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Abstract: This study estimates the economic losses attributable to a nonindigenous forest insect, the hemlock
woolly adelgid (Adelges tsuga), using cross-sectional and difference-in-difference hedonic price models. The
data span a decade of residential property value transactions in West Milford, New Jersey. Hemlock health in
naturally regenerated hemlock stands was measured biannually over this period using remote sensing data and
the image differencing technique. These data were linked with spatially referenced land use and land cover data,
measured twice during the decade, and the locations and housing characteristics associated with parcels sold.
Spatial dependence in the regression models was addressed using spatial error and fixed-effects panel data
models. The empirical results demonstrated that hemlock decline consistently caused statistically significant
reductions in property values both for parcels containing hemlock resources as well as for neighboring
nonhemlock parcels. We conclude that failure to account for spatial spillover effects would downwardly bias
estimates of economic losses and total economic losses on properties sold during the study period ranged from
$0.64 million in the parcel level cross-section model to $2.2 million in the 0.5-km neighborhood difference-
in-difference model. FOR. SCI. 56(6):529–540.
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B IOLOGICAL INVASIONS are an emerging and critical
problem facing forest landowners in the United
States and abroad. As economies around the world

have developed, the growth in international trade has in-
duced a steady increase in the arrival and establishment of
nonindigenous species (Levine and D’Antonio 2003, Work
et al. 2005, McCullough et al. 2006). Forest pests and
pathogens are known to hitchhike on various commercial
products as well as round-wood and packing materials
(Brockerhoff et al. 2006, Haack et al. 2006, Piel et al. 2008).
International phytosanitary measures have been developed
to address the major economic cause of biological invasions
with the goal of preventing invasive species from entering
trade pathways (Mumford 2002). New policies that shift the
burden of economic impacts from forest landowners and
taxpayers onto parties responsible for introducing and/or
spreading invasive species may be an efficient means for
internalizing the economic spillovers associated with trade
(Perrings et al. 2002). However, policies that seek to inter-
nalize the externalities caused by nonindigenous forest pests
and pathogens will require reliable estimates of economic
damages associated with forest invasive species (Holmes et
al. 2009).

Since the period after European discovery of the United
States, more than 450 nonindigenous phytophagous insects
have become established in domestic forests, woodlots,
parks, and orchards (Mattson et al. 1994, Aukema et al.
2010). Although the preponderance of non-native forest

pests introduced into US forests are innocuous, a few well-
known pests have caused severe ecological impacts (Lieb-
hold et al. 1995). Despite an extensive body of literature
describing the ecological impacts of non-native forest inva-
sive species, very little is known about the economic impact
of biological invasions on various sectors of the forest
economy. A recent review of three nonindigenous forest
pests of current concern in the United States (emerald ash
borer [Agrilus planipennis], Asian longhorned beetle [Ano-
plophora glabripennis], and sudden oak death [Phytoph-
thora ramorum]) estimated that control costs plus economic
damages for these pests might total billions of dollars (Gen-
eral Accounting Office 2006). Furthermore, Pimentel et al.
(2000) suggested that economic damages arising from the
impact of nonindigenous forest pests in the United States on
forest products markets are on the order of $4.2 billion
annually. Despite the importance of these studies in focus-
ing attention on the economic aspects of biological inva-
sions, it must be recognized that neither study used the
standard neoclassic approach to economic analysis. The
absence of credible estimates for a full suite of costs and
economic damages arising from changes caused by nonin-
digenous forest pests and pathogens on timber and nontim-
ber resources limits the ability of policymakers to evaluate
tradeoffs between the loss of economic well-being and
potential policy measures targeted to reducing those im-
pacts. Consequently, theoretically sound analyses are
needed, which could provide a foundation for the estimation
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of aggregate economic impacts from nonindigenous forest
pests and pathogens.

The goal of this article was to analyze the microeco-
nomic impacts of a nonindigenous forest pest, the hemlock
woolly adelgid (Adelges tsuga [HWA]), on the value of
residential forests using the hedonic price method. To set
the context for analysis, a summary of the HWA problem is
provided in the second section, along with an overview of
the hedonic price method literature regarding the value of
trees in residential forest landscapes. The study site and data
used for analysis are described in the third section, followed
by a description of empirical methods in the fourth section.
Results of the empirical analysis are reported in the fifth
section, and the conclusions of the study are presented in the
last section.

HWA and Residential Forest Landscapes

The HWA is an exotic forest insect accidentally intro-
duced into Virginia from Japan during the 1950s [1]. During
the past half-century, the HWA has spread to hemlock
forests in the Northeast, the Mid-Atlantic region, and the
South. Eastern (Tsuga canadensis) and Carolina (Tsuga
caroliniana) hemlocks have shown no resistance to HWA,
and once trees are moderately or severely infested, there is
little chance for recovery, typically resulting in tree mortal-
ity. Dramatic losses of hemlock forests throughout the east-
ern United States are likely unless successful control mea-
sures are found.

Eastern hemlocks are a long-lived species and individu-
als may approach 1,000 years of age. Hemlock stands are
often found in cool, moist valleys and ravines, where they
stabilize soil and helps maintain water temperatures favor-
able to trout species. Hemlocks also favor cool habitats
found on northerly slopes. Because of the limited availabil-
ity of these growing conditions, the distribution of eastern
hemlocks is spatially patchy. Where pure stands occur, they
typically create a cool and dark environment that contains
few understory species.

Although eastern hemlock is sold as a timber species, it
has little commercial value (Howard et al. 2000). Its prin-
cipal economic value derives from the nontimber ecosystem
services it provides. In a study of the aesthetic preferences
of forest landowners in Massachusetts for 20 different forest
types, Brush (1979) discovered that old Eastern hemlock
stands were rated above all other sites for scenic beauty.

There is a limited, but increasingly important and ex-
panding, body of literature that examines the contribution of
tree cover to residential property values. The existing liter-
ature can be categorized from three perspectives: individual
yard trees increase property value (Morales et al. 1976,
Anderson and Cordell 1988, Dombrow and Sirmans 2000),
forest preserves near residential locations convey property
value (Tyrväinen and Miettinen 2000, Thorsnes 2002), and
trees within the general forest matrix surrounding residen-
tial structures convey value (Garrod and Willis 1992, Patter-
son and Boyle 2002). Importantly, the focus of these studies
has been to estimate the contribution of healthy trees and
forests to residential property values. Although Payne et al.
(1973) simulated the loss of value to residential properties

due to individual tree mortality caused by the gypsy moth
(Lymantria dispar), their method relied on the assumption
that the loss in property value is exactly symmetric to the
gain in property value attributable to healthy trees. Rather
than impose this assumption, we directly estimated the
impact of a change in forest (hemlock) health on property
values.

