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ABSTRACT

Large-scale habitat preferences of riverine taxa are not always revealed by examining community data. Here, we show how
lipid and growth can be used to evaluate hydrologic habitat preferences of fishes resilient to river fragmentation (i.e. species
that can tolerate river fragmentation by dams, but not collapse). Lipid content was examined for seven fishes in a major
southeastern USA reservoir and its largest lotic tributary over the 5 years. Controlling for effects of sex, size and year of
collection, largemouth bass, spotted bass and black crappie had significantly higher lipid in lentic habitat. Conversely, channel
catfish and freshwater drum had significantly higher lipid in lotic habitat. There were no significant differences in lipid of
bluegill and blacktail shiner between hydrologic habitat types. Fish growth produced concordant results as largemouth bass
and spotted bass had significantly faster growth in lentic habitat, whereas channel catfish and freshwater drum had significantly
faster growth in lotic habitat. We were also able to document a synchronous spike in lipids of these species in both habitat types
during a major drought. We surmise that the spike was driven by enhanced primary production, predator-prey concentration
and possibly also reduced reproduction during intense drought. Two conclusions are drawn from this study as a whole. First,
long-term lipid and growth observations hold promise for evaluating ecological effects of droughts over long time spans.
Second, population characteristics are excellent indicators of habitat preferences and could be used more broadly to elucidate
how organisms react to river ecosystem fragmentation and restoration initiatives. Copyright © 2009 John Wiley & Sons, Ltd.
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INTRODUCTION et al., 2000; Pringle, 2001). The common mode for delin-
eating riverine habitat preferences has been by analysing
community data in relation to habitat characteristics
(Jowett and Richardson, 1995; Layzer and Madison,
1995; Lamouroux et al., 1999; Newcomb et al., 2007;
Knight et al., 2008). However, community data alone can
be misleading when delineating habitat requirements for
resilient riverine species.

When hydrologic connectivity between river segments
has been compromised, resilient organisms are often rel-
egated to sub-optimal environments from which they
cannot emigrate (Pringle et al., 2000; Pringle, 2003; Tay-
lor et al., 2008). Baldcypress trees (Taxodium distichum)
exemplify this problem. This species cannot recruit in
the stable hydrologic conditions of southern USA reser-
voirs (Keeland and Young, 1997). Thus, stands of old
baldcypress trees in reservoirs do not reflect a preference
or requirement for reservoir habitat as might be inferred
from presence—absence data alone. Instead, these stands
resulted from natural flow conditions prior to reservoir
creation that promoted recruitment (Keeland and Young,
1997). While this extreme example is of a tree, simi-
lar patterns hold for mobile poikilotherms. In southern
USA Rivers, freshwater drum (Aplodinotus grunniens) is
a common component of both river and reservoir fish

Hydrology is the fundamental driver of the structure
and function of riverine ecosystems (Poff et al., 1997;
Galat and Lipkin, 2000; Pringle, 2001; Rypel et al.,
2009). However, rivers worldwide have been extensively
fragmented by dams such that the majority of rivers in
the northern hemisphere are now severely fragmented
(Dynesius and Nilsson, 1994), and only 42 high-quality,
free-flowing rivers remain in the conterminous USA
(Benke, 1990). One of the foremost consequences of
river ecosystem fragmentation of this scope has been an
overall thinning of aquatic biodiversity (Richter et al.,
1997; Naiman et al.,, 2002; Xenopoulos and Lodge,
2006). An overwhelmed percentage of the most severely
endangered species across the world are aquatic, many
are riverine (Ricciardi and Rasmussen, 1999; Hughes
et al., 2005) and declines of taxa have been traced to the
proliferation of dams (Bain et al., 1988; Freeman et al.,
2005; Matthews and Marsh-Mathews, 2007; Taylor et al.,
2008).

