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Stochastic weather generators are useful tools for exploring the relationship between organisms and 
their environment. This paper describes a simple weather generator that can be used in ecological 
modeling projects. We provide a detailed description of methodology, and links to full C++ source code 
(http:flweathergen.sourceforge.net) required to implement or modify the generator. We argue that 
understanding the principles of weather generation will allow ecologists to tailor a solution for their own 
requirements. The detailed, repeatable methodology we present demonstrates that weather generation 
is relatively straightforward for ecologists to implement and modify. 
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1. Introduction 

Stochastic weather generators are probabilistic models that are 
used to simulate weather data at a specific site or region by 
analyzing historical weather data and then generating a time-series 
of weather variables with statistical properties identical to the 
historical data. Weather is an important driver of many ecological 
models and although historical data can be used in such studies, 
Table 1 highlights a number of features and advantages of using 
weather generators that make them useful for many applications. 

Stochastic weather generation is a four-step process: 

1. Develop a model structure (the inter-relationships between 
parameters) capable of reproducing realistic weather patterns. 

2. Parameterize the model for a location or region using historical 
weather observations. 

3. Statistically analyze model outputs to ensure adequate repre­
sentation of the historical weather record. 

4. Generate new sets of data that represent weather patterns for 
the location or region of interest that can be used in an 
ecological model. 
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Ecologists are most likely to be directly interested in step 4 of 
the above process. However, there are a number of reasons why 
a more detailed understanding of weather generation may be 
beneficial to the ecologist. Firstly, for weather data to be seamlessly 
used in an ecological model (step 4) the generator needs to output 
the appropriate variables at an appropriate temporal and spatial 
resolution and in a specific format. Secondly an adequate repre­
sentation of real weather patterns (step 3) depends upon the 
context of an ecological study. Although statistical methods can be 
used to assess similarity between observed and simulated weather, 
ultimately the sensitivity of a model to weather data dictates the 
practical interpretation of statistics. Thirdly, it may be necessary to 
develop a generator that maximizes the utility of available histor­
ical weather data (for example in data poor locations). 

Although a number of weather generators already exist, 
increased knowledge of weather generation will help users choose 
(or modify) a solution most appropriate for a specific study. The 
goal of this paper is to present the methodology of a simple, single 
site stochastic weather generator. We make no claims about the 
novelty (the basic elements have been adapted from those 
described by Semenov et al., 1998; Semenov and Barrow, 2002); or 
relative superiority of the generator; or its applicability to various 
ecological studies. Instead we aim to disambiguate methodology 
and encourage users to move from a 'black box' approach towards 
more customized, ecologically driven applications of weather 
generation whenever they may be more applicable. 
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Table 1 
Potential features of weather generators and the advantages to ecological modeling. Note the weather generator we describe here does not 
demonstrate all these features or benefits. 

Feature of weather generators Potential benefits 

Production of unlimited amounts of weather 
data with statistical properties realistic to 
historical pattern 

-Models can be run for long periods of time and using many permutations of weather 

Can be 'trained' using incomplete historical weather 
data (i.e. records with segments of missing data) 

Large historical weather database can be 

-Weather data is complete, ready to use and without missing values 
-Allows models to be run for locations with limited historical data 
-Allows small, portable weather databases to be created 

condensed into a much smaller number of 
weather generator parameters 

-Parameter sets can be sent over the internet and weather time-series created on client machines to 
reduce server load 
-Potential for rapid generation of 'synthetic' weather data versus retrieval of stored historic data 

Weather generator leads to understandable, 
mechanistic parameters 

-Construction or modification of a generator leads to a greater understanding of the inter-relationship 
between weather variables 
-Parameters can be manipulated to simulate realistic changes in climate (e.g. using climate 
change scenarios) 

Utilization of historical weather data from 
multiple sources. For example different data 
collection methods (satellite measured 
surface temperatures, station measurements, 
radar) or spatial or temporal scales of 
measurement 