Study Site and Data Description
Study Area

Our analysis focuses on the township of West Milford, a
residential community located in the Highlands region of
northern New Jersey. This study area was chosen for anal-
ysis for two reasons. First, hemlock health data for New
Jersey are well documented (Royle and Lathrop 1997,
2002). Second, naturally regenerated hemlock stands form a
small, but integral, component of the residential landscape
in this region. West Milford is an 80-square mile township
located in Passaic County. Although less than 100 miles
from New York City, the landscape in the Highlands region
is characterized by farms, small villages and towns, lakes,
forests, and wetlands.

Housing Characteristics

Our empirical analysis uses 4,373 residential property
transactions in West Milford township for the years
1992–2002 (Table 1). The mean (nominal) sales price
(PRICE) for West Milford was $177,752 (dummy variables
were used in the model specification to control for housing
price inflation in these markets). The mean lot size
(L_SIZE) was 0.24 ha, the average date of construction
(YR_BUILT) was 1961, and the average living area
(LV_AREA) was 161.93 m2. Other housing characteristics
used in the model specifications included the number of
bedrooms (BEDROOMS), bathrooms (BATHS), and kitch-
ens (KITCHENS), as well as the presence or absence of a
finished basement (F_BASE). The cost of travel to the
major labor market, New York City, was estimated by
computing the road distance and multiplying by a constant
cost per kilometer (COST_NYC). Given the importance of
the proximity of water bodies as a determinant of land price
(Snyder et al. 2007), a variable measuring the distance from
sold parcels to the closet water body was also included
(DIST_LAKE).

Landscape Characteristics

Land use and land cover (LULC) data based on LAND-
SAT satellite imagery were obtained from the Center for
Remote Sensing and Spatial Analysis at Rutgers University
(Lathrop 2000). The land classifications used in the model
specification were based on a 14-class scheme, with two
classes omitted to simplify analysis [2]. The resolution of
individual pixels was 30 m2. Consequently, observations on
tree cover do not represent individual trees but rather rep-
resent groups of trees, or stands. LULC variables used in the
analysis include highly developed land (HI_DEV: �75%
impervious soil), medium and low development (LMED-
_DEV: 25–75% impervious soil), deciduous forest cover
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(DECID), hemlock forest cover (described below), other
(nonhemlock) coniferous forest cover (CONIF), mixed (de-
ciduous and other coniferous) forest cover (MIXED), agri-
cultural land (AGRIC), wetlands (WETLAND), and area
covered by streams, ponds, and lakes (WATER). Land
cover variables were measured in hectares (Table 1) and
were available for the years 1995 and 2000. For West
Milford township, the transactions data encompassed about
1,804 total ha. In the empirical model specification, housing
sale data were matched with the closest corresponding dates
for the LULC data.

Hemlock Health

Concern regarding the spread of HWA and its impact on
hemlock resources in New Jersey motivated the develop-
ment of methods to monitor hemlock health, which was
accomplished using the image differencing technique
(Royle and Lathrop 1997, 2002). This methodology has
been successfully used to map canopy defoliation by other
forest pests such as gypsy moth and spruce budworm (Cho-
ristoneura fumiferana) and quantifies defoliation by sub-
tracting spectral reflectance between satellite imagery for
two points in time. By relating the spectral difference in
reflectance to defoliation observed on the ground, various
levels of defoliation can be quantified.

Four hemlock health classes were used to assign values
to hemlock pixels in the study area: (1) healthy and lightly
defoliated hemlocks (�25% defoliation), (2) moderately
defoliated hemlocks (25–49% defoliation), (3) severely de-
foliated hemlocks (50–74% defoliation), and (4) dead hem-
locks (�74% defoliation). Leaf-off, winter images were
obtained for November 1984, November 1992, December

1994, December 1996, December 1998, and December
2001. The 1984 image was used as the base scene for image
processing and change detection, because it was the prein-
festation data against which all vegetation changes were
compared [3]. Given that 1992 is the first year in which
reliable hemlock health data were available, this is the initial
year used in the empirical analysis. As was done with the
LULC data, housing sale data were matched with the closest
corresponding dates for the hemlock health variables.

Figure 1 shows the hectares of hemlock forest type
included in residential property transactions between 1992
and 2002 in West Milford township by health class.
Roughly 76 ha of hemlock forest type were located on
parcels sold during the study period (representing 330 trans-
actions). As can be seen, most of the area sold in this forest
type was either healthy or moderately defoliated before the
year 2000. However, a sudden decline in hemlock health
occurred during the subsequent years 2000–2002, and the
area of hemlocks located on parcels sold during this period
increased sharply (representing 106 transactions).

Landscape Externalities

Previous research has demonstrated that LULC variables
in the neighborhood of a parcel can influence transactions
price (Powe et al. 1995, Geoghegan et al. 1997, Benson et
al. 1998, Acharya and Bennett 2001, Geoghegan 2002,
Irwin 2002, Patterson and Boyle 2002) suggesting that, to
some degree, landscape attributes are public goods. To test
for possible hemlock health externalities among neighbor-
ing properties, all LULC variables were measured at the
parcel level, within a 0.1-km radius from the parcel cen-
troid, and within a 0.5-km radius from the parcel centroid.

Table 1. Descriptive statistics for housing and landscape attributes measured at the parcel level

Variable (variable name, units)

