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Application of Mapped Plots for
Single-Owner Forest Surveys

I Paul C. Van Deusen and Francis A. Roesch

Mapped plots are used for the national forest inventory conducted by the US Forest Service. Mapped

ABSTRACT

plots are also useful for single ownership inventories. Mapped plots can handle boundary overlap and
can provide less variable estimates for specified forest conditions. Mapping is a good fit for fixed plot
inventories where the fixed area plot is used for both mapping and tree sampling. However, mapping
can be done with a colocated fixed area plot even though the tree inventory uses variable plots. In
fact, the tree measurement plots can be completely decoupled from the plots used for measuring
condition proportions, although this is not recommended.

Keywords: boundary overlap, horizontal point samples

he mapping of conditions that divide
T field observation plots stemmed from

the same practice that was used his-
torically on agricultural experimental plots.
The practice was introduced at the national
scale in the United States by the Forest
Health Monitoring program and later
adopted by the Forest Inventory and Analy-
sis (FIA) program of the US Forest Service.
Fixed area plots that include more than one
condition are mapped so the plot measure-
ments can be allocated to conditions. Con-
ditions are defined by characteristics such as
ownership, forest type, stand age, tree size,
and density.

Plot mapping is the successor to the
past FIA method of rotating plots so they
only contained single conditions. Plot rota-
tion led to a small bias in the estimates (Bird-
sey 1995) and is no longer considered an
acceptable practice. The mapped plot design
(Bechtold and Patterson 2005) was recom-

mended (Hahn et al. 1995) as an alternative
to rotating straddler plots.

FIA uses a very detailed procedure for
mapping condition boundaries (Scott et al.
1995), but condition mapping can be imple-
mented in a number of ways. For example, a
grid of points could be located within the plot
and the condition proportions determined by
counting the grid points that fall into each con-
didon. We show that the concept of mapping
is extremely flexible and can be useful for
smaller forest inventories and for inventories
that use horizontal point samples (variable
plots) to select sample trees. A simulation is
presented to show the value of accurate plot
mapping. An example application is provided
to clarify the computational requirements.

Colocated Plots for Tree and
Condition Samples

The mapping concept becomes very
flexible if sampling for condition propor-
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tions is decoupled from sampling for tree
variables. Consider the option of estimating
condition proportions with a plot that is co-
located with the forest inventory plot. Call
these COND plots and TREE plots. Only
fixed area plots will be considered here for
COND plots, but TREE plots could be
fixed or variable plots.

Plot mapping is the process of estimat-
ing or measuring the proportion of each plot
that is in a particular forest condition. The
purpose is to use the condition proportion
to adjust the TREE plot condition measure-
ments to reduce variance. The following
model shows how these measurements are
assumed to be related to the underlying per
hectare condition mean, w,,

_yicz ﬂic“’c—'— €ic> (1)

where y,, is the measurement of the variable
of interest at TREE plot 7 for condition ¢, ;,
is the estimate of the proportion that is in
condition ¢ made on the colocated COND
plot, and €;, is a random error term. Assume
that y,. has been adjusted to represent a per-
acre or per-hectare value. For example, the
actual plot measurement would be multi-
plied by 10 for one-tenth hectare fixed-area
plots.

Mapped Plot Assumptions
Mapping can be advantageous, because
a plot will often overlap multiple conditions.

Mapped plots should provide less variable
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estimates of quantities, such as per acre vol-
ume, within conditions of interest. If the
plot is half natural pine and half plantation
pine, it is clear that the combined plot data
are not representative of either condition.

The most important mapped plot as-
sumption made explicit in Equation 1 is that
the expected amount of y on a partial plot is
proportional to . In particular, if half the
plot is in condition ¢, then we expect y to be
half of the value for a plot fully in the con-
dition. This is analogous to assuming that
10 ha of pine will have half the volume of 20
ha of pine. It is an assumption that is implic-
itly made in most forest inventories.

