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In managed forests, the amount of carbon further sequestered will be determined by (1) the 
increased amount of carbon in standing biomass (resulting from land-use changes and in- 
creased productivity); (2) the amount of recalcitrant carbon remaining below ground at the 
end of rotations; and (3) the amount of carbon sequestered in products created from har- 
vested wood. Becauseofthe region’s high productivity and industrial infrastructure, carbon se- 
questration via southern pine forests could be increased, and this may benefit the nation in 
terms of global policy commitments. 
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Figure 1. Conceptual model of carbon sequestration via southern pine forestry. 
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Table 1. Methods for quantifying CO2 budgets in forest systems. 
 

Sampling method Purpose Description Pros Cons 

Eddy covariance Determines the total Micrometeorological tech- Integrates carbon efflux Gas exchange in trees 

 stand carbon flux. nique based on the princi- over large areas (stand or shrubs can interfere. 

  ple that eddies displace level). Measures continu- Cannot assess small 

  gas parcels from the soil ously when weather con- treatments or plots. 

  surface to some measure- ditions permit.  
  ment height. Measure-   
  ment apparatus consists   
  of a tower equipped with   
  sonic anemometers and   
 
Component analysis 

 CO2 analyzers.   

Long-term sampling     
Harvest and soil Determines carbon Measures above- and Can be used for compo- Usually expensive to 

carbon analysis sequestered in soils below-ground biomass nent analysis. install and maintain long- 

 and trees. over long periods of time Can separate carbon term studies. 

  using silvicultural mensu- stored in soil and trees. Study area of limited size. 

  ration and soil cores. Very detailed carbon Data may only relate to 

  Core samples are ana- analysis for the long-term limited geographic area or 

  lyzed for carbon content plot. management type. 

  and quality.   
Short-term sampling     
Carbon efflux 

measures 

Determines quantity of 

CO2 produced. Can be 

separated into soil and 

Measures CO2  efflux in 

chambers placed on the 

soil surface or around 

Can be used for compo- 

nent analysis. 

Can assess small treat- 

Potential for chamber 

effects to alter soil or root 

surface conditions. 

 root components. roots using automated ments or plots. Diffi to partition total 

  system. Many chambers Portable; can move to fl into autotrophic and 

  can be attached to the many different sites or heterotrophic components. 

  base unit and monitored treatment plots.  
  continuously.   

Harvest and biomass 

analysis 

Determines total quantity 

of carbon sequestered in 

trees. 

Assesses above- and 

below-ground biomass. 

When combined with CO2 

efflux, provides a more 

complete quantification of 

carbon budget. When 

used in this fashion it can 

be determined if a site, 

treatment, or manage- 

ment practice is a source 

or sink of CO2. 

Labor intensive. 

Destructive sampling. 
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Figure 2. Monthly sums of net ecosystem carbon productivity (NEP) over a loblolly pine plantation 

at the Duke Forest. Positive NEP values represent uptake by the forest, whereas negative values 

indicate that release from decomposition and plant respiration is greater than net photosynthesis. 

Adjusted values represent estimates corrected for ecosystem respiration under stable nighttime 

conditions. Note that the drought during June 1999 drastically reduced carbon uptake relative to 

the previous June. 

Figure 3. Net ecosystem productivity developed 

from component analysis for nonfertilized and 

fertilized 11-year-old loblolly pine plantations 

growing at the Southeast Tree Research and 

Education Site (SETRES), Laurinburg, North 

Carolina. The results are for the 1995 growing 

season, after four years of fertilization treat- 

ment. Source: Maier and Kress (2000). 
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Figure 4. (a) Modeled carbon accretion (stemwood only) over time for an upper Coastal Plain 

loblolly pine stand with a site index of 80, and (b) total carbon gained and mean standing carbon 

as a function of rotation length, both calculated over a 100-year period. 
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In Situ and Ex Situ Integration 

in 
situ ex situ figure 5. 

Figure 5. Integrated analysis of carbon sequestration using the model HARVCARB (from Row and 

Phelps 1996): (a) stand with site index of 75 and a 25-year rotation length; (b) an uncultivated, 

unharvested stand; and (c) stand managed to decrease rotation length to 20 years. 
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