West Milford

Mean S.D. Minimum Maximum

House price (PRICE, $) 177,752 77,595 30,000 975,000
Parcel size (LOT_SIZE, ha) 0.24 0.29 0.04 2.02
Year constructed (YR_BUILT, year) 1962 19.87 1880 2002
Bathrooms (BATHS, number) 1.84 0.80 1 5
Bedrooms (BEDROOMS, number) 3.10 0.87 1 8
Living area (LV_AREA, m2) 161.93 61.97 74.32 458.66
Kitchens (KITCHENS, number) 1.03 0.20 1 5
Finished basement (F_BASE, dummy) 0.30 0.46 0 1
Driving cost (COST_NYC, $) 19.72 32.17 9.95 25.09
Proximity to lake (DIST_LAKE, km) 0.29 0.24 0 1.41
Wetland (WETLAND, ha) 0.01 0.05 0.00 1.28
Agricultural (AGRIC, ha) 0.00 0.01 0.00 0.30
Highly developed (HI_DEV, ha) 0.00 0.01 0.00 0.16
Low–medium development (LMED_DEV, ha) 0.15 0.12 0.00 1.22
Water body (WATER, ha) 0.00 0.01 0.00 0.36
Grass (GRASS, ha) 0.00 0.00 0.00 0.46
Coniferous forest (CONIF, ha) 0.00 0.01 0.00 0.17
Mixed forest (MIXED, ha) 0.01 0.05 0.00 1.03
Deciduous forest (DECID, ha) 0.06 0.20 0.00 1.98
Healthy hemlocks (HEALTHY_H, ha) 0.00 0.05 0.00 1.12
Moderate defoliation (MOD_H, ha) 0.00 0.03 0.00 0.87
Severe defoliation (SEVERE_H, ha) 0.00 0.03 0.00 0.53
Dead hemlocks (DEAD_H, ha) 0.00 0.03 0.00 1.10
Hemlocks (HEMLOCK, ha) 0.02 0.08 0.00 1.26
Hemlocks during impact (HEM_IMPACT, ha) 0.00 0.04 0.00 1.26
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Statistically significant parameter estimates for landscape
variables within the neighborhood of parcels containing
hemlock forest cover type signifies that tree health (decline)
is a public good (bad).

Empirical Methods
Hedonic Price Model

The hedonic price model, which provides the theoretical
foundation for our analysis, is based on the idea that the
price of a good represents the sum of values associated with
the qualities or attributes that comprise the good (Palmquist
1991). Attributes are provided by sellers, represented by an
offer curve for each attribute holding all other attributes
constant, and demanded by buyers, represented by a bid
curve for each attribute. The hedonic price function repre-
sents the equilibrium position between buyers and sellers
and is characterized by the locus of tangencies between
offer and bid curves for each attribute.

Localized changes in an environmental attribute, such as
hemlock health in residential forests, affect a relatively
small number of properties, and the hedonic price function
for the entire market remains unaffected. Under these con-
ditions, the first-stage hedonic price function can be used to
compute changes in economic welfare resulting from the
change in an environmental attribute (Taylor 2003).

To understand the theoretical argument, consider resi-
dential property owners with hemlock stands who, when
faced with a decrease in the health of their stands, are no
longer situated at their preferred combination of attributes
given the hedonic price schedule. If these property owners
were able to move, at zero cost, to an alternative location
that maintained their preferred combination of attributes,
they would remain at an identical level of welfare

(Palmquist 1991). However, when faced with the sale of the
property with a diminished level of forest amenity, they
would face a capital loss due to the loss of amenity value (as
well as possible landscape restoration costs) and would be
willing to pay an amount equal to the capital loss to avoid
the change in amenity. The total welfare loss for the com-
munity can then be computed as the sum of the losses for
each property that is affected by the decline in amenity
value.

It should be recognized that a loss in property value due
to a reduction in forest health is likely to be a transitory
phenomena. Residential hemlock forests that experience
decline and mortality will not remain in a degraded state
over long periods of time. Rather, we anticipate that land-
owners will take actions to restore degraded residential
forests to an improved condition. Managerial actions may
include the removal of dead and dying trees, planting alter-
native tree species, or encouraging the natural regeneration
of desired tree species. Unfortunately, our data do not span
a sufficient period to evaluate the evolution of property
values subsequent to the period of hemlock decline. How-
ever, at the end of the period for which we have hemlock
health data (2002), less than one-third of the hemlock com-
ponent of parcels sold was categorized as dead. Thus, it is
likely that property value losses will continue to accrue in
this housing market as hemlocks in the moderate and severe
defoliation categories transition into the dead category.

Cross-Section Hemlock Health Model

The structure of our data allows alternative econometric
models to be specified to evaluate the economic impacts of
hemlock decline on economic welfare. The first specifica-
tion uses detailed information on the hemlock health

Figure 1. Trend of hemlock health on parcels sold in West Milford, NJ.
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classes. This specification assumes that the impact of hem-
lock health status on property value is constant over the
study period but may vary by health class. Because patches
of hemlocks located within parcels or neighborhoods may
exhibit multiple health classes at any point in time, this
specification also imposes the assumption that property
buyers and sellers can decompose overall hemlock health
impacts into impacts associated with specific health classes.

In general, the hedonic price model is specified by link-
ing the variation in prices of residential properties with the
variation in measured attributes using linear regression
methods. A semilogarithmic hedonic price function can be
specified as

ln�Pit� � Zit� � �t � �i, (1)

where ln(Pit) is an N � 1 vector of the natural log of price
for parcel i in year t, Z is an N � M matrix containing
explanatory variables, � is an M � 1 vector of parameter
estimates, �t is a vector of parameters associated with T �
1 dummy variables that capture temporal price inflation for
all parcels sold in year t (relative to a base year), and � is an
N � 1 vector of errors, which are distributed normally with
zero mean and variance of �2 [4]. The semilogarithmic
functional form is widely used in applied research and
yields the interpretation that estimated model parameters
represent the proportional change in price resulting from a
unit change in the associated explanatory variable.

The impact of hemlock decline on property value in the
cross-section model can then be specified as

ln�Pit� � Zit� � �t � Hit� � �i, (2)

where Hit is a N � 4 matrix containing data on hemlock
health classes (healthy, moderate decline, severe decline,
and dead), and � is a 4 � 1 vector of parameters that capture
the impact of hemlock health status on the logarithm of
sales price.

Difference-in-Difference Hemlock Health
Model

A second framework for computing changes in economic
welfare due to hemlock decline is the difference-in-differ-
ence model. In contrast to the cross-section model, this
specification does not impose the assumption that the eco-
nomic impact of hemlock health classes remains constant
over time or that buyers and sellers can decompose the
overall impact of hemlock decline into impacts associated
with specific hemlock health classes. Rather, this specifica-
tion is based on the idea that a gradual reduction in forest
health will have a benign impact on property values until a
threshold is reached at which point property values decline
(the period of impact). Thus, this model specification takes
a more holistic view of the impact of hemlock health on
residential property transactions, suggesting that buyers and
sellers take account of the overall health of hemlocks (or,
more generally, the landscape condition) on parcels and
within neighborhoods when making property transactions.

To understand this model, let Ph,tb represent the price of
a parcel either containing hemlock (h) cover or a parcel
located within the neighborhood of a hemlock-containing

parcel, during years (t) in which the change in hemlock
health is benign (b). Let Ph,tn represent the price of a parcel
either containing hemlock cover or a parcel located within
its proximity, during years (t) in which the change in hem-
lock health induces a nonoptimal (n) bundle of attributes for
property owners. Further, let Pnh,tb represent the price of a
nonhemlock parcel or a parcel located within the proximity
of a nonhemlock parcel, during period tb (as described
above). Finally, let Pnh,tn represent the price of a nonhem-
lock parcel or a parcel located within its proximity during
period tn. Then, the welfare loss due to hemlock decline can
be expressed as

�E�Ph,tb|Z	 � E�Ph,tn|Z	
 � �E�Pnh,tb|Z	 � E�Pnh,tn|Z	
, (3)

where E[�] is the expectations operator and Z is a vector
containing household and landscape attributes.