Understanding hydrologic habitat preferences of river-
ine taxa is essential to conservation and management of
these species (Orians and Wittenberger, 1991; Pringle
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communities (Swingle, 1954), but in reservoir environ-
ments experience stunted growth rates and reduced con-
dition factors (Rypel et al., 2006). Likewise in Bahamian
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tidal creeks fragmented by road crossings, gray snapper
(Lutjanus griseus) can be highly abundant despite a lack
of recruitment, mass parasitism by trematodes, stunted
growth rates and extremely low levels of secondary pro-
duction (Valentine-Rose et al., 2007; Rypel and Layman,
2008). Thus, resilient organisms are often present in frag-
mented ecosystems, but this is not necessarily indicative
of optimal habitat.

For resilient taxa, energy storage and growth might be
more integrative proxies of habitat quality than commu-
nity data alone. Lipid levels vary widely across organisms
with different life histories, but are generally a good com-
posite measure of an individual’s recent ecological suc-
cess (Adams et al., 1985; Adams, 1998). Energy reserves
are essential for carrying out fundamental physiological
and ecological processes such as over-wintering, migra-
tion, sexual reproduction and growth (Reznick and Braun,
1987; Phleger et al., 1995; Adams, 1998; Arrington et al.,
2006). All these activities engender reproductive output
(i.e. fitness), and because they are tightly constrained
by energy reserves, lipids are core to maintaining long-
term population viability (Shuter and Post, 1990; Adams,
1998).

In this study, we examined population characteristics
(lipid and growth) of fishes resilient to river fragmenta-
tion in a large southeastern USA impoundment and its
largest unregulated lotic tributary. Furthermore, because
our study took place over 5 years, we were also able to
document the effect a major drought had on lipids of
these fishes.

METHODS

Field sampling was conducted in Lake Logan Martin
and Choccolocco Creek, AL, USA (Figure 1). Both of
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these systems lie entirely within the Valley and Ridge
physiographic province. Lake Logan Martin is a large
(6179 ha), shallow (mean depth 5-5 m) impoundment of
the Coosa River. Choccolocco Creek is the lake’s largest
tributary (fourth order stream) and flows into the lake at
mid-reservoir. While there has been some channelisation
to the smaller tributaries of Choccolocco Creek in and
around the vicinity of Anniston AL, there are no dams,
and the hydrology is free-flowing up to its confluence
with the reservoir.

Fishes were collected from five locations in Lake
Logan Martin and two locations in Choccolocco Creek
during autumn (October—November, the time of the high-
est lipid storage) in 1996 and 1999-2002 (Figure 1).
In total, 11 fish species were examined for lipid con-
tent: freshwater drum (Aplodinotus grunniens), black-
tail shiner (Cyprinella venusta stigmatura), gizzard shad
(Dorosoma cepedianum), threadfin shad (Dorosoma pete-
nense), channel catfish (Ictalurus punctatus), bluegill
(Lepomis macrochirus), spotted bass (Micropterus punc-
tulatus), largemouth bass (Micropterus salmoides),
striped bass (Morone saxatilis), hybrid striped bass
(Morone saxatilis X. M. chrysops) and black crappie
(Pomoxis nigromaculatus). However, only seven of these
species (largemouth bass, spotted bass, black crappie,
channel catfish, freshwater drum, bluegill and blacktail
shiner) were collected in sufficient quantities to permit
comparisons of lipid between lentic and lotic habitats.
Data for all other species were only used for the time
series drought analysis. While time before and after
spawning can influence fillet lipid content, especially for
highly migratory fishes (Jonsson et al., 1997; Mesa and
Magie, 2006; Lloret et al., 2007), the spawning season
of these study species does not occur during autumn,
therefore we assume this effect to be negligible. We
refer to individuals collected from Choccolocco Creek as

iameters

Figure 1. Map of seven sampling sites in Lake Logan Martin and Choccolocco Creek near Anniston, AL, USA (1996-2002). Black circles represent
sites grouped as ‘lotic habitat” and white circles represent collection sites grouped as ‘lentic habitat’.

