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Abstract

Background: Significant shifts in climate are considered a threat to plants and animals with significant physiological
limitations and limited dispersal abilities. The southern Appalachian Mountains are a global hotspot for plethodontid
salamander diversity. Plethodontids are lungless ectotherms, so their ecology is strongly governed by temperature and
precipitation. Many plethodontid species in southern Appalachia exist in high elevation habitats that may be at or near their
thermal maxima, and may also have limited dispersal abilities across warmer valley bottoms.

Methodology/Principal Findings: We used a maximum-entropy approach (program Maxent) to model the suitable climatic
habitat of 41 plethodontid salamander species inhabiting the Appalachian Highlands region (33 individual species and eight
species included within two species complexes). We evaluated the relative change in suitable climatic habitat for these
species in the Appalachian Highlands from the current climate to the years 2020, 2050, and 2080, using both the HADCM3
and the CGCM3 models, each under low and high CO2 scenarios, and using two-model thresholds levels (relative suitability
thresholds for determining suitable/unsuitable range), for a total of 8 scenarios per species.

Conclusion/Significance: While models differed slightly, every scenario projected significant declines in suitable habitat
within the Appalachian Highlands as early as 2020. Species with more southern ranges and with smaller ranges had larger
projected habitat loss. Despite significant differences in projected precipitation changes to the region, projections did not
differ significantly between global circulation models. CO2 emissions scenario and model threshold had small effects on
projected habitat loss by 2020, but did not affect longer-term projections. Results of this study indicate that choice of model
threshold and CO2 emissions scenario affect short-term projected shifts in climatic distributions of species; however, these
factors and choice of global circulation model have relatively small affects on what is significant projected loss of habitat for
many salamander species that currently occupy the Appalachian Highlands.
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Introduction

Understanding how species distributions and patterns of
diversity shift with changing climates has been a long-standing
theme of ecology that has grown less academic with the specter of
rapid climate change. Not surprisingly, there is an increasing effort
to project the effects of climate change on species’ distributions
and regions of high biodiversity [1,2,3,4,5]. Knowing whether
particular species or hotspots of biodiversity are vulnerable to
decline is important to planning management actions and
understanding how ecosystem functions may change [6].
Species distribution modeling is one tool for evaluating the

potential impact of climate change on the distributions of biota
[7,8]. Distribution models characterize dimensions, generally
mean climatic variables, of the current realized niche of a species
based on presence-absence data and then use future climate
forecasts to project changes in the distribution of suitable habitat

for a species. Climate-driven species distribution models have
several limitations including exclusion of other biotic, physiolog-
ical, and geographic controls on a species’ distribution. Addition-
ally, these models cannot mechanistically account for the role of
climate in determining species distributions or quantify the limits
of species abilities to migrate. Furthermore, this technique ignores
the capability of evolutionary change to compensate for species
responses to changing climate and they assume reliance upon
credible climatic projections by assuming that the ‘‘suitable’’
habitat is saturated and the data input into models is accurate
[9,10,11,12,13,14]. Projections from climate distribution modeling
are also dependent upon the global circulation model selected,
how well that model can be downscaled to predict local climate
[15], and assumptions about future atmospheric CO2 levels. To
deal with the potential limitations of model projections, increas-
ingly studies often take an ensemble forecasting approach by
modeling a number of future scenarios that bracket ranges of
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model assumptions or predicted climate change scenarios [16].
The most common approach is to integrate different global
circulation models and CO2 emissions scenarios and forecast out
to multiple future time points.
A potential criticism of forecasts from species distribution

modeling is the self-fulfilling nature of the endeavor. Based on
relationships between climate variables at sites occupied by a
species, climate distribution models such as Maxent [17]
subsequently provide a continuous probability surface which can
be classified (based on a threshold) into suitable or non-suitable
climatic space. The user determines the threshold, which is often
set to a single value, and then generates a current climate-driven
distribution to best fit the known species distribution [18]. In other
words, the user makes the species’ distribution a strict function of
the variables that are put into the model (e.g., climate, land cover,
soil type). Because the threshold may be a somewhat arbitrary
cutoff depicting presence/absence of a species, applying a more
liberal threshold in climate distribution models may dampen
projected effects of climate change on species’ distributions, such
as the inability to cross geographic barriers.
We used a combination of Global Circulation Models (GCM),