The first expression on the left-hand side of Equation 3
represents the difference in price for parcels influenced by
hemlock resources before and after the impacts of hemlock
decline are registered in the market. The second expression
represents the difference in price for parcels that do not have
or are not located in the proximity of hemlock cover types
and represents the overall changes in market conditions
during the study period.

The impact of hemlock decline on property value in the
difference-in-difference model is specified using two re-
lated variables. The first variable, HEMLOCKit, specifies
the total area of hemlock trees on parcels or within the
defined spatial buffers sold throughout the entire period
covered by the data record. A second hemlock variable,
HWA_IMPACTit, is specified to evaluate the impact of
hemlock decline at the point in time at which holding
hemlock stands becomes nonoptimal (from the sellers per-
spective) [5]. Adding these variables to Equation 1, the
specification of the hedonic price equation is now

ln�Pit� � Zit� � �t � �HEMLOCKit

� �HWA_IMPACTit � �i, (4)

where � registers the marginal influence of hemlock forest
cover on parcel price and � registers the impact of hemlock
decline relative to hemlock stands sold during the benign
period [6].

Spatial Error Models

The assumption that the error term � in Equations 2 and
4 is distributed normally with zero mean and variance of �2

is often violated when property value transactions are ana-
lyzed. Because the empirical specifications in Equation 2
and 4 cannot include all of the factors that influence prop-
erty prices, omitted variables and their associated bias are
relevant empirical issues (Kuminoff et al. 2009). We esti-
mated spatial error models in response to concerns over
omitted variables that are likely to be spatially correlated,
such as unobserved neighborhood attributes. If spatial error
dependence is present but ignored in the model specifica-
tion, ordinary least-squares regression will produce unbi-
ased parameter estimates, but the standard errors associated
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with these estimates will be biased (inefficient). Thus, pa-
rameter estimates that are, in fact, statistically significant
may appear as insignificant if spatial errors are ignored (and
vice versa).

One approach to handling spatially correlated errors is to
construct a spatial weights matrix to provide structure for
the error dependencies (Anselin 1988). This strategy has
been used in previous hedonic property value studies
(Holmes et al. 2006, Donovan et al. 2007), and we use this
strategy in the current study. In general, the spatial error
model can be specified as modifying the errors shown in
Equation 2 (for the cross-section model) and Equation 4 (for
the difference-in-difference model) as a spatial autoregres-
sive process:

� � �W� � 	, (5)

where W is a N � N spatial weights matrix, � is the
parameter estimate on W, and 	 is the independent and
identically distributed equation error [7]. The spatial error
models for the cross-section and difference-in-difference
specifications were estimated using GeoDa software (Anse-
lin et al. 2006).

The construction of the spatial weights matrix is prob-
lematic when cross-section observations are unequally dis-
tributed across space, as is typical in property value studies.
The specification chosen by the analyst for the spatial
weights matrix can cause differences in parameter esti-
mates, and it is difficult to test among alternative specifi-
cations for this matrix (Bell and Bockstael 2000). For the
data used in our analysis, two problems arise in the speci-
fication of W shown in Equation 5. First, property value
transaction data used in our study are, indeed, unequally
distributed across space. For the analysis reported here, W
is specified using the minimum (arc) distance for which
each parcel has a neighbor. Second, the transactions data
used in our analysis contain many repeat sales of individual
properties. The presence of many repeat sales in our data
(roughly one-third of the recorded transactions) did not
allow us to discard those observations. Instead, this situation
was handled by slightly offsetting the coordinates of parcels
where repeat sales occurred to create a unique set of loca-
tions that could be used in constructing W. However, this
method differs from the standard convention of setting the
diagonal elements of W equal to zero (i.e., unobserved
spatial errors are not correlated at a single location). Al-
though this procedure preserves the full set of observations
for analysis, it will induce a high spatial autocorrelation
among identical locations that have been spatially offset. By
increasing the level of spatial autocorrelation among ele-
ments of W, too much variation in the dependent variable
may be attributed to omitted variables in the model
specification.

Because this methodology may confound the interpreta-
tion of the econometric results, an alternative approach for
handling spatially correlated errors was used. Pope (2008)
and Kuminoff et al. (2009) suggested the use of a fixed-ef-
fects panel model for handling the problem of spatially
correlated omitted variables. To implement this model, a
vector of spatial dummy variables is specified as a vector of
fixed-effects in a panel model. In our implementation of this

model, omitted variables are captured using dummy vari-
ables identified by census blocks. Thus, the cross-section
and difference-in-difference models, respectively, can be
specified to include spatially correlated errors,

ln�Pit� � Zit� � �t � Hit
 � �BLOCKj|i � �i, (6)

ln�Pit� � Zit� � �t � �HEMLOCKit

� �HWA_IMPACTit � �BLOCKj|i � �i, (7)

where � is a vector of fixed-effects parameters and
BLOCKj i is a vector of dummy variables identifying spatial
neighborhoods as census block j containing parcel i. The
fixed-effects parameters capture the (time-invariant) im-
pacts of omitted neighborhood variables. The hypothesis
that all of the � are equal can be evaluated using a likeli-
hood ratio test (Greene 1997).

Results and Discussion

In all of the models we estimated, the spatial autocorre-
lation parameter estimate � was statistically significant at
the 0.01 level, providing evidence that omitted variables,
related to the variation in housing prices, were spatially
autocorrelated. Estimates of � ranged from roughly 0.80 to
0.82, suggesting a high degree of spatial autocorrelation
among equation errors (which may reflect, to some degree,
the method used to handle repeat sales data). Further, the
likelihood ratio tests on the vector of parameters � indi-
cated that the fixed-effects models were statistically supe-
rior to the ordinary least-squares models with a single
constant, providing further evidence that omitted variables
had a systematic impact on property values. The hypothesis
that all � estimates were equal was rejected at the 0.01 level
in every model. In general, the goodness of fit statistic
(adjusted R2) suggested that the fixed-effects models were
superior to the spatial error model specifications. Further,
Moran’s I-statistic was computed for the errors in the fixed-
effects models. Results of this analysis showed that the
fixed-effects models were successful in eliminating positive
spatial autocorrelation in the residuals [8].