The a value in Equation 1 comes from
the colocated COND plot. The following
equation states that the expected value of # is
equal to the overall condition proportion:

A = At + Vies (2)

where 4,, is the proportion of plot 7 in con-
dition ¢, A, is the true proportion of condi-
tion ¢ for the area being inventoried, and v;,
is a random error term.

Equations 1 and 2 can be combined to

get
ye=Apt g, (3)

where y, is the mean of the condition ¢
TREE plot y values and &, is a random error.
From Equation 3 a possible estimator for w,
follows immediately,

A= 7.4, (4)
where A, is the mean of the # values from
COND plots containing condition ¢. The
mapped plot condition mean estimator
given by Equation 4 is identical to what FIA
uses (Bechtold and Patterson 2005) and is
derived by alternative means elsewhere (Van
Deusen 2004).

Condition proportions also have value
for adjusting area estimates using weighted
estimators. This requires each plot to be as-
signed a weight or expansion factor that in-
dicates how much area the plot represents.
Detailed explanation of the weighted ap-
proach is available elsewhere (Van Deusen
2007). A limited demonstration of the value
of mapped plots for area estimation is given
as part of the example application.

Variance Estimation

The mapped plot estimator (Equation
4) of condition means does not require
TREE and COND plots to be colocated.
Technically, 4, and A, could come from

independent TREE and COND plots.

However, there would often be logistical ad-
vantages to computing these values at the
same locations, and the correlation between
TREE and COND plot measurements will
reduce the variance of the mapped plot esti-
mate. If the survey is using fixed area TREE
plots, then it would make sense to use the
same plot for the COND plot. On the other
hand, it is conceivable that better condition
proportion estimates could be made from
plots measured on aerial photos. The unbi-
ased estimator of p, given by Equation 4 is
the same regardless of colocation, but the
variance estimator will be affected.

Colocated COND and TREE Plots

The variance estimator for colocated plots
is shown and demonstrated in the example ap-
plication section (Equation 7). This mapped
plot variance estimator (Equation 7) is given
by Van Deusen (2004) and is very similar to
Equation 2.46 from Cochran (1977) for esti-
mating a ratio of means variance.

Independent COND and TREE Plots

If the COND plot is not colocated with
the TREE plot, then we assume that there is no
correlation between 4;, and y,. in Equation 1.
In this case, Equation 7 is not appropriate. The
following variance estimator is suggested when

TREE and COND plots are independent:

=2
c

Szzi(p“f) = [_44 Var(;lr)

1
+ = Var(y,), (5)

where Var(;I[) and Var(y,) are estimated from
the measurements on the COND and TREE
plots, respectively. Note that y, is the mean of
the plot condition measurements without ad-
justment for condition proportions. The delta
method (Bishop et al. 1975, Oehlert 1992)

was used to derive Equation 5.

Application to Simulated Data

A simulation is conducted to gain in-
sight into the benefit of obtaining accurate
condition proportions and colocating
COND and TREE plots. This involves
comparison of increasing levels of mapping
precision. The effect of mapping precision is
also evaluated for different levels of diversity.
Diversity, for this simulation, is measured by
the proportion of plots that are mapped into
more than one condition.

A'Y variable is generated from a normal
distribution with a mean of 2,000 and a co-
efficient of variation of 2.5%. Plots are sim-

Table 1. Simulated results with 80% of the
plots fully in the condition and colocated
TREE and COND plots.

