL, GA, NC, SC, TN, and VA (states
where sample plots have a variable remeasurement period)
is consistent with the expectation that the probability of an
event occurring is proportional to the length of observation
period. All but one coefficient is significant (P � 0.01).

Validation

To evaluate the forecasting performance of our model,
we estimated within sample predictions of management
decision for sample plots in each state using the estimated
choice equations [6]. We used two a priori null models of
the management decision: p0(ah) is an equal probability of
all management decisions; and p1(ah) is a probability pro-
portional to the occurrence of management decision in the
sample, which is equivalent to the probability predicted by
the harvest choice model using only an intercept. Informa-
tion indices and statistics that evaluate the performance of
the models against each set of a priori probabilities of
management decisions are presented in Table 2. The U2

values suggest that the models explain 36–55% of the
residual uncertainty of the equal probability null, and
6–16% of the residual uncertainty of the intercept-only null.
The information index, expected information index, and its
variance indicate that the empirical models are accurate, and
the LLRs indicate that models are statistically significant.

We also test whether the model can explain choices
between each pair of the modeled management decisions,
especially between final and partial harvest. For example, it
might be that the estimated model can improve prediction of
no harvest versus harvest but not provide information on the
distinction between final and partial harvests. We estimated
a set of models with two of three management decisions
included and used the model’s fit statistics to calculate LLR
tests for the null that the model cannot discern between pairs
of outcomes. LLR tests (Table 3) indicate that all models are

statistically significant and can discern between each pair of
management decisions.

Aggregate Supply

We used the estimated harvest choice models (Table 1)
to simulate supply responses for each of the four products
using the latest available inventory data for each state: AL
2005, FL 2006, GA 2004, NC 2006, SC 2006, TN 2005, and
VA 2007. We drew 100 quartets of random numbers from
a uniform distribution to generate price quartets (a price for
each of the four products) within the range of �50% of the
observed prices for each state. For each price quartet and for
each FIA plot, we calculated a discounted revenue term for
each of the management decisions considered, estimated
probabilities of these decisions, and calculated the harvest
response based on plot characteristics. The harvest response
of the entire inventory for each state and for the seven-state
region was then aggregated using the area expansion factors
for the FIA plots. The area expansion factors were also used
to calculate weighted average prices of roundwood products
for each draw by state and for the seven-state region. The
simulated output-price pairs for South Carolina and for the
seven-state region are graphed in Figures 1 and 2,
respectively.

We then estimated the supply equations. The natural logs
of total output for each of the four products (softwood
pulpwood, softwood sawtimber, hardwood pulpwood, and
hardwood sawtimber) were estimated as functions of the
natural logs of all four product prices. Because the equations
use the same data, the errors may be correlated across the
equations; therefore, we estimate the system of regression
equations using the method of seemingly unrelated regres-
sion. The results of the estimation by state and for the
seven-state region are presented in Table 4.

For all estimated equations, we reject the null hypothesis
that the equation has no explanatory power (LLR test, P �
0.01). Because of the log-log functional form, all coeffi-
cients in these equations define price elasticities. All own-
price elasticities (for example, elasticity of supply of soft-
wood sawtimber with respect to price of softwood
sawtimber) as well as most of the cross-price elasticities are
significant (P � 0.01). Among the cross-price elasticities

Table 2. Information indices and statistics

State Test H(A; X) U2 I(A; X) EI(A; X) V(A; X) LLR

AL Full versus equal probability 1.10 0.52 0.57669 0.55024 0.00031 2,313
Full versus intercept only 0.62 0.09 0.05280 0.06120 0.00006 212

FL Full versus equal probability 1.10 0.48 0.52650 0.52650 0.00012 5,512
Full versus intercept only 0.63 0.09 0.05426 0.05426 0.00002 568

GA Full versus equal probability 1.10 0.53 0.58555 0.56965 0.00025 2,985
Full versus intercept only 0.58 0.08 0.04615 0.04867 0.00003 235

NC Full versus equal probability 1.10 0.63 0.69199 0.69742 0.00020 4,108
Full versus intercept only 0.46 0.11 0.05021 0.05383 0.00004 298

SC Full versus equal probability 1.10 0.57 0.62985 0.63065 0.00028 2,831
Full versus intercept only 0.53 0.10 0.05075 0.05903 0.00005 228