Although most of the variables representing housing
characteristics were statistically significant in each model
specification, some irregularities in statistical significance
were noted that appeared to be related to the method by
which omitted variables were handled. For example, in the
models for which landscape variables were measured at the
parcel level (Table 2), the variable representing a finished
basement (F_BASE) was significant at the 0.01 level in the
spatial error model but not significant (at the 0.10 level) in
the corresponding fixed-effects models. In contrast, the
variable representing the distance from New York City
(DIST_NYC) was statistically different from zero at the
0.05 level in the fixed-effects model parcel model (Table 2)
and at the 0.10 level in the 0.1- and 0.5-km models (Tables
2 and 3) but was not significantly different from zero at
the 0.10 level in the corresponding spatial error models.
Thus, we suspect that the methods used to control for the
variation in housing prices induced by the spatial location
of unobserved variables influenced the statistical significance
of some of the parameter estimates in the model specifications.
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Given this recognition of the subtle influence that meth-
ods used to control for spatial correlation of omitted vari-
ables can have on econometric analysis, the consistency of
results across alternative methods for handling spatial cor-
relation can provide an indication of the robustness of the
empirical results. Further, although the spatial scale at
which landscape variables are most salient in the determi-
nation of residential property values is not generally known
and remains an empirical question, consistency of results
across spatial scales will provide a further indication of
robustness in the interpretation of results.

All of the landscape variables included in the model
specifications, except WETLAND, were statistically differ-
ent from zero at the 0.10 level or lower in at least one of the
model specifications. Notably, the parameter estimate on
the landscape characteristic representing the area of a lake,
pond, or stream on a parcel or within its proximity (WA-
TER) was significantly different from zero in 10 of the 12
model specifications. The importance of water in determin-
ing property values was further demonstrated by the fact
that in 9 of the 12 model specifications, the parameter
estimate on the distance from the parcel centroid to the
nearest water body (DIST_LAKE) was statistically signifi-
cant at the 0.10 level or lower.

The statistical significance of the parameters associated

with various landscape characteristics was found to vary in
several instances across the spatial scales at which those
variables were measured. For example, the parameters on
the variable representing the area of coniferous forest spe-
cies (CONIF) were not different from zero when measured
at the parcel level (Table 2), significant (and positive) in all
model specifications when measured at the 0.1 km level
(Table 3), and significant (positive) in two of the four model
specifications measured at the 0.5-km level. These results
suggest that residential property owners in this market favor
(nonhemlock) coniferous species within their neighbor-
hood, but not on their parcel. In contrast, the empirical
results (Table 2) suggest that property owners prefer a high
level of development (HI_DEV) on their own parcel (rep-
resenting factors such as driveways, decks, and swimming
pools) but dislike a high degree of development within their
neighborhood (Table 4).

Turning to the impact of hemlock decline on property
value transactions, we note a broad consistency of results
across the model specifications. The parameter estimates
from the cross-section model specifications demonstrate
that the parameter estimates associated with the area of dead
hemlocks (DEAD_H) were statistically different from zero
(at the 0.10 level or lower) in four of the six model speci-
fications. Dead hemlocks consistently had a negative impact

Table 2. Spatial error and fixed-effects panel models of the determinants of housing prices with landscape variables measured at
the parcel level and hemlock variables specified using cross-section and difference-in-difference models

Variables

Coefficients:
cross-section,
spatial error

Coefficients:
cross-section,
fixed effects

Coefficients:
difference-in-difference,

spatial error

Coefficients:
difference-in-difference,

fixed effects

CONSTANT 2.782 (0.515)‡ — 2.717 (0.514)‡ —
YR_BUILT 0.005 (0.000)‡ 0.005 (0.000)‡ 0.005 (0.000)‡ 0.005 (0.000)‡
BATHS (#) 0.048 (0.007)‡ 0.032 (0.008)‡ 0.048 (0.007)‡ 0.032 (0.008)‡
BEDROOMS (#) 0.016 (0.006)‡ 0.021 (0.006)‡ 0.016 (0.006)‡ 0.021 (0.006)‡
LV_AREA (1,000 ft2) 0.228 (0.009)‡ 0.168 (0.011)‡ 0.228 (0.009)‡ 0.169 (0.011)‡
KITCHENS (#) �0.092 (0.021)‡ �0.078 (0.024)‡ �0.092 (0.021)‡ �0.078 (0.024)‡
F_BASE (dummy) �0.027 (0.010)‡ �0.016 (0.011)‡ �0.027 (0.010)‡ �0.017 (0.011)‡
DIST_NYC (km) 0.000 (0.000) 0.005 (0.002)† 0.000 (0.000) 0.005 (0.002)†
DIST_LAKE (km) �0.066 (0.023)† �0.122 (0.051)† �0.002 (0.001)‡ �0.004 (0.002)†
WETLAND (ha) 0.015 (0.082) 0.160 (0.11) 0.010 (0.082) 0.159 (0.111)
AGRIC (ha) 1.090 (0.516)† 1.365 (0.557)† 1.045 (0.516)† 1.305 (0.557)†
HI_DEV (ha) 1.245 (0.326)‡ 0.679 (0.356)† 1.228 (0.326)‡ 0.662 (0.356)*
LMED_DEV (ha) 0.314 (0.040)‡ 0.305 (0.047)‡ 0.321 (0.037)‡ 0.310 (0.047)‡
WATER (ha) 1.376 (0.423)‡ 0.904 (0.511)* 1.366 (0.423)‡ 0.886 (0.511)*
GRASS (ha) �1.300 (0.504)‡ �4.928 (1.021)‡ �1.295 (0.504)‡ �4.906 (1.020)‡
CONIF (ha) �0.297 (0.576) �0.287 (0.623) �0.390 (0.573) �0.354 (0.622)
MIXED (ha) 0.126 (0.099) 0.315 (0.108)‡ 0.116 (0.099) 0.302 (0.108)‡
DECID (ha) 0.044 (0.022)† 0.091 (0.031)‡ 0.042 (0.022)* 0.091 (0.031)‡
HEALTHY_H (ha) �0.079 (0.094) �0.164 (0.113) — —
MODERATE_H (ha) �0.005 (0.151) �0.072 (0.162) — —
SEVERE_H (ha) 0.358 (0.158)† 0.273 (0.182) — —
DEAD_H (ha) �0.314 (0.168)* �0.471 (0.182)‡ — —
HEMLOCK (ha) — — 0.032 (0.072) �0.071 (0.092)
HEM_IMPACT (ha) — — �0.173 (0.111) �0.229 (0.121)*
� 0.803 (0.036)‡ — 0.798 (0.037)‡ —

