Abstract: Disturbance-succession models describe the relationship between the disturbance regime and the dominant tree species of a forest type. Such models are useful tools in ecosystem management and restoration, provided they are accurate. We tested a disturbance-succession model for the oak–pine (Quercus spp. – Pinus spp.) forests of the Appalachian Mountains region using dendrochronological techniques. In this model, fire promotes pines, while fire suppression, bark beetle outbreaks, and ice storms encourage oaks. We analyzed nine Appalachian oak–pine stands for species establishment dates and the occurrence of fires and canopy disturbances. We found no evidence that fire preferentially promoted the establishment of pine more than oak, nor did we find any evidence that canopy disturbances or periods of no disturbance facilitated the establishment of oak more than pine. Rather, we found that both species groups originated primarily after combined canopy and fire disturbances, and reduction of fire frequency and scope coincided with the cessation of successful oak and pine regeneration. Currently, heath shrubs are slowly dominating these stands, so we present a revised disturbance-succession model for land managers struggling to manage or restore oak–pine forests containing a dense ericaceous understory.

Résumé : Les modèles de succession engendrée par des perturbations décrivent la relation entre le régime de perturbations et l’espèce d’arbre dominante dans un type de peuplement. Ces modèles sont des outils utiles pour l’aménagement et la restauration des écosystèmes à condition d’être fiables à la réalité. Nous avons testé un modèle de succession engendrée par des perturbations pour les forêts de chênes (Quercus spp.) et de pins (Pinus spp.) de la région des Appalaches à l’aide de techniques dendrochronologiques. Dans ce modèle, le feu favorise les pins tandis que la suppression des feux, les épidémies de scolytes et le verglas favorisent les chênes. Nous avons analysé la date d’établissement des espèces et l’occurrence des feux et des perturbations du couvert dans neuf peuplements de chênes et de pins des Appalaches. Nous n’avons trouvé aucune preuve que le feu ait favorisé l’établissement du pin plus que celui du chêne ni que les perturbations du couvert ou que les périodes exemptes de perturbations aient favorisé l’établissement du chêne plus que celui du pin. Au contraire, nous avons observé que les deux groupes d’espèces se sont établis principalement après des perturbations du couvert combinées à des perturbations causées par le feu et que la réduction de la fréquence et de l’amplitude des feux a coïncidé avec l’insuccès de la régénération du chêne et du pin. Présentement, les ericaées arbustives sont lentement en train de dominer ces peuplements de telle sorte que nous présentons un modèle révisé de succession engendrée par les perturbations à l’intention des aménagistes qui s’efforcent d’aménager ou de restaurer des forêts de chênes et de pins avec un sous-étage dense d’ericaées.

[Traduit par la Rédaction]

Introduction

The oak–pine (Quercus spp. – Pinus spp.) forest type is defined as forests that contain between 25% and 50% stocking of softwoods with oaks and other hardwoods comprising the balance (Braun 1950; Eyre 1980). This forest type is widespread, occupying more than 13 million ha of the eastern United States in a broad swath from eastern Texas and Oklahoma to northern Florida to southern New York (Smith et al. 2001). Within that range, oak–pine forests are diverse, consisting of a multitude of species mixes depending on climate, soil, topography, and disturbance history. Oak–pine forests provide an array of benefits: timber production, wildlife habitat, watershed protection, recreational opportunities, and biodiversity conservation. Consequently, land managers are interested in sustaining this forest type and that entails understanding how the two principal species groups respond to disturbance. For the oak–pine forests of the Appalachian Mountains, Williams (1998) provided a synopsis of this forest type and a model explaining the relationship between these two species groups in regards to their responses to the common disturbances of this region.

Received 5 August 2009. Accepted 22 March 2010. Published on the NRC Research Press Web site at cjfr.nrc.ca on 5 July 2010.

P.H. Brose.¹ US Forest Service, Northern Research Station, Forestry Sciences Laboratory, 335 National Forge Road, Irvine, PA 16329, USA.
T.A. Waldrop. US Forest Service, Southern Research Station, 233 Lehotsky Hall, Clemson University, Clemson, SC 29634, USA.

¹Corresponding author (e-mail: pbrose@fs.fed.us).