TN Full versus equal probability 1.10 0.61 0.66824 0.65037 0.00037 2,276
Full versus intercept only 0.49 0.09 0.04286 0.04449 0.00005 146

VA Full versus equal probability 1.10 0.63 0.68830 0.66126 0.00028 3,298
Full versus intercept only 0.45 0.05 0.02238 0.02429 0.00002 107
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that are not significant are elasticities of hardwood sawtim-
ber supply with respect to softwood pulpwood price and
elasticities of softwood pulpwood supply with respect to
price of hardwood pulpwood in some states. Economic
theory indicates that the own-price elasticity of supply
should be positive, and this holds for 22 of the 24 equations
(including all of the aggregate supply equations). The only
exceptions are the equations of hardwood supply in Georgia
where the own-price elasticities are �0.122 for hardwood
sawtimber and �0.024 for hardwood pulpwood. We had
very few observations of harvested plots in hardwood forest
types in Georgia, suggesting a lack of information for draw-
ing inference on hardwood harvests. Furthermore, hard-

woods are a very small part of timber harvests in Georgia so
this result has little implication for regional supply estimates
(as revealed in the estimates of regional elasticities) and is
probably inconsequential for simulation modeling.

Previous studies of the US stumpage market (e.g., Ad-
ams and Haynes 1980, Newman and Wear 1993) found the
short-run supply of timber to be inelastic (i.e., with elastic-
ities �1). In all states, sawtimber products are much more
price elastic than pulpwood products, also consistent with
previous studies (e.g., Newman and Wear 1993). For soft-
wood sawtimber, elasticities range from 0.241 in GA to
0.560 in TN with the value of 0.336 for the seven-state
region. Hardwood sawtimber elasticities range from 0.119

Table 3. Testing ability of harvest choice models to discriminate between pairs of outcomes

State

Partial versus final Final versus no harvest Partial versus no harvest

LLR McFadden R2 LLR McFadden R2 LLR McFadden R2

AL 48* 0.12 59* 0.07 181* 0.16
FL 55* 0.04 491* 0.12 184* 0.07
GA 43* 0.08 88* 0.07 145* 0.12
NC 48* 0.14 123* 0.13 115* 0.13
SC 42* 0.14 64* 0.09 123* 0.14
TN 75* 0.29 68* 0.12 54* 0.07
VA 17* 0.06 46* 0.06 50* 0.06

* Significant at 1% level.

Figure 1. Simulated supply responses for four products in
South Carolina.

Figure 2. Simulated supply responses for four forest prod-
ucts for the seven-state region (horizontal summation of seven
state-level supply responses).
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to 0.535 and 0.307 for the region. Softwood pulpwood
elasticities range from 0.020 in Georgia to 0.220 in FL with
0.062 for the region. Hardwood pulpwood elasticities range
from 0.017 in AL to 0.097 in FL and 0.025 for the region.

The sign of the cross-price elasticity indicates whether
products are substitutes (negative) or complements (posi-
tive) in production. As expected for a short-run forest sup-
ply model, complementarity dominates both state and re-
gional models. Except for negative cross-price elasticities
between hardwood sawtimber and pulpwood in GA and
negative softwood pulpwood supply elasticity with respect
to price of softwood sawtimber in NC, all significant cross-
price terms are positive.

Discussion and Conclusions

In this study we develop an aggregate timber supply
model from detailed forest inventories and empirical models
of harvest choice based on observed individual harvest
decisions. It expands on the modeling approach developed
by Prestemon and Wear (2000) by extending the analysis to
address all forest types within a region, partial harvests in
addition to final harvest, both hardwood and softwood for-
est products, and timber supply for a large seven-state
region. Aggregate supply response equations using pseudo-
data from the harvest choice predictions also provide an
innovation for aggregating individual choices within a trac-
table regional model. Whereas other studies (e.g., Teeter et
al. 2006) have used simulation or optimization methods to
build supply from individual choices, our models allow for
validation against observed choices recorded in standard

forest inventories and regular updating as new inventories
are completed.