Adjusted R2 0.60 0.67 0.60 0.67
N 4,373 4,373 4,373 4,373

SE are in parentheses. Parameter estimates related to hemlock health that are significant at the 0.10 level or lower are indicated in bold. Parameter estimates
on dummy variables for the year of sale (1992–2001) were all significantly different from zero at the 0.01 level, and are available from the authors upon
request.
* Significance at the 0.10 level.
† Significance at the 0.05 level.
‡ Significance at the 0.01 level.
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on property value transactions when they occurred either on
a parcel or within 0.1 km of the parcel centroid (four of four
parameter estimates were statistically different from zero)
[9]. Conversely, dead hemlocks did not convey an impact
on property price when located within 0.5 km of the parcel
centroid [10]. These results are complemented by results
from the difference-in-difference models. In these model
specifications, the parameter estimates on the variable spec-
ifying the time period during which hemlock decline con-
veyed a reduction in property values (HEM_IMPACT) were
statistically significant in five of the six model specifica-
tions (and the parameter estimate was significant at the 0.12
level in the remaining model specification).

These results demonstrate that hemlock decline in this
housing market had a negative impact not only on parcels
where hemlock stands were located but also on neighboring
parcels that were devoid of hemlock trees. These spillover
effects suggest that hemlock decline is a public bad. Further,
although our results suggest that the economic losses due to
hemlock decline are largely driven by the presence of dead
hemlock trees on parcels and within neighborhoods, after a
certain period of time other dynamic factors come into play.
That is, once the stage of hemlock decline reaches a thresh-
old level, as captured in the difference-in-difference model
by a temporal reference point, all hemlock-related transac-

tions impart a negative impact on property prices. During
this period of impact, which is anticipated to extend beyond
the period of time recorded in this study, all hemlock stands,
regardless of health category, are viewed as an undesirable
landscape feature. This shift in value may reflect the per-
ception that all hemlocks in the residential forest matrix will
ultimately exhibit premature mortality.

The per unit area loss in property value due to a decline
in hemlock health can be computed by multiplying the
parameter estimates associated with Dead_H in the cross-
section model and HEM_IMPACT in the difference-in-dif-
ference model, by the average property value. Then, the
aggregate economic losses to properties sold in West Mil-
ford townships due to HWA can be estimated by multiply-
ing the per unit area losses by the area of hemlock stands on
properties sold during the period of impact (Table 5) [11].
These estimates represent a lower bound of the loss in
economic welfare in this housing market due to hemlock
decline, as they do not include welfare impacts on properties
that sustained hemlock-related losses but were not sold.

As can be seen in Table 5, specific model specifications
had systematic impacts on estimates of economic losses. In
particular, economic losses estimated using the fixed-effects
model specifications were consistently larger than the losses
estimated using the spatial error model (except for the

Table 3. Spatial error and fixed-effects panel models of the determinants of housing prices with landscape variables measured
within a 0.1-km neighborhood of parcel centroid and hemlock variables specified using cross-section and difference-in-difference
models

Variables

Coefficients:
cross-section,
spatial error

Coefficients:
cross-section,
fixed-effects

Coefficients:
difference-in-difference,

spatial error

Coefficients:
difference-in-difference,

fixed-effects

CONSTANT 2.376 (0.525)‡ — 2.387 (0.524)‡ —
YR_BUILT 0.005 (0.000)‡ 0.005 (0.000)‡ 0.005 (0.000) 0.005 (0.000)‡
BATHS (#) 0.046 (0.007)‡ 0.036 (0.008)‡ 0.047 (0.007)‡ 0.037 (0.008)‡
BEDROOMS (#) 0.014 (0.006)‡ 0.020 (0.007)‡ 0.015 (0.006)‡ 0.020 (0.006)‡
LV_AREA (1,000 ft2) 0.246 (0.009)‡ 0.187 (0.011)‡ 0.244 (0.009)‡ 0.186 (0.011)‡
KITCHENS (#) �0.090 (0.021)‡ �0.078 (0.024)‡ �0.090 (0.021)‡ �0.077 (0.024)‡
F_BASE (dummy) �0.038 (0.010)‡ �0.025 (0.011)† �0.037 (0.010)‡ �0.025 (0.011)†
COST_NYC ($) 0.000 (0.000) 0.000 (0.000)* 0.000 (0.000) 0.004 (0.002)*
DIST_LAKE (km) �0.003 (0.027)† �0.004 (0.002)‡ 0.000 (0.002) �0.004 (0.002)†
WETLAND (ha) 0.030 (0.037) 0.005 (0.020) 0.035 (0.037) �0.011 (0.049)
AGRIC (ha) 0.131 (0.054)† 0.016 (0.080) 0.133 (0.054)† 0.010 (0.080)
HI_DEV (ha) 0.015 (0.042) 0.005 (0.057) 0.015 (0.042) 0.004 (0.057)
LMED_DEV (ha) 0.062 (0.032)* 0.028 (0.045) 0.067 (0.032)† 0.030 (0.045)
WATER (ha) 0.203 (0.037)‡ 0.103 (0.053)† 0.210 (0.037)‡ 0.105 (0.053)*
GRASS (ha) 0.091 (0.044)† 0.046 (0.058) 0.099 (0.504)† 0.048 (0.058)
CONIF (ha) 0.274 (0.091)‡ 0.253 (0.123)† 0.279 (0.091)‡ 0.256 (0.122)†
MIXED (ha) 0.064 (0.037)* 0.095 (0.053)* 0.081 (0.037)† 0.100 (0.053)*
DECID (ha) 0.064 (0.035)* 0.041 (0.046) 0.072 (0.035)† 0.043 (0.046)
HEALTHY_H (ha) �0.002 (0.017) 0.009 (0.026) — —
MODERATE_H (ha) �0.002 (0.030) �0.024 (0.036) — —
SEVERE_H (ha) 0.025 (0.020) 0.003 (0.028) — —
DEAD_H (ha) �0.047 (0.020)† �0.082 (0.034)† — —
HEMLOCK (ha) — — 0.007 (0.010) 0.004 (0.021)
HEM_IMPACT (ha) — — �0.042 (0.015)‡ �0.049 (0.015)‡
� 0.811 (0.035)‡ — 0.807 (0.035)‡ —

Adjusted R2 0.60 0.66 0.60 0.66
N 4,373 4,373 4,373 4,373

SE in parentheses. Parameter estimates related to hemlock health that are significant at the 0.10 level or lower are indicated in bold. Parameter estimates
on dummy variables for the year of sale (1992–2001) were all significantly different from zero at the 0.01 level and are available from the authors upon
request.
* Significance at the 0.10 level.
† Significance at the 0.05 level.
‡ Significance at the 0.01 level.
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0.5-km neighborhood model, in which the impacts were
equal). This result may be due to excess filtering of the
spatially correlated omitted variables associated with the
repeat sales data. The spatial error model procedure used to
remove variation in the housing prices associated with spa-
tially correlated omitted variables (to create independent
observations) may have, in fact, removed some portion of
the true independent variation induced by hemlock decline,
thus lessening the estimated impact. Further, within the
spatial error and fixed-effects model specifications, the eco-
nomic losses associated with cross-section models were
larger than the corresponding losses estimated by the dif-

ference-in-difference models. This result may be due to the
fact that the cross-section models focus specifically on the
impact of dead trees on housing values.