Precision 03 A s(v) o)
1 1,999.96 0.90 9.21 9.24

2 2,000.01 0.90 4.82 4.81

3 1,999.99 0.90 3.44 3.46

4 1,999.99 0.90 2.80 2.76

5 1,999.99 0.90 2.44 2.44

6 2,000.02 0.90 2.23 2.24

7 2,000.04 0.90 2.09 2.11

8 2,000.01 0.90 1.99 1.99

9 2,000.00 0.90 1.92 1.90

10 2,000.01 0.90 1.87 1.88
20 2,000.02 0.90 1.70 1.71
100 2,000.00 0.90 1.64 1.65
1000 1,999.99 0.90 1.63 1.64

Precision indicates the accuracy of the plot mapping with de-
creasing levels of rounding. The mean mapped plot estimate is
ft, the mean condition proportion estimate is A, s(fu) gives the
mean standard error from Equation 7 and the true standard
error computed from the simulation is o(j1)

ulated to correspond to different levels of
mapping diversity. A diversity coefficient of
0.8 means that 80% of the plots are fully
in the condition and the other 20% are
mapped. This level of diversity is similar
to what FIA actually encounters in many
southern states. The simulation is run for
three diversity coefficients, 0.5, 0.7, and 0.8.

Condition mapping precision is simu-
lated by putting the condition proportions
into bins. The number of bins corresponds to
the degree of rounding. Precision level 1 has 2
bins where the condition proportions are set to
either 0 or 1. Precision level 2 creates 3 bins, 0,
0.5, or 1. Precision level 3 has 4 bins, 0, 0.33,
0.66, and 1. Precision level 4 has 5 bins, 0,
0.25, 0.5, 0.75, and 1. In general, precision
level L has L + 1 bins. Each true condition
proportion is assigned to the closest bin.

The simulations are repeated 10,000
times and 1,000 samples are drawn for each
repetition. The simulations are performed
with dependent ¥ and A4 values to simulate
colocated TREE and COND plots. Identi-
cal simulations are also performed with in-
dependent A values to simulate independent
TREE and COND plots, where the A values

represent condition proportions.

Colocated TREE and COND Plots

The simulation results are shown in de-
tail for diversity level 0.8 (Table 1). A range
of precision levels is given along with simu-
lation averages for {1 and s(ft) from Equation
7. The simulation average of A is what it
should be (unbiased) for a diversity coeffi-
cient of 0.8, even for the low precision levels.
The average of f1 is very close to the true
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simulation mean of 2,000, which shows that
plot mapping results in unbiased estimates.
The true simulation variance in column o/({)
is very close to the average value in column
s(). This shows that Equation 7 performs
well.

The table provides some important in-
sight into the effect of increasing mapping pre-
cision. Consider precision level 4 versus preci-
sion level 10. The relative decrease in
confidence interval width of going from map-
ping into quarters versus mapping into tenths
at this level of diversity is 1 — 1.88/2.76 =
0.32, based on the true variance column
(o(fr)). However the reduction in confidence
interval width by mapping to the nearest hun-
dredth versus tenths is 1 — 1.65/1.88 = 0.12.
Getting a 32% reduction in confidence inter-
val width might make it worth going from
mapping into quarters to mapping into the
nearest tenth. The 12% reduction derived by
going from tenths to hundredths might not be
worth the effort. Furthermore, it may be unre-
alistic to think that mapping can be done to
the nearest percent in the field. Going to twen-
tieths would certainly be adequate and might
be a practical compromise.

The simulation was run at diversity lev-
els of 50, 70, and 80%. The results for the
true standard error are given (Table 2) for
each precision level for easy comparison.
This shows that the relative improvement
due to increased mapping precision is
greater with greater levels of diversity. Not
surprisingly, this says that surveys with a
larger percentage of mapped plots will gain
more by doing the mapping more precisely.
The 50% diversity level shows a reduction
in confidence interval width of 1 — 1.72/
2.44 = 0.30 by increasing mapping preci-
sion from tenths to hundredths. A 30% re-
duction in confidence interval width might
be worth the extra effort. However, going to
twentieths would seem to be adequate for
any level of forest diversity.