Copyright © 2009 John Wiley & Sons, Ltd.
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being from ‘“lotic habitat’ and individuals collected from
Lake Logan Martin as being from ‘lentic habitat’. Fish
movement between lotic and lentic sites is unlikely or
minimal due to the distance between both habitat types
(34-61 km), and the presence of several large shoals
below the lotic sampling sites that block major fish move-
ments.

Individuals were collected using Smith Root® boat
electrofishers and gill nets (3-81-5-08 cm mesh sizes),
and each fish qualified within a predetermined size range.
Captured fish were wrapped in aluminium foil, placed
in airtight plastic bags and positioned on ice for trans-
port back to an Auburn University laboratory. Each fish
was identified with a unique number, and its total length
(TL), weight and sex were recorded. In 2001 and 2002,
otolith sagittae were extracted from four species (large-
mouth bass, spotted bass, channel catfish and freshwater
drum) for age determinations using standard methodol-
ogy (Maceina, 1988; DeVries and Frie, 1996). These four
species were chosen for growth comparisons because
their abundance in both lentic and lotic habitats made
the generation of robust growth equations possible for
both habitats. For example, only five black crappies were
captured in lotic habitat and four of these individuals
were age-3 precluding the development of any mean-
ingful growth model for this species. The age deter-
mination process involved examining whole and cross-
sectioned otoliths under a dissecting microscope using
reflected light. Ages were determined independently for
each otolith by two experienced readers, and disagree-
ments between age determinations (~5%) were settled
using concert reads.

Fillet samples were extracted from each fish and
shipped overnight to Savannah Laboratories, Savannah,
GA, USA for percent lipid analysis using standard meth-
ods (Bligh and Dyer, 1959). Interannual variations in
lipid were examined by calculating the annual mean
lipid value for each species and habitat type and plot-
ting it through time. Annual drought data (Palmer’s
Drought Severity Index, PDSI) for the Lake Logan
Martin—Choccolocco Creek hydrological unit were
obtained from the National Oceanic and Atmospheric
Administration (NOAA), National Climatic Data Cen-
ter. Pearson’s product-moment correlations (¢ < 0-05 =
significant) were calculated by relating annual lipid
variations in fishes from each habitat type to annual
PDSI. As supporting evidence, we also present secchi
disc data averages for Lake Logan Martin, taken by
Alabama Water Watch at mid-reservoir for the growing
season (April-September) during the lipid sample years
(http://www.aces.edu/dept/fisheries/aww/aww/index.
php).

We used two-way analysis of covariance (ANCOVA,
o < 0-05) to test for significant differences in lipid
content between lotic and lentic habitats and between
males and females of each species. Percent lipid data
for each species were not normally distributed and were
arcsine square root transformed prior to further statistical
analysis to meet assumptions of normality. Year of

Copyright © 2009 John Wiley & Sons, Ltd.
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collection and TL were used as covariates in models.
Because no individuals were collected from Choccolocco
Creek during the years 1996 and 1999, and because of
the large effect the year 2000 had on lipids (and thus
how unequal sample sizes during this year could affect
results), we eliminated data collected from these years in
Lake Logan Martin from this statistical analysis, and used
only years 2001 and 2002 data (our most robust collection
years) to test for effects of habitat type on lipids.

For the four species from which ages were determined
from otoliths, fish growth was modelled using length-
at-age data. Because our fish were collected using a
predetermined size range that excluded very small and
large fish, growth was modelled using TL-log;o(age)
regressions rather than traditional Von Bertalanffy growth
functions (Sakaris et al., 2006; Rypel and Layman, 2008).
Significant differences in growth between habitats were
examined using ANCOVA (Rypel et al., 2006; Sakaris
et al., 2006; Rypel and Layman, 2008) where length was
a dependant variable, habitat type (lentic or lotic) was the
independent variable and log;o(age) was a covariate.

