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Hyperspectral remote sensing research was conducted to document the biophysical and
biochemical characteristics of controlled forest plots subjected to various nutrient and
irrigation treatments. The experimental plots were located on the Savannah River Site
near Aiken, SC. AISA hyperspectral imagery were analysed using three approaches,
including: (1) normalized difference vegetation index based simple linear regression
(NSLR), (2) partial least squares regression (PLSR) and (3) machine-learning regression
trees (MLRT) to predict the biophysical and biochemical characteristics of the crops
(leaf area index, stem biomass and five leaf nutrients concentrations). The calibration
and cross-validation results were compared between the three techniques. The PLSR
approach generally resulted in good predictive performance. The MLRT approach
appeared to be a useful method to predict characteristics in a complex environment (i.e.
many tree species and numerous fertilization and/or irrigation treatments) due to its
powerful adaptability.

Keywords: remote sensing; hyperspectral analysis; partial least squares regression;
machine-learning regression trees; NDVI; leaf nutrients; leaf area index; biomass

Introduction

Forest plantation management practices impact forest productivity. Important forest
management practices include pest control, irrigation and fertilization (Stanton et al. 2002,
Coyle and Coleman 2005). Nutrient deficiency and water stress are major factors that limit
forest productivity. Leaf area, nutrient concentration and carbon assimilation rate are
affected by fertilization (i.e. soil nutrient availability), which in turn influences leaf nutrient
levels (Samuelson et al. 2001, Xiao et al. 2003). Water availability also impacts nutrient
uptake and photosynthesis (Landsberg 1986, Blake et al. 1996).

The health and productivity of forests can be predicted by measuring forest biophysical
and biochemical characteristics at the leaf or canopy level (e.g. Hansen and Schoerring
2003, Yamashita et al. 2004, Chmura et al. 2007, Tilling et al. 2007). Unfortunately,
measuring forest biophysical and biochemical characteristics at the foliar or canopy level
with traditional in situ field methods is labour-intensive and time-consuming and difficult
to conduct over large geographic areas. Consequently, remote sensing has been widely
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adopted for some forest management applications (e.g. Johnson et al. 1994, Zhao et al.
2005, Chirici et al. 2007, Perry and Davenport 2007). In particular, the advent of airborne
hyperspectral remote sensing at high spatial resolutions has made it possible to collect
detailed spectral signatures in the region from 400 to 2500 nm to measure a number of
biophysical, biochemical or physiological characteristics such as leaf area index (LAI),
biomass and chlorophyll (e.g. Hu et al. 2004, Beeri et al. 2007). Less research has been
performed on remote sensing of nutrients and trace elements such as nitrogen,
phosphorous, potassium, calcium and magnesium especially in canopies of different
species (e.g. Gong et al. 2002, Mutanga et al. 2003, Ferwerda and Skidmore in press).

Several approaches have been investigated for estimating biophysical and biochemical
forest characteristics using hyperspectral remote sensing data. For example, some
scientists employed regression analysis to correlate biophysical and/or biochemical
characteristics with either reflectance or vegetation indices (Johnson et al. 1994, Jensen
2005, Tilling et al. 2007, Ye et al. 2007). Regression techniques tested include multiple
regression, principal component regression and partial least squares regression (PLSR).
Other scientists have focused on identifying the spectral reflectance red-edge position
because it is closely associated with chlorophyll content and its seasonal variations
(Curran et al. 1995, Cho and Skidmore 2006).

To learn more about the effects of nutrient and water availability on forest
productivity, Coleman et al. (2004) created experimental plots of short-rotation woody
crops on the U.S. Department of Energy’s Savannah River Site near Aiken, SC (Figure 1).
Since 2000, they have maintained plots containing four tree species subjected to a range of
nutrient and irrigation treatments. They periodically collected in situ measurements on
these plots including information on: LAI, stem biomass and leaf nutrient concentration
for each treatment. Hyperspectral remote sensor data were obtained over this study area in
2006. The objectives of this study were to (1) identify the relationship between in situ and
hyperspectral remote sensing measurement in terms of tree species and the different levels
of water and nutrient availability, and (2) estimate biophysical and biochemical
characteristics (i.e. LAI, biomass, leaf nutrients concentrations) from the hyperspectral
imagery using three different digital image processing techniques. The leaf nutrient
variables included nitrogen (N), phosphorous (P), potassium (K), calcium (Ca) and
magnesium (Mg). The three digital image processing techniques used were (1) single
regression using normalized difference vegetation index (NDVI), (2) partial least squares
(PLS) regression and (3) machine learning regression trees (MLRT).