The supply elasticities for four roundwood products are
consistent across the seven individual states contained
within the region. The elasticities of softwood and hard-
wood sawtimber supply generally correspond with the find-
ings of previous studies, but the elasticities of both softwood
and hardwood pulpwood supplies are lower than previous
estimates (Newman 1987, Carter 1992, Polyakov et al.
2005). This finding is consistent with the structure of forest
production in which sawtimber and pulpwood are joint
products in the short run and sawtimber prices are substan-
tially higher than pulpwood prices; i.e., pulpwood supply is
heavily influenced by sawtimber markets in the short run.
Pulpwood inelasticity may also be related to substantial
pulpwood thinning from young plantations. These thinnings
are embedded within multiple period management schemes,
making them costly to forego in the short run.

We found significant positive cross-price elasticities,
consistent with the hypothesis of joint production of all four
products. Furthermore, the prices of sawtimber have greater
effects on the supply of pulpwood than on the prices of
pulpwood. The literature provides inconsistent estimates of
these cross-price effects, and our findings fall within the
range of estimates produced by earlier studies. Complemen-
tarity of sawtimber in the pulpwood supply in the US South
was found by Newman (1987). However, contrary to our
results, Newman (1987) found substitution of pulpwood in
the sawtimber supply, whereas Polyakov et al. (2005) found
substitution of sawtimber in the hardwood pulpwood
supply.

Table 4. Estimates of aggregate supply models by state and for a seven-state region

Explanatory variables AL FL GA NC SC TN VA Region

Softwood sawtimber
Intercept 10.752* 9.507* 11.335* 10.740* 9.759* 7.614* 9.322* 12.156*
Price of softwood sawtimber 0.308* 0.455* 0.241* 0.260* 0.427* 0.560* 0.274* 0.336*
Price of softwood pulpwood 0.016* 0.046* 0.009* 0.018* 0.024* �0.001 0.018* 0.019*
Price of hardwood sawtimber 0.030* 0.029* 0.019* 0.032* 0.025* 0.124* 0.050* 0.032*
Price of hardwood pulpwood 0.009† 0.013* 0.003 0.005 0.014* 0.025* 0.008 0.009†

Softwood pulpwood
Intercept 11.902* 10.898* 12.047* 11.521* 11.099* 8.130* 10.100* 13.182*
Price of softwood sawtimber 0.020* 0.055* 0.030* �0.038* 0.076* 0.231* 0.038* 0.036*
Price of softwood pulpwood 0.022* 0.220* 0.020* 0.033* 0.036* 0.039* 0.035* 0.062*
Price of hardwood sawtimber 0.007* 0.015* 0.003* 0.012* 0.007* 0.072* 0.023* 0.010*
Price of hardwood pulpwood 0.002 0.004 0.000 0.001 0.006* 0.022* 0.004* 0.003

Hardwood sawtimber
Intercept 10.813* 6.803* 12.068* 9.827* 9.510* 9.185* 8.949* 11.572*
Price of softwood sawtimber 0.077* 0.243* 0.043* 0.070* 0.117* 0.063* 0.055* 0.080*
Price of softwood pulpwood 0.005† 0.012 0.000 0.009 0.005 0.007 0.014 0.008
Price of hardwood sawtimber 0.119* 0.523* �0.122* 0.317* 0.181* 0.535* 0.443* 0.307*
Price of hardwood pulpwood 0.016* 0.093* �0.025* 0.024* 0.041* 0.036* 0.024* 0.026*

Hardwood pulpwood
Intercept 11.092* 7.295* 11.987* 10.235* 9.704* 9.452* 9.382* 12.131*
Price of softwood sawtimber 0.082* 0.320* 0.040* 0.086* 0.151* 0.081* 0.067* 0.097*
Price of softwood pulpwood 0.006* 0.023* 0.000 0.009* 0.007† 0.007 0.011† 0.008†
Price of hardwood sawtimber 0.051* 0.284* �0.065* 0.160* 0.077* 0.321* 0.240* 0.130*
Price of hardwood pulpwood 0.017* 0.097* �0.024* 0.023* 0.039* 0.050* 0.024* 0.025*

Because of the log-log form of the equations, estimated coefficients reveal the own- and cross-price elasticities of supply for each product. Own-price
elasticities are shown in bold.
* Significant at 1%.
† Significant at 5%.
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These models could be further enhanced with spatially
explicit cost data, e.g., harvest and haul costs or more
precise revenue data related to log quality. Omitted variable
bias may be problematic with individual choice models
(e.g., Hellerstein 2005) and warrants additional study. For
our models, we were most concerned about the adequacy of
the revenue calculation for hardwood sawtimber, for which
prices may vary substantially across tree species and log
grades. To test for potential problems with this type of
misspecification, we conducted simulation experiments us-
ing a broad range of hardwood sawtimber prices. Results
indicated some slight changes in the hardwood sawtimber
elasticities but no discernible difference for the elasticities
of the other products. Additional study of model specifica-
tion issues is warranted.