To place the aggregate economic losses reported in Table
5 in context, it is helpful to think about the average impacts
on parcels, which can be computed using sample estimates
of the average affected forest area within the relevant par-
cels. For example, in the cross-section parcel models, the
average area of dead hemlock on parcels containing hem-
lock is roughly 0.04 ha [12]. Multiplying this area by the
estimated loss per hectare yields a parcel level loss of
$2,231 and $3,352 (in the spatial error and fixed-effects

Table 4. Spatial error and fixed-effects panel models of the determinants of housing prices with landscape variables measured
within a 0.5-km neighborhood of parcel centroid and hemlock variables specified using cross-section and difference-in-difference
models

Variables

Coefficients:
cross-section,
spatial error

Coefficients:
cross-section,
fixed-effects

Coefficients:
difference-in-difference,

spatial error

Coefficients:
difference-in-difference,

fixed-effects

CONSTANT 2.354 (0.603)‡ — 2.381 (0.600)‡ —
YR_BUILT 0.005 (0.000)‡ 0.005 (0.000)‡ 0.005 (0.000)‡ 0.005 (0.000)‡
BATHS (#) 0.049 (0.007)‡ 0.035 (0.008)‡ 0.049 (0.007)‡ 0.036 (0.008)‡
BEDROOMS (#) 0.014 (0.006)‡ 0.019 (0.007)‡ 0.014 (0.006)‡ 0.019 (0.006)‡
LV_AREA (1,000 ft2) 0.245 (0.009)‡ 0.187 (0.011)‡ 0.244 (0.009)‡ 0.187 (0.011)‡
KITCHENS (#) �0.084 (0.021)‡ �0.068 (0.024)‡ �0.084 (0.021)‡ �0.067 (0.024)‡
F_BASE (dummy) �0.035 (0.010)‡ �0.024 (0.011)† �0.034 (0.010)‡ �0.024 (0.011)†
COST_NYC ($) 0.000 (0.000) 0.004 (0.002)* 0.000 (0.000) 0.004 (0.002)*
DIST_LAKE (km) �0.001 (0.001) �0.004 (0.002)‡ �0.001 (0.001) �0.004 (0.002)‡
WETLAND (ha) 0.005 (0.005) �0.005 (0.008) 0.005 (0.040) �0.004 (0.008)
AGRIC (ha) 0.010 (0.005)† 0.001 (0.001) 0.010 (0.005)† 0.001 (0.010)
HI_DEV (ha) �0.002 (0.004) �0.019 (0.010)* 0.001 (0.004) �0.018 (0.010)*
LMED_DEV (ha) 0.005 (0.005) 0.004 (0.008) 0.005 (0.002)† �0.003 (0.008)
WATER (ha) 0.010 (0.005)‡ �0.001 (0.008) 0.010 (0.004)‡ �0.000 (0.008)
GRASS (ha) 0.001 (0.007) 0.006 (0.012) 0.001 (0.007) 0.005 (0.012)
CONIF (ha) 0.012 (0.007)* 0.004 (0.012) 0.012 (0.007)* 0.004 (0.012)
MIXED (ha) 0.005 (0.005) �0.002 (0.008) 0.007 (0.004)* 0.001 (0.008)
DECID (ha) 0.005 (0.005) 0.005 (0.008) 0.004 (0.004) �0.004 (0.008)
HEALTHY_H (ha) 0.000 (0.000) 0.004 (0.002)* — —
MODERATE_H (ha) �0.000 (0.002) 0.004 (0.003) — —
SEVERE_H (ha) 0.000 (0.002) 0.002 (0.003) — —
DEAD_H (ha) �0.002 (0.002) 0.000 (0.003) — —
HEMLOCK (ha) — — 0.000 (0.000) 0.003 (0.002)
HEM_IMPACT (ha) — — �0.001 (0.000)‡ �0.002 (0.001)†
� 0.819 (0.033)‡ — 0.818 (0.034)‡ —

Adjusted R2 0.60 0.66 0.60 0.66
N 4,373 4,373 4,373 4,373

SE are in parentheses. Parameter estimates related to hemlock health that are significant at the 0.10 level or lower are indicated in bold. Parameter estimates
on dummy variables for the year of sale (1992–2001) were all significantly different from zero at the 0.01 level and are available from the authors upon
request.
* Significance at the 0.10 level.
† Significance at the 0.05 level.
‡ Significance at the 0.01 level.

Table 5. Aggregate economic losses on properties sold in West Milford township, New Jersey, under alternative model specifi-
cations

Landscape
scale

Cross-section Difference-in-difference

Dead trees:
hemlock
area (ha)

Loss/ha (total loss $) Period of
impact: hemlock

area (ha)

Loss/ha (total loss $)

Spatial error Fixed-effects Spatial error Fixed-effects

Parcel 11.45 55,781 (638,730) 83,798 (959,546) 20.64 NS 40,734 (840,774)
0.1 km 140.71 8,345 (1,174,226) 14,571 (2,050,226) 222.87 7,467 (1,664,089) 8,798 (1,960,885)
0.5 km 2472.60 NS NS 6027.61 350 (2,108,287) 350 (2,108,287)

Values reported in the table are total, not annual, losses. NS, parameter estimate on economic loss was not statistically different from zero at the 0.10 level
or lower in the econometric model.
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models, respectively). As the average price of parcels sold
containing hemlocks was roughly $212,539, these losses
represent 1.05 and 1.6% of the parcel price. Applying this
methodology to the difference-in-difference fixed-effects
parcel-level model, it was estimated that the average eco-
nomic loss per parcel was $2,444 (1.2% of the parcel price).
These estimates are similar to, but more conservative than,
estimates of the contribution of healthy trees to residential
property values in Athens, Georgia (Anderson and Cordell
1988) [13].