Study area and data

Study site

The study area was located in the northwest sector of the U.S. Department of Energy
Savannah River Site, a National Environmental Research Park, near Aiken, SC (Figure 1).
The climate is humid continental with an average annual temperature of 17.98C. The
dominant soil is Blanton sand with loamy subsoil at a depth of 120–200 cm (Rogers 1990).
Previous vegetation of the site was plantation pine with an oak (Quercus spp.) understory.

Experimental design

Treatments at the short-rotation woody crop study site are depicted in Figure 2(a). The
study area consists of five blocks with each block containing 14–28 plots. Five tree
genotypes (two eastern cottonwood clones (Populus deltoides Bartr. ST66 and S7C15),
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sycamore (Platatus occidentalis L.), sweetgum (Liquidambar styraciflua L.) and loblolly
pine (Pinus taeda L.)) were established and subjected to a range of nutrient and water
treatments. Each treatment plot contained 14 by 21 trees (i.e., 294 trees) with tree spacing
of 2.5 by 3 m (Figure 2(b)). A central 0.04 ha measurement area including 54 trees in each
plot is used for periodic in situ data collections. Treatments were composed of (1) control
(no irrigation and fertilization), (2) irrigation, (3) fertilization and (4) irrigation þ
fertilization. Different fertilization levels were also applied to experimental plots in blocks
1 and 5, but they were not included in this study due to the limited in situ measurements
(i.e., the shaded plots not numbered in the Figure 2(a)).

Irrigated and non-irrigated water treatments were investigated. Irrigated plots received
water via a drip irrigation system. Irrigated plots received up to 5 mm per day, 6 days a
week during the growing season in order to match evaporative demand (Treatments 1 and
2 in Figure 2(a)). The non-irrigated treatments received only 5 mm per week (Treatments 3
and 4 in Figure 2(a)). Fertilized plots have received a balanced fertilizer blend of
macro and micro nutrients annually since planting. In 2006, each fertilized plot received

Figure 1. The Study area on the Savannah River Site and color composite image
(RGB ¼ hyperspectral bands 760.8, 666.4, and 572.5 nm, respectively) of the experimental plots.
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120 kg N ha71 (Treatments 2 and 4 in Figure 2(a)). Annual fertilization consisted of 26
equal weekly applications between 1 April and 1 October.

In summary, a total of 60 plots in blocks 2–4 were used in the study, which included 20
treatment plots (5 genotypes grown with 2 fertilizer and 2 irrigation treatments) with each
replicated three times (Figure 2(a)). Detailed information about the experimental design is
found in Coleman et al. (2004).

Figure 2. Overview of the experimental plots with different treatments.
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Hyperspectral imagery and data extraction

An Airborne Imaging Spectrometer for Applications (AISA) Eagle sensor system
(CHAMP, CALMIT, University of Nebraska-Lincoln) was used to obtain hyperspectral
imagery over the study area on 15 September, 2006. The imagery consisted of 63 channels
(from 400 to 980 nm) with a spectral resolution of *9-nm, a radiometric resolution of 12-
bits, and a fine spatial resolution of 1 m 6 1 m. The imagery was collected at an altitude
of 1630 m above ground level (AGL) during cloud-free conditions at *11:20 am (EDT)
local time.

The hyperspectral imagery were pre-processed to ground percent reflectance using a
Fast Line-of-sight Atmospheric Analysis of Spectral Hypercube (FLAASH) algorithm.
The imagery was then rectified to a Universal Transverse Mercator (UTM) coordinate
system. The geometric rectification was performed using GPS-derived coordinates located
in the study site (i.e., each corner of each block) resulting in an estimated Root Mean
Square Error (RMSE) of 0.48 pixels.

The radiometrically and geometrically corrected hyperspectral imagery was imported
into ESRI ArcGIS 9.x. Since the in situ field measurements were collected on the central 54
trees of each treatment, hyperspectral measurements were extracted from these
corresponding locations. Polygons surrounding the central 54 trees were created based
on the GPS-derived coordinate values of each treatment plot. Zonal functions were used
to compute the mean reflectance values of the hyperspectral pixels within the polygons.
Each polygon contained *405 pixels. The mean spectral reflectance values were used in
the subsequent analyses.