RESULTS

A grand total of 2765 individual fish of all species
were collected and analysed for lipid content. Interannual
lipid content of fishes varied through time (Figure 2(A),
(B)). Lipid content was synchronous among fishes from
both lentic and lotic habitats and was driven by a
large amount of lipid accumulation for all species in
both habitats during the year 2000 (Figure 2(A), (B)).
Interannual lipid variations were significantly correlated
to interannual variations in drought. All but two species
(striped bass, whose lipids were not sampled in 2000,
and gizzard shad) showed significant correlations with
PDSI in lentic habitat and all species showed significant
correlations with PDSI in lotic habitat (Table I). Secchi
disc measurements through time appeared to match the
trend in lipid through time (Figure 2(C)).

Lipid content and growth of fishes varied by hydro-
logic habitat. Largemouth bass, spotted bass and black
crappie had significantly higher lipid content in lentic
habitat compared with lotic habitat (Table 11, Figure 3).
Channel catfish and freshwater drum had significantly
higher lipid content in lotic habitat. There were no sig-
nificant differences in lipid storage of bluegill and black-
tail shiner between hydrologic habitats. Growth mirrored
the trends in lipid (Figure 4). Largemouth bass, spotted
bass and black crappie had significantly faster growth in
lentic habitat (Figure 4, ANCOVAS, largemouth bass T =
4.2, P < 0-0001, spotted bass T =12.1, P < 0-0001),
whereas channel catfish and freshwater drum had signifi-
cantly faster growth in lotic habitat (Figure 4, ANCO-
VAs, channel catfish 7 =191, P < 0-0001, freshwa-
ter drum T = 6-6, P < 0-0001). Growth equations and
size ranges for each species by habitat can be found in
Table I11.
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Figure 2. Lipid chronologies for (A) 11 fish species captured from lentic
habitat in Lake Logan Martin, AL, USA (1996, 1999-2002) and
for (B) seven fish species captured from lotic habitat in Choccolocco
Creek, AL (2000-2002). Error bars represent the mean + 1 SE.
The PDSI is plotted on the secondary y-axis. More negative values
indicate progressively more severe drought conditions. (C) Secchi disc
measurements taken in Lake Logan Martin at mid-reservoir over the
course of the lipid study. Values are annual averages of monthly
measurements taking during the growing season (April—September) +
1 SE.

DISCUSSION

Effects of a drought on lipid levels

We observed a major spike in the lipid levels of all fishes
during the drought year of 2000. On average, lipid levels
rose by at least an order of magnitude for species relative
to other years. This trend was consistent for nearly every

Copyright © 2009 John Wiley & Sons, Ltd.
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Table I. Pearson correlations (R) of lipid time series measure-
ments for fishes in both habitat types to the PDSI.

Lentic habitat Correlation to PDSI

Largemouth bass —0-90
Spotted bass —0-85
Striped bass* 0-80
Hybrid striped bass —0-95
Black crappie —0.81
Bluegill —0-90
Channel catfish —0-83
Freshwater drum —081
Gizzard shad —0-37
Threadfin shad —0-%4
Blacktail shiner —0-98
Lotic habitat

Largemouth bass —0-99
Spotted bass —1.00
Bluegill —1.00
Blacktail shiner —0-98
Black crappie —-0-84
Channel catfish —1.00
Freshwater drum —0-98

Significant correlations are in bold.
* denotes a species for which no fish were not collected in year 2000.

species and in both hydrologic habitat types. We suggest
three possible reasons for this pattern.