-Data can be generated at spatial and temporal scales most important to a study 

Repeatable, mathematical and scientific formulation -Weather generator methodology can be modified and improved by users of weather data 
-Open source code can be provided to provide detailed, unequivocal methodology 
-Software can be distributed that can be seamlessly integrated into ecological models, streamlining 
the process of simulating and analyzing systems 

2. Methods 

2.1. The rain model 

In this generator (and many others), we assume that daily temperatures depend 
on the occurrence of rain. The first step in the weather generator is to develop a rain 
model capable of describing the length of wet and dry series and for wet days, the 
amount of rainfall that occurs. Semenov et al. (1998) suggest the use of semi­
empirical distributions to model these quantities. A semi-empirical distribution is 
based on a histogram consisting of a given number of intervals (ten in the example 
below) denoted by: 

(1) 

where, for i = 1, ..... , 10, h; denotes the number of data points that are observed 
within the interval ( a;_,,a;). The generation of a random variate from a semi­
empirical distribution based on H occurs in two steps: first one of the ten intervals is 
generated according to the probabilities representing the proportion of events in 
each interval and then a value within the selected interval is generated using 
a uniform distribution. Each month has its own semi-empirical distribution that 
describes the length of wet and dry series and the amount of rain falling on each wet 
day. Note then that each semi-empirical distribution requires 21 parameters that 
describe 10 intervals (and therefore 11 interval boundaries) with a probability 
associated with each interval. In our case, interval size is smallest for small values 
because there are more days with lighter rainfall and series of shorter lengths. 

Interval widths for cycle lengths are determined by the maximum length of 
a cycle for a given month using the following rules. Assume that the maximum 
number of days for a cycle is denoted by d', and let the width of the ith interval be w;: 
in other words. Wi = ai- ai-1· 

If d' :S 10, then w;= 1 for all i.lf 10 < d'> 55 then w1 =1, w;= w;_, fori= 2, ... , i' 
and w; = w;_ 1 + 1 for i = i' + 1, ... , 10 where i' is chosen so that aw is as small as 
possible such that aw :S d'. (Note that in this case widths are constant until the index 
i', at which point the widths increase by 1. The index i' is chosen to postpone the 
increase in widths as long as possible.) If d >55 then w; = w;_ 1 + 1 for i = 2, ... , 10 
with w 1 being chosen so that a10 is as small as possible such that a 10 :S d'.lnterval 
widths for rainfall quantities are described using the following ten fractions: 
ft = !2 = 0.25, h = !4 = 0.5, fs = !6 = 1.0, h = !B = 1.5, fg = fw = 1.75. Let the maximum 
quantity of rain fora day within the given month be denoted by q', then the width of 
the ith interval is given as w; = q'f;/10.0 fori= 1, .... 10. 

Given this model structure, the next steps are to parameterize the distributions. 
Then new data can be generated from these distributions. Note that the procedures 
for parameterizing and creating rainfall data are essentially the opposite of each 
other. To parameterize the semi-empirical distributions (daily) historical weather 
data (comprising minimum and maximum temperatures and rainfall) are input into 
the program. The program searches for wet and dry series which are attributed to 
the semi-empirical histogram for the month in which that series originates. Simi­
larly, daily rainfall amounts are added to the semi-empirical distribution for a given 
month. To generate rainfall data from the parameterized model, a series begins by 

first choosing the length of the series from the semi-empirical distribution of the 
appropriate month. If a day falls within a wet series, a positive nonzero value for 
daily rain is generated from the semi-empirical distribution of the month in which 
the day occurs. 

The amount of rainfall each day form an independent sequence given the cycle 
length, and the amounts are also independent of the cycle length. The lengths of 
adjacent series are also modeled independently. For example, suppose a wet series 
begins on june 30 and lasts five days. The length of the wet series is considered data 
for june and the amount of rain on the first day of the series is also considered june 
data; whereas, the data for the amount of rain on the next four days would be 
considered july data. All climate variables determined by a semi-empirical distri­
bution are solely dependent on the month to which they correspond. 