In situ measurements

In situ biophysical and biochemical measurements included LAI, stem biomass and five
leaf nutrient concentrations (i.e., N, P, K, Ca, and Mg). LAI measurements (m2/m2)
were collected from 15–18 September, 2006 using a hand-held ceptometer.
Stem biomass (Mg/ha) was calculated using diameter-at-breast-height (DBH) measure-
ments obtained in December, 2006 as independent variables in allometric equations
developed from biomass harvesting. Although the DBH measurements were obtained
2 months after the remote sensing data acquisition, the stem biomass only changed
50.04% during this time based on a subset of stem diameter measurements taken
on 11 October, 2006. Composite hardwood leaf samples were collected for nutrient
analysis on 5–7 July, 2006. Pine was sampled in January of 2006. We acknowledge
that the acquisition date discrepancy for leaf nutrients could influence the data
analysis.

Methodology

The study methodology is summarized in Figure 3. After radiometric and geometric pre-
processing, the mean spectral reflectance values were extracted from the GPS-derived
polygonal areas within each plot. How the spectral patterns differed based on nutrient
and/or water availability (measured in situ) and tree species was investigated. After the
spectral pattern analysis, a predictive analysis of the biophysical and biochemical
characteristics was performed using each of the three digital image processing techniques,
including: NDVI-based simple linear regression (NSLR), PLS regression (PLSR) and
MLRT.
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Normalized difference vegetation index

There are many types of vegetation indices applicable for hyperspectral analysis (Jensen
2005). This study focused on one representative vegetation index called the NDVI. The
NDVI is a classical index based on red (R) and near-infrared (NIR) reflectance:

NDVI ¼ NIR�R

NIRþR
ð1Þ

Numerous studies have reported that NDVI is useful for estimating vegetation
characteristics such as LAI, biomass, chlorophyll and nitrogen (e.g. Aparicio et al. 2000,
Hansen and Schjoerring 2003, Jensen 2007). Scientists using traditional multi-spectral
data usually have only one or two red and NIR bands available to use in the NDVI
algorithm. Scientists using hyperspectral data may select among numerous red and NIR
bands to use in the NDVI algorithm. Selecting an optimum band combination from
hyperspectral data is critical to compute NDVI and requires a large size of in situ
samples to calibrate and validate the NDVI. This study simply focused on a standard
NDVI by using the NIR band cantered at 856.8 nm and the red band centred at
657.0 nm (Jensen 2005).

Figure 3. Process flow diagram of the research.
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Partial least squares regression

PLSR uses concepts of principal component analysis and multiple regression at the same
time. PLSR reduces a number of independent variables, which might display multi-
collinearity, to a few manageable non-correlated variables using component projection.
These non-correlated variables represent the relevant latent structural information of the
reflectance measurements for predicting the dependent variable such as LAI (Hansen and
Schjoerring 2003). One of the advantages of PLSR is the minimal demands on sample size
and residual distributions. Another feature is the ability to model multiple dependent
variables. Unfortunately, it is often difficult to interpret the PLSR loadings because they
are from a cross product between dependent and independent variables (Garson 2006).
Thus, PLS regression has great potential as a predictive model, but not necessarily as an
interpretive model.

The number of non-correlated variables used in the subsequent analyses is another
consideration. Visual inspection of the scores associated with model effects and validation
residual variance plots is generally used to locate the optimum number of non-correlated
variables through PLS regression. This study used 95% cumulative model effects as a
criterion for the optimum number of non-correlated variables. The treatments contained
five different tree genotypes. To incorporate genotypes as an independent variable, five
additional dummy variables were created with values of 0 and 1 (e.g., for sweetgum: 0, 0, 1,
0, 0). Consequently, two sets of PLSR analyses were performed for seven dependent
variables: (1) using 63 reflectance independent variables, and (2) using 63 reflectance
variables þ 5 dummy variables to distinguish tree genotypes.