1. Bottom up effects. The widespread amplification of
lipids during the drought could be at least partially
explained by a stimulation of the nitrogen and/or phos-
phorus cycles (Vitousek et al., 1997; Carpenter et al.,
1998; Correll, 1998). This hypothesis was supported
by a time series of secchi disc data taken over the
length of our lipid estimates from Lake Logan Martin
that shows a major drop in the secchi disc readings
during the growing season of year 2000 (Figure 2(C)),
presumably because of increased phytoplankton densi-
ties. Other studies have also shown that annual growth
of freshwater mussels (i.e. primary consumers) across
numerous southeastern rivers was also significantly
stimulated by droughts, including the drought year of
2000 (Rypel et al., 2008; Rypel et al., 2009).

2. Top-down effects (i.e. predator and prey concentra-
tion). As the bathymetry of a lake or river retreats
and the littoral zone collapses due to water-level
loss (e.g. during drought), the shallow water ‘refu-
gia zone’ (Rypel etal., 2007) for mobile prey is
lost and the water’s edge becomes juxtaposed against
deeper, predator-enriched water (i.e. the river chan-
nel). At higher predator densities, the probability of
prey encountering and being attacked by a predator
increases (Sih, 1984) allowing predators to forage more
effectively.

3. Reproductive failure during drought years. Both fishes
and aquatic salamanders are known to produce small
year classes during drought years (Semlitsch, 1983;
Matthews and Marsh-Matthews, 2003). Fishes may
divest energy reserves from eggs and gametes back to
somatic lipids (Encina and Granado-Lorencio, 1997)

Ecohydrol. 2, 419-427 (2009)
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Table II. Results from two-way ANCOVA for the effects of hydrologic habitat and sex on lipid accumulation of seven fishes.

Common name Species n lotic  n lentic Main effects Covariates
Hydrologic habitat Sex Year of collection TL

Spotted bass Micropterus punctatus 52 229 <0-0001 Lentic 0-106 <0-0001 <0-0001
Freshwater drum  Aplodinotus grunniens 33 153 <0-0001 Lotic 0-784 0-014 0-001
Black crappie Pomoxis nigromaculatus 5 158 <0-0001 Lentic 0-090 0-001 0-001
Largemouth bass  Micropterus salmoides 19 261 <0-0001 Lentic 0-896 0-836 0-576
Channel catfish Ictalurus punctulatus 111 274 0-020 Lotic 0-001 0-001 <0-0001
Blacktail shiner Cyprinella venusta 5 14 0-584 N/D n/a 0-244 0-797
Bluegill Lepomis macrochirus 6 44 0-791 N/D n/a 0-778 <0-0001

All values are P-values unless referred to as otherwise. Significant effects are noted in bold. Habitats for which lipids were significantly higher are
indicated in the hydrologic habitat column next to the P-values. N/D refers to no difference.
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Figure 3. Comparisons of lipid content between lotic (black bars) and lentic (gray bars) habitats for seven fishes. Error bars represent the mean + 1
SE. Significant differences for Tukey’s pair wise comparisons are indicated by an*. Full details of these statistics can be found in Table II.
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Figure 4. Length-at-logio(age) regressions for four fish species between lotic (black triangles, solid line) and lentic (grey square, dashed line) habitats.
Full regression statistics are provided in Table IlI.
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Table I1l. Length-logio(age) regressions of four fishes between hydrologic habitat types.

Species Size range (TL, mm) Lotic growth equation n r? Lentic growth equation n r?

Freshwater drum 270-472 TL = 177-5(logioage)+240-3 77 0-42 TL = 140-3(logipage)+227-0 104 0-40
Channel catfish 205-510 TL = 305-8(logipage)+198-2 71 0-54 TL = 190-4(logipage)+169-7 199 0.-54
Spotted bass 201-482 TL = 230-9(logipage)+215-4 47 050 TL = 322-9(logipage)+250-4 148 0-86
Largemouth bass 207-463 TL = 179-5(logipage)+257-0 47 0-55 TL = 235.0(logipage)+269-1 148 0-70

in response to drought stressors (Schreck et al., 2001)
to expend more generously the following year when
environmental conditions might be more favourable.
Matthews and Marsh-Matthews (2003) reported explo-
sions in reproduction of minnow and darter species in
spring of 2001 following the drought of 2000 in Briar
Creek, OK, USA.