atmospheric CO2 scenarios, and both strict and liberal model
thresholds to generate a range of projected shifts in potential
suitable climatic habitat for plethodontid salamanders in the
southern Appalachian region of the eastern United States. Areas
with high biodiversity or endemism are of high conservation value,
and the Appalachian Highlands are regarded as a biodiversity
hotspot with some of the most biologically diverse forests and
freshwater systems in the United States [19]. At broad spatial
scales, amphibian diversity is related strongly to the direct and
indirect (via net primary production) effects of climate and
regional phylogeography [20,21]. The Appalachian Highlands
are a global hotspot for salamander diversity, nearly all of which is
determined by the family Plethodontidae [22]. Plethodontid
distributions are determined by a number of factors including
land forms (e.g., major river boundaries), history and biotic
interactions such as interspecific competition [23,24]; however,
because plethodontids are lungless ectotherms, their activity, life-
history traits, and consequently geographic distributions and
patterns of diversity appear predominantly controlled by climate.
[25,26,27,28,29]. Consistent with global patterns of amphibian
diversity [20,21], plethodontid species richness throughout the
southern Appalachian Highlands is positively linked to the cool,
moist montane climate [28] with most species occupying mid or
high elevation climatic zones that were colonized millions of years
earlier when those climatic zones occurred in valley bottoms
[28,29]. Recent evidence suggests temperature is a direct limiting
factor of dispersal and range size of some species within the family
[26], further supporting the use of climate-based models to
examine species distributions within this family. Because pletho-
dontid salamanders are the most abundant vertebrate predators in
eastern North American forests and headwater streams and are
influential in a number of ecosystem processes [30,31,32,33],
understanding shifts in their distributions or abundance will be
important to predicting changes to ecosystem processes.

Methods

Species Distribution Modeling using Maximum Entropy
We developed distribution models using Maxent version 3.30a

[17,34] for 41 plethodontid species (33 individual species and eight
species included within two species complexes) with distributions
in the eastern United States that included a portion of the species
range within the Appalachian Mountain region (defined by a

geographic boundary that includes all ecoregions found within the
Appalachian Highland region). The two species complexes were
the Plethodon glutinosus complex, which was composed of six species
(P. glutinosus, P. cylindraceus, P. kentucki, P. teyahalee, P. chlorobryonis,
and P. chattahoochee) and the Desmognathus fuscus complex, composed
of two species (D. fuscus and D. conanti). We treated these groups as
complexes because their members were historically identified as
one species but were later broken up into parapatric, morpholog-
ically cryptic species based on patterns of genetic divergence
suggesting that geographic features and isolation promoted
speciation [23,35,36], and they are nearly indistinguishable in
hand (although evidence suggest there are differences in body size
[37]). There are no data indicating that they function differently
with regard to ecological factors such as climate. The 33 species
(and complexes) represent ,90% of plethodontid species in the
southern Appalachian Highlands and ,50% of plethodontid
species occurring in the southeastern United States.
Maxent is a machine learning method that utilizes the principle

of maximum entropy to model species distributions using
presence-only data coupled with environmental data [34]. This
approach finds a probability distribution of maximum entropy
using a set of environmental variables to estimate a species’
ecological niche using the defined Maxent probability distribution.
For each species or species complex, current species distribution
models were created using point data from two natural history
databases intersected with georeferenced climatic variables.
Salamander presence data were obtained from HerpNET (www.
herpnet.org) and Global Biodiversity Information Facility (GBIF;
www.gbif.org). To maximize model quality, only species with
greater than 30 point locations were used [38]. We downloaded 1-
km resolution temperature and precipitation bioclimatic layers,
which are based on the 30-year period from 1960–1990, from the
WorldClim database [39]. We used the 11 bioclimatic layers
utilized by Rissler and Apodaca [40] in their bioclimatic
distribution modeling of Aneides flavipunctatus, a plethodontid
species distributed in the western United States. Those 11
bioclimatic layers were winnowed from a larger set of 19 variables
using correlations to estimate redundancy between variables and
retaining the more biologically meaningful and interpretable
variables (e.g., annual mean temperature, mean temperature of
the wettest quarter, and precipitation of the wettest quarter).
Maxent was run from the command line using the default settings
with the exception of background points. A total of 4215 target-
group background data points representing localities of pletho-
dontid salamanders in the eastern United States were used to
develop an initial climatic envelope that represents the range of
environmental conditions within the modeled region. In turn, this
method is expected to reduce the bias inherent in our sample of
museum locality data [41]. This approach uses background data
(also known as pseudo-absences), chosen with the same bias as the
occurrence data used, to develop the models. By using this
approach we can produce an unbiased estimate of the geographic
distribution of species, since the background data provides an
equable sample of the environmental conditions within the region
modeled.
We used a threshold approach to designate a location as

climatically suitable for a species. When modeling a single species,
each location modeled is represented by a probability that the
location is climatically suitable for that species; however, it is
logistically unfeasible to present each location as a probability of
occupancy for every species modeled. Therefore, it was necessary
to delineate a threshold at which a location was deemed
climatically suitable or un-suitable. As was discussed in the
introduction, the use of a single threshold will create a strict