Machine learning regression trees

Traditional regression trees use a binary recursive partitioning process (Breiman et al. 1984).
Training samples are input to the regression trees to generate rule-based models for
predicting a target variable using a recursive partitioning process. A split occurs if the
model’s combined residual error for two subsets is significantly lower than the residual error
of the single best model in the process (Huang and Townshend 2003). Advantages of MLRT
include the ability to handle non-linear relationships between independent and dependent
variables, and the use of both continuous and discrete variables as input data. To predict
continuous biophysical and biochemical characteristics, this study used Cubist by RuleQuest
Inc., which uses a modified regression tree system to create rule-based predictive models
from the data. Each rule has an associated multivariate linear model. These linear models
are not mutually exclusive, allowing overlap between models. Output values are averaged to
arrive at a final prediction. The predictability of Cubist MLRT has been examined in several
studies (e.g. Huang and Townshend 2003, Yang et al. 2003, Moisen et al. 2006). Since Cubist
allows categorical (i.e., discrete) variables as input variables, three categorical variables were
used including tree genotypes, irrigation and fertilization. MLRT using just the 63
reflectance variables was also performed for comparison.

Since only 60 samples were available for all the genotypes and treatments, validation of
the models was conducted using a cross-validation technique. RMSE based on the
predicted value (Qi) and observed value (Qobserved i) was used as a measure of performance:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ðQi �QobservedÞ2

N

s
ð2Þ
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The coefficient of determination (R2), which provides some information about the
goodness of fit of a model, was also used to measure calibration performance.

Results and discussion

Spectral signature patterns

All samples for each genotype and type of treatment from the AISA hyperspectral imagery
were averaged to produce spectral reflectance curves. Spectral responses of each tree
genotype associated with water and/or nutrient treatments are shown in Figure 4. The
cottonwood present in this study exhibited a thin, relatively sparse canopy. Spectral patterns
associated with cottonwood were often quite different from those associated with the other
species (Figure 4(a and b)). This was because the bare ground visible to the hyperspectral
sensor through the relatively sparse cottonwood canopy influenced the spectral reflectance.
Because of the bare ground effect, the control treatments from less dense canopies resulted in
higher reflectance curves compared with the irrigated and/or fertilized treatments.

Sycamore and sweetgum plots had more dense continuous canopies than cottonwood.
The spectral reflectance curves associated with the nutrient and water treatments for these
species were often dramatically different from the control reflectance characteristics. For
example, irrigated sycamore exhibited substantially lower spectral reflectance in the visible
part of the spectrum (p ¼ 0.026 at 619 nm) and approximately the same reflectance as the
control in the near-infrared part of the spectrum (p ¼ 0.843 at 857 nm). Fertilized
sycamore yielded unique spectral patterns in the near-infrared producing much higher
reflectance than the control and irrigation treatments (p ¼ 0.016 at 857 nm) (Figure 4(c)).
Interestingly, the fertilization treatment of sycamore resulted in slightly higher reflectance
than the fertilization þ irrigation treatment in the near-infrared region. The sweetgum
treatments produced spectral reflectance patterns similar to sycamore. Irrigation was,
however, also an influencing factor, which yielded a distinctive spectral pattern, compared
with the control treatment (Figure 4(d)). The loblolly pine treatments showed similar
spectral patterns to the sweetgum treatments. However, the near-infrared reflectance of the
loblolly pine treatments was lower than that of the sweetgum treatments, which had denser
canopy with broad leaves.

Although a few bands resulted in statistical difference in the spectral reflectance of the
two cottonwood genotypes derived from the hyperspectral imagery, it was not possible to
identify that such difference was caused by the effects of irrigation and/or fertilization
because of the thin canopy and bare ground effects. Discrimination between the thin
canopy and bare ground was not possible from the data at the 1 m 6 1 m resolution. On
the other hand, the effects of irrigation and/or fertilization were easily identified in other
treatments such as sycamore, sweetgum and loblolly pine based on the spectral signatures.
Statistical ANOVA tests for the spectral signatures reported that fertilization was a more
discriminant factor than irrigation especially in sycamore and loblolly pine.

NDVI-based regression (NSLR)

The relationship between NDVI and LAI for all species is shown in Figure 5(f) resulting in
a R2 of 0.738 and an RMSE of 0.8194 m2/m2 through cross-validation. We also
investigated the relationship between NDVI and LAI per genotype (Figure 5(a through
e)). Irrigation and fertilization effects were easily detected in the relationships. Fertilization
appeared to be more critical to plant growth in terms of LAI than irrigation. This
corresponds to the results of the statistical ANOVA tests for the spectral signatures.