Drought observation: conclusions

This ecological pattern deserves future research consid-
eration. For example, if a drought continued over consec-
utive years (i.e. multi-year droughts), would this pattern
persist? And for how long? According to the National
Climatic Data Center (http://www.ncdc.noaa.gov), the
consecutive droughts of 2006 and 2007 in the south-
eastern USA brought about the most severe surface
water shortages and water-level reductions in the region
since record-keeping began in 1895. Recent legal battles
between states over water rights (i.e. ‘water wars’) have
enveloped regional politics and even further exasper-
ated flow and water-level conditions (Carter et al., 2008;
Rokach, 2008). Time series estimates of lipid (this study)
and growth (Black et al., 2008; Rypel et al., 2009) may
hold value for studying environmental effects of drought
and water extraction on aquatic ecosystems. And while
they may not be as ‘complete’ as certain ecosystem-level
metrics (e.g. nutrient cycling, primary and secondary pro-
duction, decomposition. etc.), they might be inexpensive
and rapid surrogates for examining food web effects aris-
ing from climate and anthropogenic change.

Differences in lipid and growth between hydrologic
habitats

We found significant differences in lipid and growth
of fishes between fundamentally different hydrologic
habitat types. Freshwater drum and channel catfish had
significantly higher lipid content in lotic habitats, whereas
largemouth bass, spotted bass and black crappie had
significantly higher lipid content in lentic habitat, and
bluegill and blacktail shiners showed no difference in
lipid content between hydrologic habitat types. Growth
data matched observed patterns in lipids for all four
species for which age and growth data were available.
Freshwater drum and channel catfish grew significantly
faster in lotic habitat, but largemouth and spotted bass
grew significantly faster in lentic habitats. For bluegill,
sample size in lotic habitat was low; however, results
from an independent study of bluegill growth between
rivers and reservoirs (Rypel, unpublished data) confirmed
the same lack of difference between habitat types.

Copyright © 2009 John Wiley & Sons, Ltd.

We suspect differences in lipid and growth between
hydrologic habitats is driven to a large degree by changes
in the abundance of preferred prey types. For example,
shads (Dorosoma spp.) are the primary prey for black
basses in southeastern reservoirs (Hubert, 1977; Miranda
and Muncy, 1989; Scott and Angermeier, 1998; Pope
et al., 2001), but in southeastern rivers, black basses
normally consume diverse types of prey, e.g. crayfishes,
aquatic insects, small sunfishes, minnows and darters
(Davies, 1981; Schramm and Maceina, 1986; Wheeler
and Allen, 2003). Thus, growth rates are higher for
largemouth bass where abundance of an energetically
rich prey item (shad) is higher. This same reasoning
likely applies to freshwater drum, but in the opposite
way. Freshwater mussels are a primary prey for drum,
and mussels are considerably more abundant and diverse
in rivers as opposed to reservoirs (Daiber, 1952; Wahl
et al., 1988; Bogan, 1993; Dreves et al., 1996; Rypel
et al., 2006). Thus growth and lipids of drum tends to
be higher in rivers where this prey is more abundant.

Other factors may also drive differences in lipid and
growth among habitats. For example, differing levels
of abundance, competition and mortality could lead to
changes in fish growth and energy reserve dynamics
(Adams et al., 1985; Heggenes et al., 1999; Armstrong
et al., 2003; Morley et al., 2007). Furthermore, morpho-
logical differences could contribute to variations in lipid
and growth among hydrologic habitats (Pettersson and
Hedenstrom, 2000). In a set of swimming trials, the
more globiform largemouth bass used less thrust energy
than rainbow trout (Oncorhynchus mykiss) to maintain
position in slower currents, but used more thrust energy
than rainbow trout to maintain position in faster currents
(Jayne and Lauder, 1995).