Salamanders and Climate Change

PLoS ONE | www.plosone.org 2 August 2010 | Volume 5 | Issue 8 | e12189



relationship between climate and a species’ distribution, and thus
potentially exaggerating the effect of climate shifts on the species’
future distribution. To address this issue, we converted the
continuous suitability surface [0–1 from Maxent to presence/
absence (1/0)] using two model output thresholds applied by
Maxent; one ‘strict threshold’ that produced a climatic distribution
that closely resembled, and at times underrepresented, the species
current realized distribution (fixed cumulative value 10) and one
‘liberal threshold’ that predicts a broader climatic distribution than
the current realized distribution (minimum training presence). We
believe that this two-threshold approach is preferable to using a
single threshold because it makes our results comparable to other
studies that provide predictions based on strict climatic distribu-
tions of species—thresholds that maximize the agreement between
observed and predicted distributions [42], and also allows us to
present model predictions that relax the assumption of strict
climatic control on species’ distributions.
We used null models to test the significance of each species

climatic distribution model [43]. We generated 1000 sets of sample
points, which were randomly drawn from the pool of 4215
background points without replacement. Since the number of
presence localities varied for each species, we generated null data
sets with the number of random points per distribution equal to
50, 205, 405, or 695 data points, which represent the range of
presence points available to model each species. Maxent was used
to calculate the area under the curve (AUC) for the 1000 null data
sets to create an AUC frequency distribution. The calculated AUC
for each species model was then compared to the 95 percentile
AUC value of the null frequency distribution created from the
representative number of sample points (50, 205, 405, or 695). A
species model performs better than random and is considered
significant if the calculated AUC is greater than the corresponding
95 percentile AUC of the null-distribution [43].

Projecting Future Species Climate Distributions
Climate projections were downloaded from the WorldClim

database (www.worldclim.org). Projections were derived from the
IPPC 3rd Assessment [44] and were calibrated and statistically
downscaled using WorldClim Version 1.4 data for current
projections. The 11 bioclimatic variables were calculated using
the freely available ESRI ArcInfo AML program (available at
http://www.worldclim.org/bioclim.htm). We used projections for
years 2020, 2050, and 2080 derived from two widely used global
circulation models (GCM), the Canadian Centre for Climate
Modeling and Analysis Coupled Global Climate Model (CGCM3;
[45]) and the Hadley Centre for Climate Prediction and Research
(HADCM3; [46]). For each GCM, we used projections of climate
parameters derived from two CO2 emissions scenarios, A2a
(medium to high emissions) and B2a (low to medium emissions)
that corresponded to the IPCC Special Report on Emissions
Scenarios [47]. Therefore, we developed eight spatially explicit
climate model scenarios, and used the Maxent climate distribution
model developed earlier to project the future climate distribution
for each species to 2020, 2050 and 2080.

Quantifying Projected Changes in Species Distributions
and Richness
We compared current strict and liberal climate distribution

models for each species with known distributions derived from
county-level distribution maps to estimate the effect of threshold
on over- or under-prediction of current known species distribu-
tions [48]. We calculated the percent overlap between modeled
and county level distributions using ArcMap version 9.3 (ESRI,
Redlands, CA). To measure the change in species distributions

under future climate scenarios, we calculated the percentage of
predicted area lost between the current and future predicted
climate distribution model and compared them using the same
Maxent threshold. In order to avoid the common criticism of
assuming no potential for dispersal or unlimited dispersal, and to
account for disjunct areas of predicted climatic habitat to which
species will be unable to disperse to, we clipped all Maxent model
predictions for all scenarios by the known county-level distribution
buffered by 10 km. The buffer provides opportunities for future
expansion by dispersal; however, we note that this is not a
mechanistic adjustment and does not account for species-specific
dispersal capabilities [27]. We know little concerning dispersal
capabilities of plethodontid salamanders. Evidence from northern
populations of the red-backed salamander (P. cinereus) suggests
expansion at a rate of only 80 m per year [49], and other recent
evidence suggests that some plethodontids may already be
dispersal limited by temperature, so it is likely that any warming
will further limit dispersal capabilities [26,27]. Our 10 km buffer
likely offers a liberal boundary for future migration. Each climatic
and species map was projected in the World Geodetic Coordinate
System of 1984 (WGS84) with a cell size of 0.0083 decimal
degrees.
We also examined how well species distribution models