Independent TREE and COND Plots
The simulation is rerun with all else be-
ing identical except an independent set of
condition proportions are used to evaluate
A. Results are shown in detail for diversity
level 0.8 (Table 3). In general, this shows
that L remains unbiased, but its variance is
considerably larger than it was for colocated
COND plots. The true simulation variance
in column o(f1) is very close to the average
value in column s,({t), meaning that Equa-
tion 5 performs well. Evidently, mapping
precision has little effect on the variance
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Table 2. Summary for three levels of
mapping diversity (50, 70, and 80%) with
colocated TREE and COND plots.

Table 3. Results with 0.8 fully in the
condition with independent TREE and
COND plots.

Precision (), 50%  o(h), 70%  o(fr), 80% Precision 3 A A1) o)
1 17.40 11.84 9.24 1 2,000.40 0.90 26.97 26.80

2 8.81 6.10 4.81 2 2,000.33 0.90 24.58 24.59

3 6.08 4.26 3.46 3 2,000.35 0.90 24.11 24.18

4 4.66 3.36 2.78 4 1,999.73 0.90 23.94 23.86

5 3.90 2.89 2.44 5 2,000.19 0.90 23.86 24.18

6 3.36 2.57 2.24 6 1,999.99 0.90 23.80 23.74

7 3.00 2.37 2.11 7 2,000.28 0.90 23.80 23.77

8 2.77 2.23 1.99 8 2,000.05 0.90 23.77 23.88

9 2.55 2.12 1.90 9 1,999.85 0.90 23.75 23.92

10 2.44 2.05 1.87 10 2,000.49 0.90 23.75 23.60
20 1.94 1.78 1.71 20 1,999.95 0.90 23.73 23.57
100 1.72 1.69 1.63 100 2,000.02 0.90 23.75 23.70
1000 1.71 1.67 1.64 1000 1,999.97 0.90 23.71 2391

The simulation variance, o(f1), is given by level of mapping
precision and diversity.

with decoupled COND plots as long as the
overall condition proportion estimate, 4, is
unbiased. This suggests that mapping to the
nearest quarter of a plot (precision level 4) is
sufficient with independent COND plots at
this diversity level.

The independent COND plot simula-
tion was also run at diversity levels of 50, 70,
and 80%. The true simulation standard errors
are given (Table 4) for each level. This contin-
ues to show that mapping precisely is more
important at higher levels of diversity. How-
ever, mapping to the nearest tenth seems more

than adequate for independent COND plots.
Mapping with Variable Plots

Variable plots are not well suited to
measuring condition proportions. Variable
plot tree inventories should use colocated
fixed area circular plots for measuring con-
dition proportions. The fact that the TREE
and COND plots are colocated will result
in variance reduction. The radius of the
COND plot should be compatible with the
limiting tree distances determined by the
basal area factor. Our suggestion is to set the
radius of each COND plot equal to the lim-
iting distance of the largest “in” tree on the
TREE plot. This will ensure that at each lo-
cation every condition with at least one tree
will have a nonzero condition proportion.

The largest-tree limiting-distance (LTLD)
method causes the COND plot radius to
vary from one location to the next. This
would be problematic if the LTLD mecha-
nism for varying the COND plot radius was
dependent on the condition proportions at
the location. It is possible that the largest
trees are always associated with a particular
condition, but it is unlikely the largest tree

The 1, A and o(f) columns are defined as for Table 1, s(f1)gives
the mean standard error from Equation 5.

on the plot would be correlated with the
condition proportions at that location.
There is no technical reason why the
COND plot needs to be large enough to
encompass all the trees on the TREE plot.
However, it would be illogical to assign a
tree to a condition that does not exist on the

colocated COND plot.

Boundary Overlap

Plot mapping also has potential for
eliminating bias from property boundary
overlap. The boundary overlap problem is
caused by trees near the property line having
a smaller selection probability than interior
trees. Methods have been suggested to cor-
rect for this bias (Ducey et al. 2004, Gre-
goire 1982), but they require the field crew
to learn specialized procedures for trees near
the boundary. Furthermore, these proce-
dures vary for trees near property corners.