8 J. Im et al.
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The NDVI resulted in relatively lower R2 values for the two cottonwood genotypes, and
the irrigation and fertilization effects were not that explicit compared with the other species
(Figure 5(a and b)). This was because the reflectance values used in the NDVI computation
were not solely from the canopy. The NDVI showed very high correlation with LAI for
sweetgum and loblolly pine, over R2 ¼ 0.9 (Figure 5(d and e)). Different band
combinations for calculating NDVI might produce better results especially for cotton-
wood and sycamore.

Figure 4. Spectral signatures of the five tree genotypes associated with irrigation and/or
fertilization treatments.
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The standard NDVI resulted in an R2 of 0.569 to estimate stem biomass (Figure 6(a)).
During the calibration for each genotype, similar patterns to the LAI calibration were
found: relatively lower R2 for the two cottonwood genotypes and strong linear
relationships for sweetgum and loblolly pine. Irrigation and fertilization effects were
clearly found in the relationships except for the two cottonwood genotypes.

Calibrations for the five leaf nutrients concentrations are shown in Figure 6(b
through f). All of calibrations resulted in weak linear relationships between leaf
nutrients and the NDVI. When calibrated for individual genotypes, relatively strong
linear relationships (e.g. R2 4 0.6), however, were extracted. This is because the leaf
nutrients were generally much more species-sensitive compared with the biophysical
characteristics such as LAI and stem biomass. Thus, it failed to extract a strong
linear relationship that could be applied to all the species. This is somewhat different
from the results reported by Ferwerda and Skidmore (2007), which found
stronger linear relationships across all species when compared with individual species.
The major reason was that larger variation in the target variables for individual species
existed in our study due to the diverse treatments at different levels of irrigation and
fertilization.

The calibration and cross-validation results using the NSLR approach are presented in
Table 1. Selecting the optimum two bands for NDVI computation is critical for this
method. The optimum two bands might be different species by species. Although this
study simply computed a standard NDVI using two representative NIR and red bands
(centred at 856.8 and 657.0 nm), further exploration on an optimum band combination to
compute NDVI will be necessary.

Figure 5. Regression plots between the NDVI and LAI for individual tree genotypes and for all
species using the NSLR approach.
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Partial least squares regression

PLSR was performed using the SAS PLS procedure. Two different sets of input variables
were used: 63 reflectance variables (PLSR1) and 63 reflectance þ 5 dummy variables to
distinguish the tree genotypes (PLSR2). Table 2 summarizes the calibration and cross-
validation results using the PLSR approach. When applying a 95% of model effects as a
criterion for selecting the optimum number of transformed components, two or three
components were chosen based on the first input dataset (i.e. PLSR1). One or two
additional components were added when calibrating with the second input dataset. The
second input dataset that included the dummy variables yielded better calibration and

Table 1. Calibration and cross-validation results using the NSLR approach based on the use of
bands centred on 856.8 and 657.0 nm.

Target variable
Calibration Cross-validation

R2 RMSE

LAI 0.738 0.8194 m2/m2

Biomass 0.569 9.8980 Mg/ha
N 0.016 0.5892%
P 0.019 0.0374%
K 0.002 0.5140%
Ca 0.225 0.1871%
Mg 0.457 0.1436%

Figure 6. Regression plots between the NDVI and (a) biomass and (b)–(f) leaf nutrients
concentrations for all tree species using the NSLR approach.
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validation performance (i.e. higher R2 and lower RMSE) than the first input dataset. This
might be due to the different number of the components used. If more components were
used in the PLSR analysis, then better performance was generally achieved. Thus, we
applied additional components (i.e. the same number of components with the second case)
to the PLSR analysis with the first input dataset. The R2 values increased and the RMSE
values decreased, but they were still lower than the performance measures from the second
dataset. Consequently, the five dummy variables discriminating the tree genotypes
improved prediction of the biophysical and biochemical characteristics of the five tree
genotypes.

Figure 7 shows scatterplots between predicted and observed values for the seven target
variables for the PLSR2 models with the R2 values. The PLSR2 models yielded better
estimations of LAI and stem biomass than the PLSR1. They did not exhibit strong
relationships for the leaf nutrients, especially for the phosphorous (P) concentration.