The pine component of Appalachian oak–pine forests consists of one to five species (pitch pine (*Pinus rigida* Mill.), shortleaf pine (*Pinus echinata* P. Mill.), Table Mountain pine (*Pinus pungens* Lamb.), Virginia pine (*Pinus virginiana* P. Mill.), and eastern white pine (*Pinus strobus* L.) depending on elevation, topography, and disturbance history (Williams 1998). Of these five pines, Table Mountain pine is frequently the most common species and such stands are often called Table Mountain pine or TMP stands (Zobel 1969; Williams 1998). Chestnut oak (*Quercus montana* Willd.) is the principal oak species and there is a mix of other oaks and associated hardwoods (Zobel 1969; Williams 1998). TMP stands are small (<20 ha), widely scattered (from central Pennsylvania to northern Georgia), and restricted to dry, thin soils on south- and west-facing ridges at elevations between 300 and 1200 m. Recurring fire is generally regarded as the key factor in creating and maintaining TMP stands in an otherwise mixed-hardwood landscape (Williams and Johnson 1990, 1992; Brose and Waldrop 2006).

However, fire is not the only disturbance impacting TMP ecosystems. The occurrence of these ecosystems on southerly ridges exposes them to winds from hurricanes, tropical storms, and strong thunderstorms during the growing season. Also, ridges are prone to ice accretion and snow accumulation during winter storms. All of the pine species of TMP stands are susceptible to attack by the southern pine bark beetle (*Dendroctonus frontalis* Zimmermann, 1868). Potential human-caused disturbances, in addition to fire, include timber harvesting and livestock grazing. Finally, loss of American chestnut (*Castanea dentata* (Marsh.) Borkh.) to blight in the 1920s affected many ridge top forests in the southern Appalachian Mountains (Keever 1953).

The Williams model provides an understanding of the relationship between disturbances and pine and oak dominance in TMP stands (Fig. 1). On extremely xeric sites, all disturbances promote pine continuance because oaks are unable to persist there. Barden (2000) describes such a TMP community in western North Carolina. On less harsh sites where hardwoods can survive and grow, TMP communities fluctuate between an unstable pine and stable oak dominance based on the occurrence of fire, insect, and storm disturbances. In this model, insect and storm disturbances favor oak regeneration and domination by creating canopy gaps without removing leaf litter. If a fire occurs, species composition shifts towards pine because of favorable regeneration conditions for pines coupled with reduced hardwood density. The prolonged absence of fire leads to an oak-dominated forest on the site.

Dendrochronology techniques can test this model by coupling tree-ring growth analysis with species recruitment patterns. Most previous dendrochronology research in TMP communities focused on fire (Brose and Waldrop 2006; Lafon and Grissino-Mayer 2007). All of these studies found that fire and pine regeneration co-occurred and both have been absent from their study sites for several decades. Unfortunately, little research has been done in TMP communities on the associated hardwood species and nonfire disturbances. Whitney and Johnson (1984) examined ice storm damage in four forest types in southwestern Virginia. In TMP communities, they found that pines sustained more damage than hardwoods, but pine seedling density increased after the ice storm. In this same area, Lafon and Kutac (2003) studied the interactions of ice storms, southern pine bark beetle (SPBB) infestations, and fire. They found that the two canopy disturbances without fire benefited hardwoods, but adding fire to the disturbance regime promoted TMP.

In this paper, we test the Williams disturbance-succession model for TMP communities by reanalyzing the dendrochronology data reported in our earlier paper (Brose and Waldrop 2006). We attempt to verify the model's specific predictions regarding pine and oak response to fire and canopy disturbance as well as the assertion of oak forest stability. Our hypothesis is that the model is fundamentally sound and we test these predictions: (1) more pines than oaks originated following fires and combined canopy + fire disturbances, (2) more oaks than pines originated following canopy-only disturbances and during periods of no disturbance, and (3) currently, pines have ceased to regenerate, while oaks continue to regenerate.

Understanding the relationship between different disturbances and oak and pine succession will aid land managers in maintaining and restoring these TMP communities and sustaining other pine–oak forests as well.

**Methods**

**Study sites**

Nine TMP communities located in northern Georgia, western South Carolina, and eastern Tennessee were selected for the study. Selection criteria were the following: (i) pines comprised 25%–50% stocking, (ii) the site was ca-
pable of supporting hardwoods, and (iii) fire scars were present. Three stands (Big Ridge, Upper Tallulah, and Lower Tallulah) were located south of Rabun Bald on the Chattahoochee National Forest in northern Georgia (Table 1). Another three stands (Upper, Middle, and Lower Gregory Ridge) were southeast of Cades Cove in the Tennessee portion of Great Smoky Mountains National Park. The remaining stands (Buzzard Roost, Poor Mountain, and Toxaway Ridge) were on the Sumter National Forest in western South Carolina, with the first two being situated northwest of Walhalla and the other west of Holly Springs.