predicted known patterns of species richness in the Appalachian
Highlands region and whether different climate change model
scenarios predict different effects on plethodontid diversity. To
estimate patterns of species richness, we made two species richness
maps based on the accumulated modeled distributions of each
species or species complex using strict or liberal Maxent
thresholds. Next we compared the richness of the two accumulated
climate distribution models to known richness from county-based
distribution maps by comparing richness values from the different
distributions at 250 randomly selected points. We created the same
accumulated richness maps for each of the CO2 X GCM model X
threshold scenarios for 2020, 2050 and 2080 to examine how
projected changes in individual species distributions might affect
patterns of diversity within the Appalachian Highlands region.
To examine the affect of GCM, CO2 scenario, threshold,

current range size, and distribution (latitude) on projected changes
in suitable climatic habitat of species’, we used a general linear
model with percent habitat loss between the current suitable
climatic distribution and predicted suitable climatic distributions
(square root transformed) as dependent variables and GCM
(Hadley or Canadian), CO2 emissions scenario (low or high),
threshold (strict or liberal) as categorical variables, and the size of
the current species range and the latitude of the distribution
centroid as continuous variables. To reduce over-parameterization
of the model and simplify interpretation, we restricted our analysis
to main effects and two-way and three-way interaction terms. We
conducted a separate analysis for each projected year (2020, 2050
and 2080). We used paired t-tests to compare known county-based
species richness values and predicted richness values (produced by
summing the richness using both the strict and liberal thresholds).
Statistical analyses were conducted in STATISTICA 8.0 (Statsoft,
Inc., Tulsa, OK).

Results

The mean AUC for plethodontid distribution models based on
current climate was 0.911 (range = 0.664–0.995; median = 0.940;
Table S1), with each species’ model AUC being significantly better
than random (i.e., model AUC values exceeded the 95 percentile
of the null AUC distributions). Model predictions more closely
matched current species distributions when the liberal threshold
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was used (81.04%, sd = 21.25 vs. 62.83% sd= 25.89, for the strict
threshold; Table S1).
While projected mean change in salamander suitable climatic

habitat size by 2020 varied depending on threshold, assumed
CO2 level, and current range size and latitude, even the most
‘optimistic’ model (low threshold, low CO2, HADCM3)
projected at least a 20% reduction in suitable climatic range
for more southerly distributed plethodontid species (Fig. 1;
Tables S2 and S3). There were significant interactions between
threshold, assumed CO2, and current range size and between
threshold, assumed CO2, and centroid latitude (Table 1).
Percent of suitable climatic habitat loss was highest for species
with small, southerly geographic ranges under models assuming
high CO2, and strict Maxent threshold (Fig. 1; Tables S1, S2
and S3). The effects of assumed CO2 and threshold were small
relative to the effects of range size and latitude (Fig. 1). For later
projections (2050 and 2080), only threshold and latitude
significantly affected mean percent climatic habitat loss
(Table 1; Fig. 2). For all time points, the percent climatic
habitat loss was greatest among more southerly distributed
species (range centroid 32–34u north latitude), and slightly
greater for models that assume a strict Maxent threshold. The
projected percent climatic habitat loss among the most
southerly-distributed (range centroid 32–34u north latitude)
species increased from 50–100% by 2020 to 80–100% by 2050
and 85–100% by 2080 (Fig. 2; Tables S1, S2 and S3). For mid-
latitude species (range centroid 36–38u north latitude) projected
percent climatic habitat loss was 40–70% by 2020 and 70–85%
by 2080, and for more northerly-distributed species (range
centroid 42–44u north latitude), projected percent climatic
habitat loss was 0–70% (mean 20–38%) by 2020 and 0–70%
(mean 30–40%) by 2080 (Fig. 2; Tables S1, S2 and S3).

Richness estimates based on accumulated climate distribution
models produced with strict and liberal thresholds differed from
each other (t= 20.458, P,0.001; Fig. 3) and from current
known richness values based on county-level distribution
records. The liberal threshold over-predicted known richness
for the study region (t=210.106, P,0.001, mean county-level
= 10.54, mean liberal threshold = 12.47), while the strict
distribution models significantly under-predicted richness
(t= 10.968, P,0.001, mean county-level = 10.54, mean strict
threshold = 8.68).