The factor loadings represent how the PLS components were constructed from the
centred and scaled independent variables. The factor loadings associated with the seven
dependent variables under investigation for the PLSR2 models are depicted in Figure 8.
Most of the components could be divided into three regions: (1) before the red edge region,
(2) after the red edge region and (3) dummy variables. The factor loadings dramatically
changed in the red edge regions for most of the components. For example, the first PLS
component for LAI had low factor loadings between 400 and 720 nm and then
dramatically increased to become flat after 741.7 nm. The second component showed a
global minimum at 713.5 nm in the whole wavelength range (excluding the dummy
variables) and then shifted to a global high loading at 760.8 nm.

Machine learning regression trees (MLRT)

Two input datasets were used with the MLRT approach: (1) 63 reflectance variables
(MLRT1) and (2) 63 reflectance þ 3 additional discrete variables, i.e. tree genotypes,
fertilization and irrigation (MLRT2). Table 3 summarizes calibration (R2) and cross-
validation (RMSE) results for MLRT1 and MLRT2. Interestingly, additional input
variables did not always improve calibration performance unlike the PLSR approach. For
example, LAI was better predicted using the 63 input variables (R2 ¼ 0.956) compared to

Table 2. Calibration and cross-validation results using the PLSR approach.

PLSR1 (using 63
reflectance variables)

PLSR2 (using 63
reflectance þ 5 dummy variables)

Calibration Cross-validation Calibration Cross-validation
Target variable R2 RMSE R2 RMSE

LAI 0.854 (3)* 0.6457 m2/m2 0.907 (3) 0.5118 m2/m2

Biomass 0.633 (2) 9.3579 Mg/ha 0.853 (3) 5.9233 Mg/ha
N 0.133 (2) 0.5589% 0.665 (4) 0.3732%
P 0.177 (3) 0.0353% 0.296 (3) 0.0329%
K 0.222 (3) 0.4693% 0.389 (3) 0.4219%
Ca 0.484 (2) 0.1575% 0.631 (3) 0.1341%
Mg 0.506 (2) 0.1415% 0.633 (3) 0.1224%

*Values in the parentheses represent the number of the components selected.
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using the 66 input variables (R2 ¼ 0.950). On the other hand, the calibration of the leaf
potassium (K) concentration was much improved by adding three additional discrete
variables (R2 from 0.557 to 0.936). This was possibly due to one sample of sweetgum,
which had much higher K concentration compared with the other samples. When using
only 63 reflectance variables, the sample was not well calibrated producing relatively lower
R2. The three additional variables helped predict the sample more accurately. This sample,
however, influenced cross-validation by increasing the RMSE value. Scatterplots between

Figure 8. Factor loadings for the PLSR models using the 68 predictors including the dummy
variables.
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predicted and observed values of the seven target variables for the MLRT2 models with
the R2 values are shown in Figure 9. The MLRT2 models produced similar calibration
performance to the PLSR2 models.

The addition of three discrete variables in the MLRT model generally increased R2

values. But, the validation errors associated with the left-out samples increased in some
cases (e.g., biomass, K, Ca). Overfitting of the models can explain this condition.
Overfitting is one of the limitations of the MLRT approach wherein irrelevant details of
the individual cases are modelled rather than learning the basic structure of the sample
data (Waheed et al. 2006). MLRT is generally adapted well for non-linear problems as well
as linearity. This adaptability of the model may lead to overfitting especially when a small
number of samples are used. Since only 60 samples were available in this study, overfitting
was detected in some of the MLRT models through the calibration and cross-validation
processes. The overfitting problem may be solved by using more samples. A compromise
would be to assign more of the samples to the validation dataset. A graphical comparison
of calibration and cross-validation performance among the five models is presented in
Figure 10.

In summary, the MLRT approach using the 66 variables yielded the best performance
for predicting LAI (highest R2 and lowest RMSE). Stem biomass was best estimated using
the PLSR approach (PLSR2). The MLRT approach calibrated biomass better, but RMSE
through the cross-validation increased due to the overfitting of the model. As for leaf
nutrients, the PLSR model including the dummy variables resulted in consistently good
performance in both calibration and cross-validation. On the other hand, the NSLR
approach produced relatively poor performance compared with the other approaches in
estimating the forest characteristics (i.e. low R2 and high RMSE). The MLRT approach
exhibited overfitting problems when estimating some of the leaf nutrients concentrations.