The histogram-dependent structure of this distribution allows it to take on 
a variety of shapes thus providing a high degree of flexibility. A disadvantage, 
acknowledged by Semenov et al. (1998), is that for a histogram with 10 intervals 
each distribution requires 21 parameters. Much more than the 3 required for earlier 
serial rain models (e.g. Racsko et al., 1991). Modifications to the weather generator 
could be made by changing the number of intervals or the size of each interval or 
even by replacing the semi-empirical distribution with some other function capable 
of adequately representing the length of wet series and the amount of rain falling on 
each wet day. 

2.2. The temperature model 

Minimum and maximum temperatures are stochastic processes with daily 
means and standard deviations conditioned on the wet and dry status of the day. 
Temperature means are modeled by a third order Fourier series fitted to historical 
daily minimum and maximum temperatures. In other words, four models are 
developed for the mean temperatures (minimum-dry, minimum-wet, maximum­
dry, maximum-wet). 

The procedure for modeling each of these quantities is the same: For example, 
a model of daily minimum-dry means is developed by finding minimum tempera­
ture records for days with no rainfall. Each instance is described by an ordered pair 
( d;, y;) where d; is the julian date of the dry day andy; is the minimum temperature 
for that day (thus if the historical data contains 24 years and half were dry, then this 
would yield 24 x 355 x 0.5 such data pairs). The following function is then fitted 
(using least squares) to these data points: 

3 
y = ao + L [ancos(2mrd/355) + bnsin(2mrdf355)] 

n=l 
(2) 

Where d represents the day of the year, y represents the temperature, and the 
constants ao. a 1, a2. a3, b1, b2, b3 are fitted parameters. 

Four models are also developed to describe the standard deviations associated 
with the data (again for minimum-dry, minimum-wet, maximum-dry, maximum­
wet). For example, to obtain the regression model for standard deviation associated 
with minimum-dry, the standard deviation for each day of the year is calculated 
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(using the (d;, s1) pairs used for modeling the means) before the regression (using Eq. 
{2)) is performed. If a given day of the year has less than 2 dry (or wet) days, no 
standard deviation for that date is calculated (note that the only difference in per­
forming the regression for means versus standard deviations is that the former 
involves thousands of data points but the latter will use at most only 365). 

In real weather patterns, daily temperatures are highly correlated. The most 
common formula for determining an auto-correlation coefficient for a series of 
random variables makes the assumption that the series is a covariance-stationary 
series (i.e., the daily means, daily variances, and lag-n correlations coefficients are 
constant). Thus, before estimating correlation coefficients, we standardized 
temperatures based on the regression fits, and the ordered pair made up of daily 
minimum and maximum temperatures are assumed to be a covariance-stationary 
sequence of normally distributed random vectors with mean zero and variance one. 
Notice that the standardization procedure uses the regression curves which helps to 
remove the time-of-year bias from the temperature sequence; thus, we assume that 
the correlation coefficients are constant throughout the year. Consider the following 
definitions: 

tmax,i max temperature for day i 
rmin,i min temperature for day i 
Ymax,i mean of max temperature for day i based on Eq. {2) 
Ymin,i mean of min temperature for day i based on Eq. (2) 
Smax,i standard deviation of max temperature for day i based on Eq. (2) 
Smin,f standard deviation of min temperature for day i based on Eq. (2) 
Zmax,i transformed max temperature: Zmax,i = (rmax,i- Ymax,;lfSmax,i 
Zmin,i transformed min temperature: Zmin,i = (tmin,i- Ymin,ilfSmin,i 
rmax,max lag-1 auto correlation for max temperatures 
r min,min lag-1 auto correlation for min temperatures 
r daily correlation between min and max temperatures within a day 
r max, min lag-1 auto correlation between max temperature to next day's min 

temperature 
r min,max lag-1 auto correlation between min temperature to next day's max 

. temperature 
SSQmax sum of squares of max transformed temperatures (hopefully close ton) 
ssqmin sum of squares of min transformed temperatures (hopefully close to n) 
n total number of days of data (n equals the number of years of data 

times 365) 

There are five correlation coefficients to estimate, obtained from the transformed 
data as follows: 

Tmax,max ( ~ Zmax,i X Zmax,i+ 1) I SSQmax (3) 

fmin,min (4) 