Reflecting the results for species-specific projected climatic
habitat losses, even the most ‘optimistic’ projections predict
declines in plethodontid richness within the southern portion of
Appalachian Highlands as early as 2020 (Fig. 3). 2020 richness
projections for the low threshold, low CO2, HADCM3 model are
relatively similar to current richness patterns in the region, with
losses predicted only on the south-eastern fringe of the
Appalachian Highlands region (Fig. 3); however, all other
scenarios predict a significant loss of species in the southern
highlands including the loss of all current species in the region by
2020. Over time, all model scenarios predict significant declines in
species richness across the southern portion of the Appalachian
Highlands with the loss of all current species from some areas
under all model scenarios. Models using the more liberal Maxent
threshold project the retention of high salamander richness in the
central and northern portions of the Appalachian Highlands
through 2080 regardless of CO2 level or GCM. Only the most
‘pessimistic’ models (Canadian GCM3, high CO2) predicting the
greatest amount of warming and reduced precipitation, project a
near complete loss of current species from the entire Appalachian
Highland region by 2080 (Fig. 3).

Discussion

Our modeling approach shows that, depending on model
assumptions, every plethodontid salamander species currently
found within the Appalachian Highlands could experience
restricted climatic habitat with climate change. We note that our
models do not predict the extinction of the majority of species.
Rather, those species with small, southerly ranges are predicted to
experience the largest declines in range size including possible
extinction. Sixty percent of the species (or complexes) we modeled,
which in total comprised approximately 85–90% of plethodontid
species richness found within the Appalachian Highlands, have a
current range smaller than 115,500 km2, and our models project
the largest declines among those species with small ranges in the
southern portion of the region. This scenario likely applies to the
handful of range-limited endemics we could not analyze because of
insufficient data on distributions. Projected climatic habitat
declines are much smaller for species in the central and northern
Appalachian Highlands region, and projected species richness
remains high in the central and northern regions under a range of
model scenarios. These predictions are consistent with a number
of studies predicting more significant range contractions or
northward shifts as a consequence to global climate change [50].
The robustness of our model predictions depends in part on the

relative importance of climate versus geographic and biotic
limitations on species distributions. Geographic and biotic limits
on species distributions may conceal broader climatic tolerances
than are reflected by a species’ current distribution. Further, if
biotic interactions are important in determining species distribu-
tions, and those interactions are altered by climate (e.g.[51]), then
it may be difficult to predict how a species distribution may
respond to climate change. The boundaries of some plethodontid
species do clearly coincide with major land formations, such as
rivers, or the occurrence of interspecific competitors [23,24]. We
are not aware of any data to indicate whether those species can
occupy climates not represented by their current distribution.
There is also evidence that interspecific competition shapes
salamander phenotypes (morphology and behavior), but there is
limited evidence that competition is a significant determinant of
species distributions (reviewed by [29]). Evidence suggests that
some high elevation species, which are strongly climatically
restricted, may limit the upslope distribution of lower elevation
species, but there is no evidence of the reverse. This would imply
that competitive effects on species distributions are biased toward
underestimating the cold tolerance of low elevation species, but
not the warm tolerance of high elevation species. Therefore,
interspecific competition would not confound the use of climatic
models to predict range loss from climate warming.
The most compelling evidence is that, with the potential

exception of some low elevation species discussed previously,
most plethodontids are restricted to their current realized climatic
zones. It is true that the species we modeled have persisted
through several historic periods of warming, and that historic
warming events were associated with periods of plethodontid
diversification [52]; however, this should not be confused as
evidence that historic warming events were not associated with
species range contractions and extinctions. Kozak and Wiens [29]
provide phylogeographic evidence that many extant plethodontid
species that currently exist at mid and high-elevation climatic
zones are descended from species that colonized those cool
climates when they occurred at lower elevations. They suggest
that species have been ‘‘strictly confined’’ to specific climatic
zones for millions of years, and have migrated with shifting
climatic zones during historic changes in climate [29]. These
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Figure 1. Projected percent suitable climatic habitat loss by 2020 relative to climatic and model variables. Effects of latitude and
current range size on projected percent climatic habitat loss by 2020 of 35 plethodontid species/species complexes currently found within the
Appalachian Highlands. Presented are percent of suitable climatic habitat losses relative to current climate distribution model for two Maxent
thresholds (‘strict’ vs. ‘liberal’), two projected CO2 levels (‘high’ vs. ‘low’), and two global circulation models (Canadian, CGCM3 = solid regression line
with dark grey 95% confidence bands and solid points; Hadley, HADCM3 = dashed regression line with light grey 95% confidence bands and hollow
points). Darkest shading indicates regions of overlap between CGCM3 and HADCM3 confidence bands.
doi:10.1371/journal.pone.0012189.g001
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Table 1. General linear model results.