This study investigated three techniques for estimating biophysical and biochemical
characteristics of five tree genotypes with nutrient and/or irrigation treatments using
hyperspectral imagery. The findings were as follows:

. Nutrient and irrigation availability influenced plant growth and status yielding
different patterns in the biophysical and biochemical characteristics of the trees,
which were also identified in the spectral responses extracted from the hyperspectral
imagery. Fertilization was found to be more influential than irrigation when the
spectral signatures were extracted by treatment.

Table 3. Calibration and cross-validation results using the MLRT approach.

MLRT1 (using 63
reflectance variables)

MLRT2 (using 63
reflectance þ 3 discrete variables)

Calibration Cross-validation Calibration Cross-validation
Target variable R2 RMSE R2 RMSE

LAI 0.956 (2)* 0.4582 m2/m2 0.950 (2) 0.3937 m2/m2

Biomass 0.855 (2) 6.3923 Mg/ha 0.881 (2) 6.4617 Mg/ha
N 0.793 (3) 0.4836% 0.786 (3) 0.5092%
P 0.229 (1) 0.0335% 0.318 (2) 0.0326%
K 0.557 (2) 0.4270% 0.936 (4) 0.5588%
Ca 0.626 (1) 0.1528% 0.730 (2) 0.1490%
Mg 0.635 (2) 0.1430% 0.657 (2) 0.1366%

*Values in the parentheses represent the number of the rules generated from Cubist.
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. The NSLR approach is simple and easy to implement. Selecting two bands to
calculate NDVI is very important because each vegetation species generally has a
unique spectral reflectance pattern. However, the NSLR approach based on the
standard NDVI (i.e. using 856.8 and 657.0 nm) failed to develop strong relationships
with the biochemical target variables covering all the species.

. The PLSR approach was generally suitable for predicting the biophysical and
biochemical characteristics of the trees. It is noted that selecting the number of
components to be used in the model was critical. Using dummy variables to
distinguish between the tree genotypes increased the predictive performance of the
PLSR model.

Figure 10. Graphical comparison of calibration and cross-validation performance among the five
models.
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. The MLRT models were somewhat limited in the study due to the overfitting
problem. However, the adaptability of the MLRT approach, which was shown in
the calibration, increased its potential for predicting the target variables. With more
generalized and larger samples, the MLRT approach may result in better prediction
of the target properties, especially in complex environments like the experimental
plots in this study which contained many different tree genotypes and treatments.

Conclusions

Hyperspectral remote sensing technology has advanced vegetation monitoring by allowing
the estimation of various vegetation biophysical and biochemical characteristics in an
efficient manner. A range of quantitative methods are required to accurately monitor
functional health of vegetation from hyperspectral remote sensing data. Research using
these methods has heavily relied on data and information obtained only from the site
under investigation. To generalize methods such as the approaches adopted in the study,
more investigation of the approaches using different remote sensing data and/or plant
species as well as larger sizes of in situ reference samples is necessary. It will provide a more
robust basis for hyperspectral remote sensing monitoring of forest crops by reducing data-
and/or site-specific problems.

This study has proven the capability of hyperspectral remote sensing to predict selected
forest biophysical and biochemical characteristics in a very complex environment
containing five tree genotypes subjected to different levels of irrigation and/or fertilization.
The simple linear regression (i.e. NSLR) resulted in good performance in predicting the
biophysical characteristics such as LAI and stem biomass for certain genotypes. But, it
failed to predict the biochemical characteristics (i.e. leaf nutrients) covering all tree species
and treatments. Advanced approaches (i.e. PLSR and MLRT) yielded much better
estimation of the leaf nutrients concentrations. Particularly, the MLRT approach with a
good size of samples appears to be a robust method for predicting such biophysical and
biochemical properties from environmental complex forest environments due to its
adaptability to sample data.

The valuable results of the experimental study deserve further research and
improvement. A major limitation of the study is the small number of in situ samples,
limiting comprehensive model evaluation. This limitation is the route for future
research, which includes (1) additional investigation of the methods using different data
and/or larger sizes of in situ samples, (2) examination of optimum band combinations
for computing a narrow-band NDVI suitable for monitoring forest health and (3)
exploration of other modelling techniques to estimate diverse biophysical and
biochemical characteristics of forest crops such as physical models and neural
networks.
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