It is also apparent that hemlock decline and mortality
cause a loss in value on properties containing hemlock
stands as well as on neighboring properties. Thus, a loss of
tree health is a public bad, and failure to incorporate spatial
externalities in the model specifications would lead to
downwardly biased estimates of economic losses. For ex-
ample, the economic losses estimated by considering im-
pacts only on properties where hemlocks occur ranged from
$638,730 to $840,774. However, by including hemlock-re-
lated impacts within 0.1 km of parcel centroids, economic
losses ranged from $1,174,226 to $1,960,885. Finally, eco-
nomic losses on properties where hemlocks occur within 0.5
km of parcel centroids were estimated to be $2,108,287 in
the difference-in-difference model.

Conclusions

Within the study area, hemlock decline and mortality in
naturally regenerated residential forests was associated with
an economic loss equivalent to roughly 1–1.6% of the sales
price for parcels containing hemlocks. In addition, changes
in hemlock health consistently caused statistically signifi-
cant reductions in property values on neighboring nonhem-
lock parcels. Severe loss of tree health in residential forest
settings is a public bad, and economic models need to
recognize negative spillovers when economic impact as-
sessments are conducted.

Despite the fact that hemlock stands are a relatively rare
landscape feature in our study area, precise identification of
the location of hemlock resources using remote sensing
data, combined with the use of spatial econometric methods
to control for spatial autocorrelation of omitted variables,
resulted in a consistent set of economic loss estimates. As
the study area used in this analysis represents a sample
drawn from a population of residential forest sites that are
experiencing hemlock decline, it is anticipated that similar
methods could be used to estimate economic losses in other
locations. A better understanding of how parameter values
associated with changes in forest health vary across housing
markets and forest types would provide a more robust
foundation for estimating the overall impacts of forest in-
vasive species on residential property values.

Spatial econometric analyses that control for spatially
correlated variables that are not included in model specifi-
cations appear to be essential for isolating economic im-
pacts associated with relatively rare landscape features. We
suggest that further research is needed to refine these meth-
ods so that the most efficient and unbiased estimates of
economic losses can be obtained. For example, future re-
searchers should evaluate the relationship between the scale

at which spatial correlation among omitted variables is
specified and the resulting parameter estimates, whether
using spatial error or fixed-effects models. In addition, ro-
bust methods are needed to conduct spatial econometric anal-
yses of hedonic property value data in situations in which
many repeat observations are included in the analysis.

The time span used in the analysis reported here covered
11 years. Although this is a relatively long period for a
hedonic price study, it was deemed necessary because
changes in hemlock health in response to an HWA infesta-
tion take a long time to develop (unlike other natural dis-
turbances, such as wildfires). Although we were able to
account for housing price inflation and changes in landscape
characteristics during the period of analysis, future research-
ers should consider improved methods for handling the long
time periods required for the economic analysis of pest
impacts on residential property values.

Forest invasive species can affect a suite of goods and
services valued by people. This study demonstrates that
non-native forest pests can produce large economic losses to
private property owners in residential forests. Other non-
native forest pests, such as sudden oak death and the em-
erald ash borer, appear poised to cause major losses to
residential property owners along the California coast and in
the mid-western United States, respectively. A full account-
ing of the current and imminent economic losses due to the
full constellation of non-native forest pests is essential for
the development of informed policy that can meaningfully
address the economic and ecological threats imposed by
these ongoing threats to forest health.

Endnotes

[1] The HWA also occurs in western North America where it was
probably introduced during the 1920s, although some evidence sug-
gests that HWA may be native to this region.

[2] Two minor classes were omitted from the analysis: bare land and
scrub.

[3] Ground-truth evaluations were conducted by evaluating hemlock
canopy conditions for 142 field plots in northern New Jersey. Accu-
racy was 82%. Defoliated hemlocks were detected in the 1992 image,
although it is uncertain precisely when the infestation began.

[4] Alternatively, housing prices could be deflated before model estima-
tion using a statewide housing price index. In the analyses reported
here, parameter estimates on the year-of-sale dummy variables were
very highly correlated with the New Jersey house price index reported
by the Federal Reserve Bank of St. Louis.

[5] The relevant time period for this impact variable is identified by
interacting a dummy variable representing the impact period with the
variable HEMLOCK. As defined in Equation 3, this impact period is
designated as tn.

[6] The empirical specification can be linked to the difference-in-differ-
ence model by substituting the notation shown in 4 into Equation 3:
[(� � �tb) � (� � � � �tn)] � [�tb � �tn] � the welfare loss � ��.
It is anticipated that the sign on � �0. Therefore, the welfare loss is
expected to be positive.

[7] For each property transaction location (row), the positive and sym-
metric matrix W identifies those locations (columns) that belong to its
neighborhood. The weight matrix was specified using a minimum
distance so that each observation included at least one neighbor, and
the rows of W were standardized so that the sum of the cells in each
row equaled unity. The weights matrix acts to provide a spatially
weighted average of values occurring in the neighborhood of each
location. Fixed weights were used for the spatial average.

[8] Moran’s I-statistics were computed using ARCGIS 9 software. We
note that, although the fixed-effects models were successful in elim-
inating positive spatial autocorrelation of the residuals, a very small
degree of negative spatial correlation remained.
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[9] We note that the parameter estimates on healthy hemlocks
(HEALTHY_H) were not statistically different from zero at conven-
tional levels of significance in these model specifications. Thus, there
appears to be an asymmetric impact of healthy versus unhealthy trees
on property values at these spatial scales.

[10] The parameter estimate on healthy hemlocks (HEALTHY_H) was
positive and statistically different from zero at the 0.10 level in this
model specification. This result is asymmetric with the impact of
unhealthy trees on property values at this spatial scale.

[11] The average loss per affected household is computed as Household
loss � (average property value) � (% loss due to hemlock decline,
per ha) � (average no. ha per impacted household). Then, the loss to
the community is computed as Total loss � (Household loss) � (total
no. households impacted). The average number of ha per affected
household is computed as (Total hemlock ha affecting
households)/(total no. households affected). Thus, the total loss to the
community is computed as (average property value) � (% loss per
ha) � (Total hemlock ha affecting households).

[12] The average size of a parcel containing hemlock was roughly 0.36 ha.
Thus, dead hemlocks covered roughly 11% of the parcel, on average.

[13] Anderson and Cordell (1988) estimated that landscaping with trees
increased the sales value of residential property in Athens, Georgia,
by roughly 3.5–4.5%.
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