Each stand consisted of a small (5–7 ha) community on the crest and upper slopes of a south- or west-facing ridge (Table 1). The accompanying side slopes were quite steep (20%–60% slope) and rocky. Elevations varied from 400 m at Toxaway Ridge to 1100 m at Big Ridge. Soils at all the sites were well-drained sandy or silt loams formed in place by weathering of gneiss, sandstone, and schist parent material (Carson and Green 1981; Herren 1985; Davis 1993). Consequently, they were moderately fertile and strongly acidic. Climate was warm, humid, and continental with average monthly high temperatures ranging from –3 °C in January to 28 °C in July. Mean annual precipitation ranged from 135 to 185 cm distributed evenly throughout the year.

Composition and structure of the nine stands were quite similar. In general, they consisted of 10–20 woody species distributed in three distinct strata. The main canopy was 15–20 m tall, broken, and patchy and consisted almost exclusively of Table Mountain pine, one or more other pine species, and various oaks, especially chestnut oak. A ubiquitous midstory stratum (3–15 m tall) was present in all stands. It generally lacked a pine component, consisting almost exclusively of intermediate oaks and several other hardwood species such as black-gum (Nyssa sylvatica Marsh.), red maple (Acer rubrum L.), and sourwood (Oxydendrum arboreum (L.) DC.). Together, the main and understory strata contained approximately 1100–1400 stems and 30–40 m² of basal area per hectare. The understory stratum was dominated by ericaceous (heath) shrubs (40%–75% cover) and lacked hardwood and pine seedlings as well as herbaceous plants.

Despite similarities in site characteristics, stand structure, and species composition, the TMP communities had different disturbance histories (Brose and Waldrop 2006). All had been impacted by fire, ice and wind storms, and SPBB outbreaks. The three Georgia stands had numerous sprouts of American chestnut in the understory, so the blight heavily impacted these stands. There was no visible evidence of past logging in any of these stands, and they probably had never been logged because of their remoteness and inaccessibility. All of the South Carolina stands had evidence of past logging (stumps and old skid trails), but no logging had been done in any of them for at least a decade. Also, the Toxaway Ridge stand had a moderate number of loblolly pines (Pinus taeda L.) in the overstory, suggesting a timber harvest decades ago. This species is outside its natural range in this part of South Carolina but was often planted on federal lands following clearcuts in the 1950s and 1960s (Paul Burris, US Forest Service silviculturist, personal communication). The Tennessee stands were in the part of Great Smoky Mountains National Park that had never been commercially logged (Mike Jenkins, National Park Service ecologist, personal communication) but had a long-term frequent fire and grazing history due to the cultural practices of the inhabitants of nearby Cades Cove (Dunn 1988).

Field procedures

At each stand in fall 1999, twelve to fifteen 0.02 hectare rectangular plots were either systematically located to ensure uniform coverage or randomly selected from an ongoing study (Waldrop and Brose 1999). Within each plot, all stems larger than 2.54 cm basal diameter were identified to species and assigned to one of four species groups (upland pines, mixed oaks, miscellaneous hardwoods, or heath shrubs). Upland pines were pitch, shortleaf, Table Mountain, and Virginia pines. Mixed oaks consisted primarily of chestnut oak and lesser amounts of scarlet oak (Quercus coccinea Muenchh.), black oak (Quercus velutina Lam.), and white oak (Quercus alba L.). Miscellaneous hardwoods included a wide variety of other species such as black-gum, eastern flowering dogwood (Cornus florida L.), hickory (Carya spp.), red maple, serviceberry (Amelanchier arborea (Michx. f.) Fern.), and sourwood. Heath shrubs were almost entirely mountain laurel (Kalmia latifolia L.) but also included an occasional Piedmont azalea (Rhododendron flammeum (Michx.) Sarg.) and rosebay rhododendron (Rhododendron maximum L.).

In each plot, we randomly selected up to four trees or shrubs from each species group for sampling. Trees larger than 10 cm basal diameter were cored; smaller trees and shrubs were felled and a cross section was cut from their bases at the ground line. Obtaining full or partial cross sections on the larger trees was not possible because of landowner restrictions, difficult accessibility to some sites, and safety constraints. The cores were extracted at a height of 0.3 m above ground on the uphill side. If the tree was a chestnut oak, a species with thick bark and deep fissures, the core was extracted from a fissure to intersect hidden, internal scars. Because of these bark characteristics, fire often damages the cambial tissue behind the fissures while leaving the surrounding tissue undamaged (Smith and Sutherland 1999). If a core contained a visible defect, it was kept, but more were extracted until a sound core was obtained. Usually, one core was needed from most trees, and only a few trees required more than two cores.

Laboratory procedures

A total of 878 cores and 871 cross sections were collected from the nine stands. These were air-dried for several weeks, mounted, and sanded with increasingly finer sandpaper (120, 220, 320, and 400 grit) to expose the annual rings. To identify the year of origin of each sample, we aged each core and cross section to the innermost ring or pith under a 40× dissecting microscope to determine a tentative establishment date. To arrive at a final establishment date, we made two adjustments. First, if the core did not contain the pith, we adjusted the tentative establishment using a pith estimator (Villalba and Veblen 1997) to determine how many annual rings were missed. No such adjustments were made to cores containing piths or to the cross sections. Second, we moved each tentative establishment date back 5 years.