Table 4. Summary for three levels of
diversity (50, 70, and 80%) with
independent TREE and COND plots.

Precision (), 50%  o(), 70%  o(fr), 80%
1 45.81 33.84 26.80
2 40.30 30.08 24.59
3 39.53 29.82 24.18
4 38.99 29.69 23.86
5 38.88 29.64 24.18
6 39.22 29.31 23.74
7 38.95 29.14 23.77
8 38.33 29.40 23.88
9 38.28 29.53 23.92
10 38.67 29.27 23.60
20 38.49 29.16 23.57
100 38.80 29.28 23.70
1,000 38.84 29.29 23.91

The simulation variance, o(f1), is given by level of mapping
precision and diversity.
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Figure 1. A depiction of a rectangular forest
property with hardwood and softwood
conditions. There are 27 inventory plots.
Plots 4, 17, 26, 23, and 10 straddle the
property boundary. Plots 1, 11, and 27 are
completely outside the property. Plots 8, 14,
18, and 17 straddle the forest condition
boundary.
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The plot mapping solution to bound-
ary overlap requires there to be a buffer sur-
rounding the property where TREE plot
centers have the same chance of occurring as
they do within the actual property bound-
aries. The buffer needs to be wide enough to
ensure that boundary trees have the same
selection probability as trees in the center of
the area of interest. For example, with circu-
lar TREE plots the buffer width should be at
least equal to the plot radius. For variable
TREE plots, the buffer width should be at
least equal to the limiting distance of the
largest tree on the property. No harm is done
if the boundary is too wide, but a bias can
occur if it is too narrow.

The section of a plot that lies outside
the property boundary is treated as a nonfor-
est condition. The section of the plot that is
on the actual property is mapped and the
on-property trees are measured. The only
reason to enter the boundary zone is to pro-
vide a reference point from which to estab-
lish the plot section that overlaps the prop-
erty. This results in a very simple solution to
boundary overlap bias from a field crew per-
spective. No special field crew procedures
are required. The shape of the boundary is
also irrelevant with this method.

Example Application

A simple example (Figure 1) is pre-
sented to show the data and calculations that
are required for a small inventory. This ex-

ample includes 27 plots located on a grid
oriented randomly over the property. There
are hardwood and softwood forest condi-
tions separated by a dashed line. Some of the
plots straddle the condition boundary and
others straddle the property boundary. A
few of the plots fall completely outside the
property. It might sometimes be necessary to
have the field crew visit plots to make sure
they do not overlap the property boundary.
The assumption is that the plot mapping is
done on colocated fixed area COND plots.
The TREE plots could be fixed or variable.

The data for the simple inventory de-
picted in Figure 1 consists of (Table 5) plot
condition proportions for hardwood, soft-
wood, and nonforest conditions 4, 4,, and
a5 Each plot also has per acre cubic foot
volumes for hardwood and softwood (y,, and
7). The plot volumes are derived in the usual
way. For example, if these are tenth acre
plots, then each individual tree volume is
multiplied by 10 so it represents a per acre
value.

Estimates of per acre mean volume are
obtained from the formula,

E?z] JYie

b.=o - (6)

Z?zl ajc
According to Equation 6, the per acre
volume estimate for the hardwood condi-
tion is obtained by dividing the sum of the y,,
column by the sum of the 4, column (Table
5). The softwood estimate is obtained by
summing and dividing the appropriate soft-
wood volume and condition proportion col-
umns. This results in the following per acre
volume estimates: 1, = 1251.4 and f1, =
1507.5. Notice that Equation 6 is merely a

reformulation of Equation 4.
Confidence intervals on the estimates
from Equation 6 are obtained with variance

estimates from this equation (Van Deusen
2004),

d_Z
) = %
Eizl A
where
EZLI gi
S G
27:1 a;, — 1
and

Ci = _yit - dl‘t,‘l’t’ (9)
The computations required to estimate &7
. . 2 .
involve summing the ¢, terms defined in
Equation 9. Computation of the e;, values
uses the mean estimate from Equation 6.