(5) 

r min,max ( ~ Zmin,i X Zmax,i+ 1) I y'SSQmax X ssqmin (6) 

r max, min ( ~ Zmax,i X Zmin,i+ 1) I y'SSQmax X ssqmin (7) 

Once the models have been parameterized using the historic data, the models of 
mean and standard deviations of daily temperatures (minimum-dry, minimum-wet, 
maximum-dry, maximum-wet) and the five correlation coefficients (rmax,max. rmin, 
min• r daily. r min,max• r max,min) are used to generate temperature data (daily minimums 
and maximums). Scheuer and Stoller (1962) describe a method to generate corre­
lated normal vectors that we adapt to apply an auto-correlated sequence of ordered 

Table 2 

pairs. First generate a sequence of independent standard (i.e. mean zero and vari­
ance one) normal random variates: for the standard variate T, then the daily 
temperature (either min or max) is: 

r = JJ.+CJT (8) 

where ~ and cr are the mean and standard deviation from the appropriate fitted 
regression models. Daily temperatures are generated sequentially, first we deter­
mine whether the day is wet or dry (from the rain model), then generate the 
minimum and maximum temperatures are for each day. Assuming that rain has 
already been determined using the rain model so that Ymax.h Ymin,i• Smax,i, and Smin,i 
are known; and that a correlated sequence of standard normal variates have been 
generated, the following algorithm is used to generate data. 

1. Set day index i = 1. 
2. Min temperature, day 1: J1. = Ymin 1 and u2 = s~in,1 
3. Max temperature, day 1 ' 

J.L= Ymax,t +Tdaily X (Smax,t/Smin,t) x ( 't'min,t- Ymin,l) 

2 ---2 ( 2 ) a = Smax,t ?< 1-rdaily 

4. Min temperature, day i + 1: 

X ( Tmax,i- Ymax,i) I ( 1- r~ai/y) + (rmin- rdailyfmax,min) 

x (Smin,i+t/Smin,i) X (rmin,i- Ymin,i) / ( 1- r~aily) 

a
2 = S~in,i+l- Tmax,min(fmax,min- TdailyTmin) X S~in,i+t/(1- ~aily) 

5. Max temperature, day i + 1: 

( - - - )r T = !min,i+t-Ymin,i+l,tmax,i-Ymax,i,Tmin,i-Ymin,i 

C= 
[ 

-2 
Smin,i+l 

T max,min S max,i S min,i+ 1 

r minSmin,iSmin,i+t 

T max,min S max,i Smin,i+ 1 

~ax,i 
TdailySmax,iSmin,i 

6. Increment day index and return to step 4 

TminSmin,iSmin,i+ll 

r daily'S max,iS min,i 
-2 
Smin,i 

Occasionally, a simulated day's maximum temperature is less than the 
minimum. If this occurs, both values are set to the average value of the two 
temperatures. 

2.3. Testing the weather generator 

We have chosen five locations (representative of the study and data availability 
for which the generator was developed), each within the south eastern US, to test 
the weather generator. We use a two step process for determining the adequacy of 
the model for our application: 

Locations used to test weather generator. The locations are representative of the broad range of climates relevant to the ecological model for which the generator was 
originally designed. 

Location Latitude, Longitude Elevation Mean annual Mean annual Mean annual Mean annual 
longitude (m) temp('C) low (•C) high('C) precipitation (em) 

Asheville, NC 35.57 -82.57 649 12.9 -4 28.3 120.9 
Lufkin, TX 31.34 -94.72 95 19.2 3 34 132.1 
Nacogdoches, TX 31.6 -94.65 91 19.8 3.2 33.8 122.8 
Nashville, TN 36.17 -86.8 202 15.2 -2 32.1 122.2 
Richmond, VA 37.54 -77.46 63 14.3 -2.4 29.8 109.7 
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Table 3 
Results of statistical analyses comparing historical data to generated weather 
variables. Included are t-tests and /-tests for the difference between means and 
variances of maximum and minimum temperatures on each julian day and t-tests 
and z-test for average rainfall and the probability of rain on each julian day. The 
proportions represent the number of days (out of 365) that the t-, f- or z-tests 
rejected the null hypothesis (at 5% level) of equal means, variances or probabilities 
between historic and simulated data sets. 