Published by NRC Research Press
Fig. 2. Age structures and temporal relationships of upland pines, mixed oaks, miscellaneous hardwoods, and heath shrubs and disturbances of the Table Mountain pine (Pinus pungens) community located at the GA site in northern Georgia. Disturbance abbreviations: F, large fire; f, small fire; C, major or moderate canopy release; c, minor canopy release.

Table 2. Distribution of the 433 sampled trees and shrubs of the GA site by disturbance type and species group.

<table>
<thead>
<tr>
<th>Species group</th>
<th>Disturbance type</th>
<th>None</th>
<th>Canopy</th>
<th>Fire</th>
<th>Canopy + fire</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Comparison of pines and oaks (test statistics: $\chi^2 = 0.79$, critical value = 7.815, $\alpha = 0.05$, df = 3)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upland pine</td>
<td>None</td>
<td>26 (26)</td>
<td>32 (30)</td>
<td>27 (26)</td>
<td>34 (37)</td>
<td>119</td>
</tr>
<tr>
<td>Mixed oak</td>
<td>None</td>
<td>28 (28)</td>
<td>32 (24)</td>
<td>27 (22)</td>
<td>44 (41)</td>
<td>131</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>54</td>
<td>66</td>
<td>54</td>
<td>88</td>
<td>250</td>
</tr>
<tr>
<td><strong>Comparison of all species (test statistics: $\chi^2 = 51.61$, critical value = 12.592, $\alpha = 0.05$, df = 6)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pine and oak combined</td>
<td>None</td>
<td>54 (63)</td>
<td>-64 (88)</td>
<td>54 (41)</td>
<td>+78 (57)</td>
<td>250</td>
</tr>
<tr>
<td>Miscellaneous hardwood</td>
<td>None</td>
<td>13 (12)</td>
<td>21 (17)</td>
<td>3 (8)</td>
<td>11 (11)</td>
<td>48</td>
</tr>
<tr>
<td>Heath shrub</td>
<td>None</td>
<td>43 (34)</td>
<td>+68 (48)</td>
<td>14 (22)</td>
<td>-10 (31)</td>
<td>135</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>110</td>
<td>153</td>
<td>71</td>
<td>99</td>
<td>433</td>
</tr>
</tbody>
</table>

Note: Numbers in parentheses are the expected values for each disturbance type and species group combination. Bold numbers indicate the four largest positive or negative departures contributing to a significant $\chi^2$ value.

Note: Numbers in parentheses are the expected values for each disturbance type and species group combination. Bold numbers indicate the four largest positive or negative departures contributing to a significant $\chi^2$ value.

Miscellaneous hardwods and heath shrubs originated between 1925 and 1985 with both groups having discrete cohorts at 10- to 15-year intervals from the 1940s to the 1980s. LEYs for miscellaneous hardwoods and heath shrubs were 1978 ± 2 years and 1983 ± 1 year, respectively.

Large fires impacted most of or all of SCI in 1894, 1904, 1914, 1925, and 1944 (Fig. 3). Small fires occurred in 1933, 1951, 1962, and 1981. All fires were dormant-season burns. Major, moderate, and strong minor canopy disturbances were common from 1870 to 1985 and generally occurred at 10- to 15-year intervals. Major and moderate disturbances were most prevalent in the early 1900s, while minor disturbances were most common after 1950. Like the GA site, several of the canopy releases in the early 1900s correspond to hurricanes passing through the region, and later ones match with outbreaks of SPBB.
Fig. 3. Age structures and temporal relationships of upland pines, mixed oaks, miscellaneous hardwoods, and heath shrubs and disturbances of the Table Mountain pine community located at the SCI site in western South Carolina. Disturbance abbreviations: F, large fire; f, small fire; C, major or moderate canopy release; c, minor canopy release.

Table 3. Distribution of the 464 sampled trees and shrubs of the SCI site by disturbance type and species group.