Another potential enhancement of this approach would
be to account for differences in landowner attributes and the
social context of an area within the harvest choice model.
We accounted for differences in management strategies on
public and private forests, but we hypothesize that more
detailed social attribute data could improve on this simple
formulation. Linking forest inventory plots to landowner
surveys may be possible in the next few years and incorpo-
rating these data in the harvest choice models could be a
fruitful line of inquiry.

Our modeling approach translates the heterogeneous and
complex capital structure of forest inventories into their
effects on timer supply. It therefore provides a mechanism
for examining the potential implications of exogenous
shocks to inventory through simulation modeling. These
types of questions are an important component of under-
standing the implications of biophysical changes defined,
for example, by climate modifications and the introduction
of invasive species. Even in the absence of exogenous
shocks, this method allows for a more precise tracking of
the supply effects of an evolving forest inventory over time
and market conditions. This is especially important for the
conduct of broad-scale natural resource assessments in
which policy-relevant questions involve an understanding
of the interactions of economic activity and the structure of
forested ecosystems.

These timber supply models have been developed for
and are now incorporated within a broader analysis frame-
work called the US Forest Assessment System (USFAS),
built to support strategic assessment of the US forest sector.
Our development of individual harvest choice models relies
on the assumption of exogenous prices (at the individual
level) and varying these prices allows us to construct timber
supply schedules consistent with observed individual be-
havior. Within the USFAS, these regional timber supply
models are interacted with demand models to project mar-
ket-clearing harvest quantities and prices using a market-
modeling framework based on the Global Forest Products
Model (Buongiorno et al. 2003, p. 39–51). Demand models
reflect economic scenarios described by the time paths of
various exogenous variables, including gross domestic
product and housing starts, to provide regional solutions.

A regional market solution can be mapped to its harvest
implications at the plot levels using stochastic simulations
for forecasted prices (via Equation 8). This explicit linkage

between regional markets and fine-scale forecasts of har-
vesting and therefore forest conditions could prove espe-
cially useful for understanding the economic implications of
climate changes. Global circulation models generally fore-
cast future changes in temperature and precipitation that are
spatially variable (e.g., Williams et al. 2007). Accordingly,
impacts on future forest conditions will probably vary
across space and possibly alter production patterns as well
as production levels. Our plot-level harvest models provide
a mechanism for simulating how climate changes might
play out across a region’s heterogeneous forested landscape.

More generally, the linkage between market solutions
and spatially explicit harvest forecasts tied to forest inven-
tory plots provides a powerful tool for interdisciplinary
analysis of various market scenarios. Our current analysis of
scenarios within the USFAS is focusing on how market
futures affect carbon storage in terrestrial ecosystems but
anticipates additional analyses to link harvest patterns, for-
est conditions, and the provision of various ecosystem ser-
vices including biodiversity and water.

Endnotes
[1] More precisely, these are the best extant data sets for estimating our

models. Given the luxury of designing a survey for the study of harvest
choices, we would use a different sampling design and protocol to
address both social and biological strata.

[2] These models are part of the US Forest Assessment System, built to
support the decadal Resource Planning Act (RPA) assessments man-
dated by the Renewable Resources and Rangelands Act of 1974, which
requires the US Forest Service to deliver 50-year forecasts of resource
supply demand and conditions every 5–10 years.

[3] For our empirical work we examine the data for evidence of noncon-
vexity.

[4] Note that the area variables are the area expansion factors for each plot
in a forest inventory.

[5] For each realization we shift base prices in each state by the same
percentage. For the simulations reported here, four random numbers
are drawn from independent uniform distributions and scaled to shift
prices within �50% of base prices.

[6] Ideally we would have conducted out-of-sample validation. However,
because of the sparse harvest data within the inventory, the sample was
not large enough to warrant this approach.
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