2020 2050 2080

Source df MS F P MS F P MS F P

Model 1 1.037 0.213 0.645 0.025 0.012 0.914 1.835 1.009 0.316

CO2 1 80.185 16.467 ,0.001 1.505 0.703 0.402 1.119 0.616 0.433

Threshold 1 6.227 1.278 0.259 5.001 2.341 0.127 5.699 3.136 0.078

Latitude 1 0.132 0.0271 0.869 26.626 12.443 ,0.001 14.220 7.825 ,0.01

Range size 1 19.884 4.085 0.044 2.580 1.206 0.273 5.454 3.001 0.084

Model*CO2 1 11.932 2.450 0.119 1.125 0.526 0.469 0.081 0.045 0.833

Model*Threshold 1 0.753 0.155 0.694 0.682 0.319 0.573 0.001 0.001 0.982

CO2*Threshold 1 0.260 0.053 0.817 1.390 0.650 0.421 0.367 0.202 0.653

Model*Latitude 1 1.194 0.245 0.621 0.013 0.006 0.937 1.934 1.064 0.303

CO2*Latitude 1 74.663 15.333 ,0.001 1.449 0.677 0.411 1.141 0.628 0.429

Threshold*Latitude 1 7.815 1.605 0.206 5.555 2.596 0.108 6.043 3.326 0.069

Model*Range size 1 1.622 0.333 0.564 0.002 0.001 0.974 1.975 1.087 0.298

CO2* Range size 1 77.874 15.992 ,0.0001 1.466 0.685 0.409 0.006 0.003 0.954

Threshold*Range size 1 4.389 0.901 0.343 1.681 0.785 0.376 2.835 1.560 0.212

Latitude*Range size 1 34.248 7.033 0.009 8.596 4.017 0.046 12.354 6.800 0.010

Model*CO2*Threshold 1 1.285 0.264 0.608 0.257 0.120 0.729 0.015 0.008 0.927

Model*CO2*Latitude 1 9.366 1.923 0.167 1.015 0.474 0.491 0.138 0.076 0.783

Model*Threshold*Latitude 1 0.636 0.131 0.718 0.645 0.301 0.584 ,0.001 ,0.001 0.987

CO2*Threshold*Latitude 1 0.122 0.025 0.874 1.372 0.641 0.424 ,0.001 0.246 0.621

Model*CO2*Range size 1 9.888 2.031 0.155 0.020 0.009 0.923 0.605 0.333 0.564

Model*Threshold*Range size 1 0.044 0.009 0.925 1.085 0.507 0.477 ,0.001 ,0.001 1.000

CO2*Threshold*Range size 1 0.117 0.024 0.877 0.297 0.139 0.709 0.0315 0.017 0.895

Model*Latitude*Range size 1 3.100 0.636 0.426 0.022 0.010 0.920 1.858 1.022 0.313

CO2*Latitude*Range size 1 76.248 15.658 ,0.0001 1.165 0.544 0.461 0.186 0.103 0.749

Threshold*Latitude*Range size 1 5.447 1.119 0.291 1.856 0.867 0.353 2.989 1.645 0.201

Error 254 4.869 – – 2.140 – – 1.817 – –

Results from a general linear model investigating the factors that influenced the percent of suitable climatic habitat lost in 2020, 2050, and 2080. Data were square root
transformed.
doi:10.1371/journal.pone.0012189.t001

Figure 2. Projected percent suitable climatic habitat loss by 2020, 2050, and 2080 relative to Maxent threshold and latitude. Effect of
latitude and Maxent threshold on projected percent climatic habitat loss by 2020, 2050 and 2080 for 35 plethodontid species/species complexes
currently found within the Appalachian Highlands. Presented are percent suitable climatic habitat losses relative to current climate distribution model
for twoMaxent thresholds (‘strict’ = solid points with a solid regression line and dark grey 95% confidence bands; ‘liberal’ = hollow points with a dashed
regression line and light grey 95% confidence bands). Darkest shading indicates regions of overlap between ‘strict’ and ‘liberal’ confidence bands.
doi:10.1371/journal.pone.0012189.g002
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results are significant for several reasons. First, they suggest that it
is unlikely that many plethodontid species have persisted in the
same geographic location while that location has undergone
significant climatic change. Rather, species migrate with their
associated climatic zone during periods of climate change.
Second, species currently distributed at mid and high elevations
are most vulnerable to climate warming if their current climatic
zone is lost because those species have limited ability to disperse
through warmer valley bottoms. For example, [26,27] show that
range size and genetic differentiation of southern Appalachian
Desmognathus species is related to temperature-dependent resting
metabolic rate, with many high elevation populations existing
near their thermal maxima and significantly limited in their
ability to disperse through warmer, low-elevation environments.
Collectively, these studies suggest that mid and high-elevation
species are generally limited to upslope migration under a
warming climate, which will lead to reductions in the area
occupied by those species and the extinctions of some species with
small, southerly, high-elevation distributions. This is consistent