<table>
<thead>
<tr>
<th>Species group</th>
<th>Disturbance type</th>
<th>None</th>
<th>Canopy</th>
<th>Fire</th>
<th>Canopy + fire</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Comparison of pines and oaks</strong> (test statistics: $\chi^2 = 3.71$, critical value = 7.815, $\alpha = 0.05$, df = 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upland pine</td>
<td>12 (17)</td>
<td>16 (15)</td>
<td>27 (25)</td>
<td>40 (38)</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Mixed oak</td>
<td>21 (16)</td>
<td>13 (14)</td>
<td>23 (25)</td>
<td>35 (37)</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>33</td>
<td>29</td>
<td>50</td>
<td>75</td>
<td>187</td>
<td></td>
</tr>
<tr>
<td><strong>Comparison of all species</strong> (test statistics: $\chi^2 = 39.97$, critical value = 12.592, $\alpha = 0.05$, df = 6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pine and oak combined</td>
<td>-33 (47)</td>
<td>29 (40)</td>
<td>50 (39)</td>
<td>75 (61)</td>
<td>187</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous hardwood</td>
<td>34 (39)</td>
<td>35 (32)</td>
<td>34 (32)</td>
<td>49 (49)</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>Heath shrub</td>
<td>+51 (32)</td>
<td>35 (27)</td>
<td>-12 (26)</td>
<td>-27 (41)</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>118</td>
<td>99</td>
<td>96</td>
<td>151</td>
<td>464</td>
<td></td>
</tr>
</tbody>
</table>

Note: Numbers in parentheses are the expected values for each disturbance type and species group combination. Bold numbers indicate the four largest positive or negative departures contributing to a significant $\chi^2$ value.

The $\chi^2$ value for pines and oaks at the SCI site was 3.71, indicating the sampled stems were distributed as expected among the four disturbance types (Table 3). When pines and oaks were combined and tested against heath shrubs and miscellaneous hardwoods, the observed distribution of stems differed from what was expected ($\chi^2 = 39.97$, critical value = 12.592). Fewer pines and oaks and more heath shrubs originated during periods of no disturbance than was expected. Conversely, fewer heath shrubs started after fires and canopy + fire disturbances than was expected. Miscellaneous hardwoods showed no trends in stem distribution among the four disturbance types.

**SC2 site**

SC2 was an even-aged TMP community with the vast majority of all tree species originating between 1950 and 1970.
Fig. 4. Age structures and temporal relationships of upland pines, mixed oaks, miscellaneous hardwoods, and heath shrubs and disturbances of the Table Mountain pine (*Pinus pungens*) community located at the SC2 site in western South Carolina. Disturbance abbreviations: F, large fire; f, small fire; C, major or moderate canopy release; c, minor canopy release.

![Graphs showing age structures and temporal relationships of different tree species](image)

Table 4. Distribution of the 438 sampled trees and shrubs of the SC2 site by disturbance type and species group.

<table>
<thead>
<tr>
<th>Disturbance type</th>
<th>Species group</th>
<th>None</th>
<th>Canopy</th>
<th>Fire</th>
<th>Canopy + fire</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison of pines and oaks</td>
<td>Upland pine</td>
<td>22 (22)</td>
<td>14 (18)</td>
<td>20 (19)</td>
<td>51 (47)</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>Mixed oak</td>
<td>17 (17)</td>
<td>18 (14)</td>
<td>14 (15)</td>
<td>31 (35)</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>39</td>
<td>32</td>
<td>34</td>
<td>82</td>
<td>187</td>
</tr>
<tr>
<td>Comparison of all species</td>
<td>Pine and oak combined</td>
<td>-39 (54)</td>
<td>32 (28)</td>
<td>34 (32)</td>
<td>82 (73)</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>Miscellaneous hardwood</td>
<td>43 (45)</td>
<td>16 (24)</td>
<td>20 (26)</td>
<td>+78 (61)</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>Heath shrub</td>
<td>+45 (28)</td>
<td>18 (14)</td>
<td>20 (16)</td>
<td>-11 (37)</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>127</td>
<td>66</td>
<td>74</td>
<td>171</td>
<td>438</td>
</tr>
</tbody>
</table>

Note: Numbers in parentheses are the expected values for each disturbance type and species group combination. Bold numbers indicate the four largest positive or negative departures contributing to a significant $\chi^2$ value.

(Fig. 4). There were some residual pines and oaks from the previous stand. These dated from before 1850 to 1935 and began growing in every decade during that period. Pines and oaks ceased regenerating in 1966 ± 4 years and 1967 ± 5 years, respectively. The oldest miscellaneous hardwoods and heath shrubs dated to the early 1950s, but unlike the pines and oaks they continued establishing themselves into the 1970s and 1980s. The youngest miscellaneous hardwood dated to 1973 ± 3 years, while the youngest heath shrub started in 1981 ± 4 years.

The pre-eminent disturbance at the SC2 site occurred in the early 1950s (Fig. 4). This was a timber harvest, a large fire, or both, as the stand-level oak and pine chronologies showed major and strong moderate releases for 1953. The presence of loblolly pine dating to the early 1950s suggests a timber sale, but a large fire burned all or most of the site.
Fig. 5. Age structures and temporal relationships of upland pines, mixed oaks, miscellaneous hardwoods, and heath shrubs and disturbances of the Table Mountain pine (Pinus pungens) community located at the TN site in eastern Tennessee. Disturbance abbreviations: F, large fire; f, small fire; C, major or moderate canopy release; c, minor canopy release.