This study supports previous research on the hydro-
logic habitat preferences of these species. Rypel et al.
(2006) found a concordant pattern for freshwater drum
across southeastern USA ecosystems where growth
was always higher in rivers than in reservoirs. Rypel
(unpublished data) found growth of multiple black bass
species across their ranges was higher in lentic ecosys-
tems, whereas bluegills showed no difference in growth
between lotic and lentic ecosystems across their natural
range. For some of these taxa (e.g. bluegill, channel cat-
fish), these emerging patterns in habitat preference do
not necessarily conform to pre-conceived notions. For
example, bluegills are not normally considered a river-
ine species by fisheries managers even though multiple
recent studies have found robust bluegill populations in
rivers (Jackson, 2003; Katano et al., 2005; Zeug et al.,
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2005; Sammons and Maceina, 2008). Thus, lipid and
growth data are useful for examining and challenging
pre-conceived notions of habitat suitability.

Species vary substantially in their responses to ecosys-
tem fragmentation. A certain percentage of species (e.g.
those with a narrow, strictly riverine ecological niche)
are often extirpated outright from fragmented habi-
tats. For example, many darters, minnows, madtoms,
diadromous shads and sturgeons are rapidly extirpated
from highly fragmented rivers in the southeastern USA
(Freeman et al., 2005; Taylor et al., 2008). For these
species, abundance and presence—absence surveys likely
do reflect habitat preference as lipid and growth com-
parisons between habitats simply cannot be made. Black
basses and black crappie apparently benefit from river
regulation perhaps explaining the widespread sport fish-
eries that exist for these species in regulated rivers (e.g.
Chen et al., 2003). Some species showed no consistent
trend suggesting that either habitat might be suitable
for these cosmopolitan species. However, other species
apparently subsist within reservoirs where environmental
conditions are sub-optimal (e.g. freshwater drum, chan-
nel catfish). This leads to the question: why do resilient
persist in reservoirs at all? We propose four general ways
that such an ecological pattern could emerge.

1. Individuals could have immigrated to sub-optimal
habitats by emigrating from optimal habitats.

2. All individuals in a population may be long-lived
adults that pre-date creation of the lentic habitat.

3. The population may originate from eggs or juveniles
wash and settle into impounded areas from riverine
source populations upriver.

4. Individuals could reproduce at normal or reduced
levels (i.e. year class strength is either not affected
or may be declining over time).

Hydrologic habitat analysis: conclusions

We suggest that population characteristics have been long
underutilized in the sciences of dam removal (Bednarek,
2001; Hart etal., 2002; Poff and Hart, 2002; Sethi
et al., 2004), river restoration (Galat and Lipkin, 2000;
Irwin and Freeman, 2002; Souchon et al., 2008; Taylor
et al., 2008), and river ecology in general. Dam removal
projects that analyse only community data may be
missing opportunities to elucidate more of the positive
ecological effects that river restorations generate, and the
reality of some important socioeconomic trade-offs that
might exist. For example, it is possible, and supported
by previous research (Schramm and Eggleton, 2006),
that riverine catfish production would be significantly
benefited by restoration initiatives in regulated rivers.
Whereas channel catfish are a commercially (Mestl,
1999) and now recreationally relevant species (Wilde and
Ditton, 1999), this could be a massive production gain
that has not been previously addressed or quantified in
river restoration studies. Conversely, production of black
basses may decrease due to restoration. Numerous other
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resilient riverine fishes not examined in this study are also
likely impacted in terms of lipid and growth through river
fragmentation (e.g. suckers). What are the ecological and
socioeconomic realities of such trade-offs? Lipid and
growth data are relatively easy and inexpensive data to
generate and we contend that more intense applications
of these metrics could greatly enhance the field of river
ecology as a whole.
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