with our model predictions of northward range contractions and
some extinctions of southern species with small, high-elevation
distributions.
We would note that even though evidence suggests that most

plethodontids will be limited in their ability to disperse northward
under a warming climate, our study allowed for an optimistic level
of dispersal that was still not sufficient to prevent significant
declines in most species. Further, we did not account for land
cover and other natural or anthropogenic geographic barriers that
would limit species migrations in a contemporary landscape. The
southeastern United States, including the Appalachian Highlands,
are predicted to have one of the largest increases in urban and
exurban development in the United States with a projected
population increase to more than 360 million by 2030 [53]. Large-
scale reductions in climatic habitat availability combined with finer
scale losses and fragmentation of remaining suitable habitats
would reduce the likelihood that species could migrate with
climate, increasing the probability of regional extirpations and
extinction [54,55].

Figure 3. Projected species richness in the Appalachian Highlands for 2020, 2050, and 2080 under 24 climatic scenarios. Predicted
species richness of southern Appalachian plethodontids under 24 scenarios by year, global circulation model, CO2 emissions scenario and model
threshold. A) Shapefile used to create the species richness maps for the southern Appalachians. B) Species richness from county-level shapefiles. C)
Current predicted suitable climatic habitat for the liberal model threshold. D) Current predicted suitable climatic habitat for the strict model
threshold.
doi:10.1371/journal.pone.0012189.g003
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The inability to account for potential evolutionary change or
plasticity within the models is another potential limitation to
consider. Although correlative models include variation in traits as
a consequence of using occurrence data across a geographical
region to model distributions, mechanistic models can be
parameterized based on a representative sample of species to
include variation. Identifying which traits to incorporate, data
sources for model parameterization, and determining the extent of
a species adaptability remains challenging [56,57]. Although
examples of species adapting to environmental change, particu-
larly global climate change, are increasing [58,59], little is known
concerning the ability of plethodontids to adapt to changing
climate conditions. Our understanding of the evolutionary
adaptations or phenotypic plasticity exhibited by plethodontids
to new environmental conditions is very limited. Recent studies
have found correlations between genetic diversity, species
diversity, and environmental variables in Desmognathus spp. [28],
a measurable influence of moisture on adaptive phenotypes of
Desmognathus ocoee [60], and morphological changes in Plethodon
cinereus [61]. These studies suggest members of this family are
capable of adaptation as a consequence of recent environmental
change, but more conclusive evidence is needed to examine their
ability to persist through adaptation.
Because of the potential pitfalls associated with species

distribution modeling and forecasting, a number of studies have
stressed the need to use ensemble modeling in forecasting efforts. A
true ensemble approach would consider a range of algorithms to
relate species distributions to climate [16], and many authors have
cautioned that assumptions in species distribution models, such as
the use of threshold or selection of GCM, need to be explored in
forecasting efforts. Although we did not explore multiple
algorithms, one strength of our study was our use of a collection
of GCM, CO2, and threshold scenarios. While we did find that
projected CO2 level and Maxent threshold did affect the
magnitude of projected climatic habitat loss in the near term
(2020), these effects were relatively small compared to the effects of
current range size and latitude. One concern that has been raised
regarding the use of thresholds that over-predict the current range
of an organism is that the projected loss of suitable climatic habitat
may be underestimated; however, our findings did not support
that concern. Further, we argue that by utilizing a threshold that
slightly over-predicts the current suitable climatic habitat, we
allowed the climatic range of each species to be larger than
realized ranges. Projected climatic habitat losses were greater for
scenarios that assume high CO2 levels, and we note that the A2a
CO2 emissions scenario from the IPPC 3rd Assessment, which was
considered a high-emissions scenario in our modeling effort, is now
considered a conservative estimate of emissions [62]. In other
words, our ‘high CO2’ scenarios using A2a emissions may be the
more likely scenario for future forecasts. Remarkably, despite
relatively large differences in projected temperature and precip-
itation changes between the Canadian and Hadley models, the
choice of GCM had no measurable effect on our projected
climatic habitat loss.
When using species distribution models, there are a number of