Table 5. Distribution of the 414 sampled trees and shrubs of the TN site by disturbance type and species group.

<table>
<thead>
<tr>
<th>Species group</th>
<th>Disturbance type</th>
<th>None</th>
<th>Canopy</th>
<th>Fire</th>
<th>Canopy + fire</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Comparison of pines and oaks (test statistics: $\chi^2 = 1.16$, critical value = 7.815, $\alpha = 0.05$, df = 3)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upland pine</td>
<td>39 (41)</td>
<td>20 (20)</td>
<td>23 (20)</td>
<td>39 (39)</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>Mixed oak</td>
<td>40 (38)</td>
<td>19 (19)</td>
<td>15 (18)</td>
<td>36 (36)</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>79</td>
<td>39</td>
<td>38</td>
<td>75</td>
<td>231</td>
<td></td>
</tr>
<tr>
<td><strong>Comparison of all species (test statistics: $\chi^2 = 35.75$, critical value = 12.592, $\alpha = 0.05$, df = 6)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pine and oak combined</td>
<td>79 (83)</td>
<td>-39 (55)</td>
<td>38 (34)</td>
<td>+75 (58)</td>
<td>231</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous hardwood</td>
<td>23 (26)</td>
<td>21 (18)</td>
<td>13 (11)</td>
<td>16 (19)</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Heath shrub</td>
<td>46 (39)</td>
<td>+40 (27)</td>
<td>-10 (16)</td>
<td>-14 (28)</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>148</td>
<td>100</td>
<td>61</td>
<td>105</td>
<td>414</td>
<td></td>
</tr>
</tbody>
</table>

Note: Numbers in parentheses are the expected values for each disturbance type and species group combination. Bold numbers indicate the four largest positive or negative departures contributing to a significant $\chi^2$ value.

in 1951. The pines may have been planted in response to the fire. Other large fires also burned throughout the site in 1904 and 1925, and a small fire burned a portion of the site in 1962. All fires were in the dormant season. Aside the major or moderate release in 1953, comparable canopy disturbances occurred periodically in the early 1900s, while minor releases occurred in the 1930s, late 1960s, and late 1980s.

The $\chi^2$ and critical values for pines and oaks at the SC2 site were 2.95 and 7.815, respectively, indicating that the stems were distributed as expected among the four disturbance types (Table 4). When pines and oaks were combined and tested against heath shrubs and miscellaneous hardwoods, $\chi^2$ and critical values were 45.58 and 12.592, respectively, indicating the stems were not distributed as expected among the disturbance types. Specifically, more
heath shrubs and fewer pines and oaks originated during periods of no disturbance than expected. Canopy + fire disturbances resulted in more miscellaneous hardwoods and fewer heath shrubs than expected.

**TN site**

The TN site was even-aged with the vast majority of pines and oaks originating between 1925 and 1945 (Fig. 5). Before that period, some pines and a few oaks had become established in every decade since 1850. Pines ceased regenerating in the early 1950s (LEY was 1947 ± 3 years), and oaks did likewise in the 1960s (LEY was 1959 ± 4 years). Miscellaneous hardwoods dated from 1930 to 1970, while the heath shrubs dated from 1930 to the 1980s. Miscellaneous hardwood LEY was 1965 ± 4 years, while the heath shrub LEY was 1982 ± 3 years.

Like SC1, the TN site was closely tied to a major event in the mid-1920s (Fig. 5). At that time, a large dormant-season fire burned through the stand, and a major canopy release occurred. This coincides with the beginning of the abandonment of Cades Cove and the subsequent formation of GSMNP (Dunn 1988). Besides the 1926 fire, the only other large dormant-season fire occurred in 1872. A small, growing-season fire occurred in summer 1941. The only other major canopy release disturbance was in 1905. Minor releases occurred in the late 1800s, and at 15- to 20-year intervals from 1930 to 1985.

Like the other three sites, no differences were found in the distribution of sampled oak and pine stems among the four disturbance types at the TN site (Table 5). The $X^2$ value was 1.16, while the critical value was 7.815. But, combining oak and pine and testing them against heath shrubs and miscellaneous hardwoods yielded a $X^2$ of 35.75, indicating that the stems were not distributed as expected among the four disturbance types. Specifically, more pines and oaks and fewer heath shrubs originated after canopy + fire events than expected, and the reverse was true for these two species groups following canopy-only disturbances. Miscellaneous hardwoods showed no trends in stem distribution among the four disturbance types.