Location Years of data (N) Maximum Minimum Precipitation 
temperature temperature 

r-test /-test t-test /-test t-test z-test 

Asheville, NC 
Daymet 24 0.030 0.049 O.D38 0.058 0.088 0.033 
NCDC 100 0.055 0.036 0.036 0.055 0.055 0.060 

Lufkin, TX 
Day met 24 0.044 0.085 0.049 0.101 0,096 0.071 
NCDC 68 O.D38 0.068 0.063 0.077 0.082 O.D38 

Nacogdoches, TX 
Daymet 24 0.058 0.088 O.D38 0.074 0.115 0.041 
NCDC 33 0.049 0.063 0.066 0.068 0,118 0.079 

Nashville, TN 
Daymet 24 0.036 0.033 0.049 0.047 0.071 0.044 
NCDC 61 0.055 0.052 0.060 0.066 0.066 0.055 

Richmond, VA 
Daymet 24 0.049 0.055 O.D38 0.047 0.121 0.044 
NCDC 60 0.066 0.060 0.044 0.063 0.074 0.058 

1) Statistically assess the similarity of weather patterns produced by the gener­
ator compared to real world weather patterns. 

2) Evaluate the strengths and weaknesses of the model in light of the ecological 
application for which it was intended. 

The five locations we have chosen are shown in Table 2. Daily weather station 
data for each location was obtained fro·m the National Climatic Data Center (www. 
ncdc.noaa.gov). However, the study (for which this weather generator was 
designed) requires weather data for remote locations across the US for which there 
is no available weather station data. Therefore, we also use a spatially interpolated 
weather resource maintained by the National Center for Atmospheric Research 
(http://DayMet.org) as a data source (see Thornton eta!., 1997). 

Three standard statistical tests (Miller and Freund, 1985) were used to assess the 
similarity of generated versus real data (other tests could easily be incorporated into 
the generator code driven by the context of its use): 

1) A t-test to determine if a significant difference exists between daily means of 
the generated versus actual data. 

2) An f-test to determine if a significant difference exists between the daily 
variances of the generated versus actual data (temperatures only). 

3) A z-test to determine if a significant difference between the daily probability of 
rain for the generated versus actual data (Eq. (9)). 

z = ---r=~p=1 =-~p=2== 
1 1) p(1 - p)(iiT + ii2 

(9) 

where z is the z score, p is the pooled probability of rain, p1 and p2 are the 
proportions of rainy days in the generated data and historical data respectively, and 

n 1 and n2 are the sample sizes used to calculate these proportions. At each location 
and for each day we recorded how many days out of 365 the test results indicated 
that the means or variances were not-equal (i.e. different) using a Type-I error of 5%. 

3. Results and discussion 

Table 3 shows the statistical comparison between actual 
weather data and those created by the weather generator. The 
weather generator faithfully reproduces the historical data from 
weather stations in the National Climatic Data Center database and 
those available via daymet.org. 

Statistical adequacies of the weather generator are however 
only one measure of its success or utility. In our case, the overriding 
motivation for the development of a weather generator was to 
produce a tool to be seamlessly incorporated into ecological models 
simulating temperature and precipitation driven processes in the 
Southern United States. We argue that weather generation is an 
endeavor driven by the needs of a particular study. As such, ecol­
ogists should play a role designing such tools. Other ecological 
studies may require more (or different) weather variables (for 
example direct or diffuse radiation, wind speed and direction; or 
even lightning), or data for different spatial or temporal scales (for 
example spatially correlated regional instead of point data or 
hourly instead of daily data). The variety and specificity of ecolog­
ical models; the underlying importance of weather as a driver of 
ecological processes; and the availability of different kinds of 
historical weather data should drive the design and use of weather 
generators. We hope that the methodology and code presented 
here will encourage the open, transparent development of weather 
generators and their application to ecological studies. 
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