additional limitations and assumptions that should be addressed
[for a review see [9,11,14,63]]. Biases in the availability of species
distribution data, such as points concentrated within national
parks or areas likely to be foci for the collection of ecological data,
can bias species distribution models [41]. Our use of target-group
background points has been shown to reduce sample-selection bias
[41], and Maxent is considered to be a good conciliation to full
ensemble forecasting [16]. Additionally, correlative, niche-based
models that predict distributions solely on the association between

climatic variables and species range are not explicitly mechanistic,
and as discussed earlier, those models fail to account for the
influence of phylogeographic or biotic processes. Mechanistic
models incorporate variables of physiological requirements and
limitations, and interactions of an organism’s functional traits and
its habitat [56,64,65]; however, unlike correlative models,
mechanistic models require a great deal more data. For a number
of taxa, data are simply not available to develop mechanistic
models. Species distribution models are also affected greatly by the
quality of taxonomic resolution and proper identification of
species. For example, the family Plethodontidae is currently
undergoing significant taxonomic revision, as detailed by the
number of studies examining Plethodontidae phylogeny
[52,66,67,68,69]. Revisions are particularly abundant within the
genus Desmognathus [36,70,71,72,73,74,75]. Phylogenetic changes
to this family in eastern North America have large implications to
our study, as species currently analyzed as one single species could
soon be broken into two or more species. In turn, this would
separate a larger, single-species climatic niche into smaller,
multiple-species niches. Based on our current models, which
predicted larger percent climatic habitat loss among species with
smaller geographic ranges, breaking species with larger distribu-
tions into multiple species with smaller geographic ranges and
narrower climatic distributions would increase the proportion of
species vulnerable to extinction and the estimated richness loss
within the Appalachian Highlands.
Finally, we believe that a novel strength of our study is that our

models predict measurable declines in species climatic habitat and
richness as early as 2020. It is a reasonable criticism of other
modeling efforts that they focus on longer-term projections (2050–
2080). While longer-term projections are important for manage-
ment [76], longer-range forecasts are less robust. In addition,
formulating testable predictions is fundamental to science and the
value of models. A number of studies have demonstrated the value
of species distribution models to predicting current species
distributions and patterns of richness, and then validated those
models through sampling (e.g., [77,78,79]). To apply the same
principle to species distribution model forecasting, we need
shorter-term predictions of change to test. Our various 2020
model predictions can serve as testable alternative hypotheses
concerning changes in species distribution and richness that will
play out in the next 10 years. They also provide the opportunity to
determine how other factors such as land cover change, biotic
interactions, and other processes affect model projections.
The use of species distribution modeling to forecast the effects of

climate change has been characterized in some ways as a necessary
evil. Despite the potential pitfalls of species distribution modeling,
there is a very real practical need to project how climate change
may affect the distributions of species and potential losses of
diversity in focal regions. We conservatively project the loss of a
large proportion of plethodontid species from the southern portion
of the Appalachian Highlands, a region that is currently a global
biodiversity hotspot of salamander diversity. As salamanders are
important in terrestrial and stream ecosystem processes
[30,31,32,33], the decline of species could significantly alter the
function of ecosystems in that region.

Supporting Information

Table S1 Characteristics and model results for each species
modeled. Total distribution size and percent of distribution
overlap of current distributions for each species with AUC values
for each species to show model fit and life history traits and
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number of points used to model each species. Mean AUC for all
species was 0.911.
Found at: doi:10.1371/journal.pone.0012189.s001 (0.08 MB
DOC)

Table S2 Projected change in suitable climatic habitat for each
species modeled under the CGCM3 model. Percent loss or gain of
suitable climatic habitat for each species using the Canadian
Centre for Climate Modeling and Analysis Coupled Global
Climate Model, two Maxent thresholds (strict and liberal), and two
CO2 emissions scenarios (low-medium and medium-high).
Found at: doi:10.1371/journal.pone.0012189.s002 (0.07 MB
DOC)

Table S3 Projected change in suitable climatic habitat for each
species modeled under the HADCM3 model. Percent loss or gain
of suitable climatic habitat for each species using the Hadley

Centre Coupled Model (version 3), two Maxent thresholds (strict
and liberal), and two CO2 emissions scenarios (low-medium and
medium-high).
Found at: doi:10.1371/journal.pone.0012189.s003 (0.07 MB
DOC)
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