Table 5. Data for the mapped plot
inventory depicted in Figure 1.

=
9
=3

a4, a; Loy In A
1 0.00 0.00 1.00 0 0
2 0.95 0.00 0.05 1,200 0
3 1.00 0.00 0.00 1,350 0
4 0.60 0.00 0.40 800 0
5 1.00 0.00 0.00 1,250 0
6 1.00 0.00 0.00 1,300 0
7 1.00 0.00 0.00 1,400 0
8 0.40 0.60 0.00 600 800
9 0.00 1.00 0.00 0 1,500
10 0.00 0.50 0.50 0 650
11 0.00 0.00 1.00 0 0
12 0.00 1.00 0.00 0 1,400
13 0.00 1.00 0.00 0 1,700
14 0.40 0.60 0.00 400 600
15 1.00 0.00 0.00 1,000 0
16 1.00 0.00 0.00 1,350 0
17 0.20 0.30 0.50 250 400
18 0.40 0.60 0.00 300 800
19 0.00 1.00 0.00 0 1,800
20 0.00 1.00 0.00 0 1,200
21 0.00 1.00 0.00 0 1,900
22 0.00 1.00 0.00 0 1,100
23 0.00 0.80 0.20 0 1,150
24 0.00 1.00 0.00 0 1,500
25 0.00 1.00 0.00 0 1,800
26 0.00 0.90 0.10 0 1,750
27 0.00 0.00 1.00 0 0

The proportion of each plot in the hardwood, softwood, and
nonforest condition is 4, 4, and 4, The per acre cubic foot
volume on each plot in the hardwood and softwood conditions

is y, and y,.

Applying Equation 7 to the hardwood and
softwood columns (Table 5) and taking the
square root gives the following standard er-
ror estimates for hardwoods and softwoods:
SE,, = 48.9 and SE, = 75.0.

Approximate 95% confidence intervals
on the softwood and hardwood mean vol-
umes are CI, = 1251.4 £ 2 % 48.9 and CI,
= 1507.5 = 2% 75.0. We have not included
a finite population correction (FPC) factor
to reduce the variance estimate (Cochran
1977) in Equation 7 for situations where a
large proportion of the forest area is being
sampled. Forest inventories that sample less
than 10% of the forest area can safely ignore
the FPC.

The mapped plot condition propor-
tions can also be used to estimate the area in
the hardwood and softwood conditions.
The plot locations for this example are lo-
cated on a grid. This allows for computing
forest area by following standard dot grid
area estimation procedures. However, we
will assume that the total acreage of the
property is known to be 7 and adjust this
with the condition proportions.

First, compute the sum of all forest con-
ditions by summing the #, and 4, columns
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(Table 5). Then, compute the proportion of
this sum that is in the hardwood and soft-
wood conditions to get: P, = 0.4 and P, =
0.6. The estimated area in each forest condi-
tion is then 7), = P, * Tand 7, = P, * T.
The estimate of total volume in each condi-
tion is obtained by multiplying these area
estimates by the mean per acre volume esti-
mates obtained previously.

Finally, standard errors on total volume
estimates are obtained by multiplying the
per acre standard errors for hardwood and
softwood by 7, and 7. The approximate
95% confidence intervals on total volume
for this example would then be CI, = 7, =
12514 + T, X 2 X 48.9 and CI, = T, X
1507.5 £ 7, X 2 X 75.0. No attempt is
made to account for the uncertainty in the
hardwood and softwood area estimates.

Was Mapping Worth the Effort?

There needs to be a demonstrable ben-
efit before an organization adopts a new
method. Mapping plots in the field and us-
ing different computational methods takes
time and resources. We now show with the
example data that mapping noticeably re-
duced the variance of the estimates. It is up
to the user to decide if this variance reduc-
tion was worth the effort.