**Discussion**

For disturbance ecology models to be useful, they need to accurately portray successional relationships among the principal plant species groups for a wide range of conditions. The Williams disturbance-succession model presents TMP communities with two principal species groups, upland pines and oaks (Fig. 1). These two groups are portrayed as ecological antagonists; either one or the other is favored, depending on the disturbance. If a fire occurs, it promotes pines more than oaks. Conversely, canopy disturbances and no disturbance favor oaks more than pines. Also, succession is from pine to oak, and once oak dominates the site, the ecosystem becomes stable, meaning that oak is able to regenerate and persist. We tested these three premises via a dendrochronology study conducted in four TMP communities scattered throughout the southern Appalachian Mountains. Based on our data, we found little support for the model.

For prediction 1, where fires favor pine more than oak, we found no demonstrable difference at any site between the numbers of oaks and pines that originated following a fire. Large fires and fires occurring in conjunction with canopy disturbances clearly provided more benefit to oaks and pines than small fires, but this type of disturbance did not favor pine establishment and recruitment more than that of oak. This is compatible with the growing body of literature that upland oaks are well suited to a periodic surface fire regime (Yaussy 2000; Dickinson 2006).

Prediction 2, where canopy-only disturbances and periods of no disturbance favor oak more than pine, was the opposite of prediction 1, and we found no support for it either. Oaks and pines regenerated in equal numbers at all sites, regardless whether there were canopy-only disturbances or periods of no disturbance. This result may be due to favorable understory conditions for seedling establishment and survival persisting from earlier fire disturbances, or the pines are not as restricted in their regeneration niche as previously thought. Waldrop and Brose (1999) documented the roots of new pine germinants that were able to penetrate Oa horizons several centimetres thick, and Mohr et al. (2002) demonstrated that new pine germinants had their highest survival rate in partial shade.

Closely tied to prediction 2 was prediction 3, cessation of pine regeneration and continuation of oak regeneration in the prolonged absence or reduction of fire. We found partial support for this prediction. Pine regeneration had ceased at all four sites, but so had that of oak. Generally, oaks started and stopped successfully regenerating at approximately the same times as the pines. No differences were found between
their respective LEYs at any site. Apparently the circum-
stances that spurred successful pine regeneration in the past
were the same ones needed by the oaks, and the conditions
currently preventing pine establishment are likewise stop-
ping oak regeneration. The oak component is no more stable
than the pine component when it comes to successfully re-
generating in a disturbance regime lacking an adequate fire
component.

Why did our findings not support the Williams model?
Two factors stand out as the probable reasons for these dis-
crepancies. First, the model presents a dichotomy between
pine and oak, implying that they respond differently to dis-
turbance. That dichotomy is far more artificial than actual.
Pines and oaks respond similarly to disturbance because of
similarities in some of their silvical characteristics. Consider
the two principal species; chestnut oak and Table Mountain
pine. Both have rootling strategies and physiological traits
designed to thrive on dry, nutrient-poor soils (Della-Bianca
1990; McQuilkin 1990). Chestnut oak is intermediate in
shade tolerance, while Table Mountain pine is intolerant of
shade (Della-Bianca 1990; McQuilkin 1990). However,
Mohr et al. (2002) indicates that Table Mountain pine read-
ily regenerates and survives for at least a few years in partial
shade, so the species may be more like chestnut oak in
shade tolerance than previously thought. Likewise, Waldrop
and Brose (1999) and Mohr et al. (2002) showed roots of
new pine germinants were capable of penetrating Oa hori-
zons several centimetres thick, so pine seedbed requirements
may not substantially differ from those of chestnut oak. Seedlings of both species grow rapidly and develop thick
basal bark by the time they become saplings, giving them
protection from most surface fires. Given these similarities
in silvical characteristics, it is not surprising that we found
no differences between the two species regarding their re-
generation success after the different disturbance types. In-
stead of looking at the upland pines and oaks as ecological
antagonists in response to disturbance, perhaps they should
be considered ecological analogs.

The second major reason why our results do not support
the Williams model is the presence of mountain laurel in
the understories of all our sites. In the model, TMP com-
nunities in a reduced fire disturbance regime become domi-
nated by oak via superior oak regeneration and longevity.
These oaks form an edaphic climax; a stable oak forest that
can regenerate itself. While oak forests can perpetuate them-
selves on dry, low-quality sites (Johnson et al. 2002), that
does not appear to happen when mountain laurel and similar
heath shrubs dominate the forest floor (Nilsen et al. 2001;
Chastain and Townsend 2008). In this study, each of the
sites had from 40% to 75% mountain laurel cover. The cur-
rent thickets arose since the last large fire at each site and
continue to successfully regenerate. At each site, the oaks
cessarily regenerating once the heath shrubs domi-
nated the forest floor. Mountain laurel and rhododendron
have dense branching and foliage, and their leaves are ever-
green. They continually cast dense shade on the forest floor,
too much shade for the survival and growth of oak regen-
eration, and also reduce soil resources (Nilsen et al. 2001;
Chastain and Townsend 2008).