Table 6 shows three versions of mean
per acre estimates for softwood and hard-
wood based on the example data. The first
column (Mapping All) gives the results
based on mapped plot estimators for all plots
as discussed previously. The second column
(Mapping Forest) gives mapped plot esti-
mates for the 18 plots that are entirely for-
ested and do not overlap the property
boundary. The third column (No Mapping
Forest) gives results that ignore the mapping
for the 18 entirely forested plots. The prop-
erty boundary overlap plots were eliminated
to avoid confounding the comparison be-
tween mapping and not mapping. The No
Mapping Forest column is giving condi-
tional means and standard errors in the sense
that plots with no hardwood (softwood) do
not contribute to the hardwood (softwood)
estimates.

Table 6 shows that the estimated means
based on mapping for the Mapping All and
Mapping Forest columns are very similar. As
expected, the standard error is somewhat larger
for the Mapping Forest column because the
property boundary overlap plots are elimi-
nated. The No Mapping Forest column
means are smaller and the standard errors are
much larger than those in Mapping-Forest.
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Table 6. Mean and standard errors (in parentheses) for the example data.

Mapping forest No mapping forest

Mapping all
Hardwood 1,251.4 (48.9)
Softwood 1,507.5 (75)

1,243.1 (61.5)
1,490.7 (84.3)

994.4 (147.5)
1,341.7 (127)

Mapping all gives mapped plot results for all plots, mapping forest gives mapped plot results for the 18 plots that do not overlap the
property boundary, no mapping forest gives results for the 18 nonoverlap plots with mapping ignored.

The No Mapping Forest means should be
smaller, because some of the plots were only
partially hardwood or softwood. Likewise, the
standard errors should increase because no ad-
justment is made for the partial plots. There-
fore, mapping can provide more precise per
acre estimates for well-defined forest condi-
tions, as the simulations suggested.

Conclusions

The potential uses of plot mapping are
greatly expanded by the simple idea that the
plots for measuring tree variables and the
plots for measuring condition proportions
do not have to be the same. The simulations
and the example application make it clear
that colocating the TREE and COND plots
pays off in terms of variance reduction.
However, unbiased estimates of condition
means can be obtained even if the TREE and
COND plots are not colocated.

Plot mapping is a useful technique for
large- and small-scale forest inventories.
Correlation between condition proportions
and tree measurements made on colocated
plots can result in significant variance reduc-
tion. However, condition proportions do
not have to be mapped to the nearest per-
cent. Significant variance reduction can be
obtained by classifying 10 points in a dot
grid fashion at each COND plot. Condition
proportions obtained from an independent
source or inventory can still be used to elim-
inate bias in forest condition estimates, but
they will result in little variance reduction.

Logically, any condition that has a tree
should also have a nonzero condition propor-
tion. If not, perhaps the tree’s condition
should be reassigned. It could be a waste of
time to define conditions that will rarely be
sampled. A small inventory might only be able
to support a few conditions, such as nonforest,
hardwood, and softwood. Larger inventories
might call each major forest type a condition.
No real harm is done by keeping track of rare
conditions, other than wasting field crew time,
but they may need to be combined with re-
lated conditions for analysis purposes. FIA also
requires that a condition be at least 1 ac in size

(Bechtold and Patterson 2005) at the plot lo-

cation or it is not recorded. Our results from
the example application and the simulations
for fixed area plots should be directly applica-
ble to the FIA fixed plot design, even though
FIA uses a configuration of four fixed area sub-
plots.

It should be acknowledged that there
are situations where plot mapping may be of
licele value. For example, total volume by
species is available with or without mapping.
Mapping is beneficial when information is
required on particular forest conditions that
will be encountered as the inventory pro-
ceeds. Riparian zones provide a good exam-
ple. Riparian zones tend to be narrow and
will frequently be overlapped by plots that
also overlap the adjacent condition. Plot
mapping will provide improved estimates
for these special forest conditions.
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