Is the Williams disturbance–succession model still useful?
It may well be in oak–pine forests lacking a dense heath
understory. We could not test it in that setting because all
our study sites had abundant mountain laurel. It would be
interesting to test the model in oak–pine forests in the
Ozarks or Piedmont regions where there is no interfering
layer of large heath shrubs.

To make the model applicable to Appalachian oak–pine
forests with a heath understory, we recommend the follow-
ing revised model (Fig. 6). Oak–pine forests are maintained
as uneven-aged communities via periodic canopy disturban-
ces coupled with surface fires (Lafon and Kutac 2003; Brose
and Waldrop 2006) or as even-aged communities through
stand-replacing events (McIntyre 1929; Lafon and Grissino-
Mayer 2007). In this environment, heath shrubs may be
present in the understory, but they never become an interferr-
ing layer. The absence of disturbance or canopy disturbances
without fire allows them to eventually dominate the forest
floor to the point that they stop oak and pine regeneration
processes. The oak–pine community becomes a transitional
oak–pine–heath community and may stay in this state for
many decades. Because fire is missing from the site and the
heath shrubs can regenerate in their own shade, they con-
tinue occupying the forest floor. Eventually, the overstory
oaks and pines succumb to various mortality agents, and
the forest converts to a shrubland (Cain 1930; Whittaker 1956).

Preventing this succession from oak–pine forest to heath
shrubland to ever start is the wisest course of action for land
managers. Periodic surface fires and timber harvests
can keep the heath understory of an oak–pine forest from
becoming a problem while allowing the oaks and pines to
regenerate. If the heath layer has become dominant, but
the canopy is still healthy, a stand-replacing fire or clearcut will
result in a new oak–pine forest (McIntyre 1929; Waldrop
and Brose 1999). However, if the overstory is in decline, ar-
ificial regeneration coupled with herbicide control of the
heath may be necessary. If the oak–pine forest has converted
to a heath shrubland, then herbicide control with artifi-
cial regeneration will be necessary, but this approach is
speculative. Clearly, management to prevent heath shrub
domination of the understory of oak–pine forests is a better
approach than trying to restore such a community.

Finally, two unexpected results merit some discussion.
First, miscellaneous hardwoods showed no clear response to
any of the disturbance types, including fire. This is likely
due to this group containing several species, so the gain or
loss of stems of one species to a particular disturbance may
have been offset by the opposite response of another. Also,
most of the fires were dormant-season burns, and these types
of fires cause little mortality to black-gum and red maple
(the two most common non-oaks), especially at low fire in-
tensities (Brose and Van Lear 1998; Brose et al. 1999).

The second unexpected result was that canopy + fire com-
bination disturbances were especially conducive to regener-
ating pines and oaks. Of the four disturbance types, this one
generally led to establishing more pines and oaks than the
others, regardless of site. We do not know if these were
moderately intense fires occurring closely in time with can-
opy disturbances or exceptionally intense fires that caused
overstory mortality or both. We lean towards the first possi-
bility, because two of the sites were uneven-aged, and sev-
eral of the canopy + fire events coincided with hurricanes
passing through the region. Recent research shows that hur-
 Hurricanes can cause substantial gaps in forest canopies as they pass through the southern Appalachian Mountains, even though this region is 400 km from the eastern and southern coasts (Greenberg and McNab 1998; McNab et al. 2004). The sequencing and interaction of hurricanes and fires in the southern Appalachian Mountains and elsewhere merits more research.

**Acknowledgements**

This study would not have been possible without the help of many people, agencies, and organizations. First, we thank the Joint Fire Science Program for funding the Table Mountain Pine Project of which this study was part. We are grateful to the Chattahoochee National Forest, Great Smoky Mountains National Park, and Sumter National Forest for permission to conduct research on their lands and guidance in locating the study sites. We are especially indebted to Jamie Browning, Kelly Irwin, and Helen Mohr for their willingness and hard work to collect the cores and cross sections from rugged sites under inhospitable conditions. We also thank them, Wendy Andersen, and Greg Sanfor for preparing the cores and cross sections for analysis. Special thanks go to Bryan Black, Bob Ford, and Jim Speer for guidance in cross-dating and conducting the many analyses. Finally, we thank Robert Long, Alex Royo, and two anonymous individuals for reviews that helped to clarify and shorten the manuscript.

**References**


Published by NRC Research Press
Brose and Waldrop


