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A base-age invariant site index equation for jack pine based on the Chapman-Richards function was produced that satisfied 
nine criteria of preferred behavior for site index equations. A difference form of the Chapman-Richards equation produced 
the best behavior; height equalled site index at base age, and the shape of the curves reflected the data. The data structure 
used to fit the difference equation was all possible differences rather than the conventional nonoverlapping sequential intervals 
because this improved the behavior of the model. Height-prediction equations typically use height at base age (site index) 
as a predictor variable. As site index is measured with error, the equation will be biased. This bias will be evident in the 
predicted height at base age and in the shape of the curves. Base-age invariant equations predict height and site index with 
the same equation and thus diminish the effect of stochastic predictor variables. The equation performed comparably to a 
previously published equation with a specific base age of 50 years. 
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Une equation d'indice de fertilite independante de rage de reference a ete etablie pour Ie pin gris au moyen du modele 
de Chapman-Richards. Cette equation satisfait neuf criteres d'evaluation des equations d'indice de fertilite. Sous la forme 
de differences, I'equation de Chapman-Richards, demontre Ie meilleur comportement: la hauteur egale l'indice de fertilite 
a l'age de reference et la forme des courbes correspond a celie des observations. Les donnees utili sees dans Ie calcul de 
l'equation des differences consistent en l'ensemble des differences possibles plutot que l'approche usuelle des intervalles 
sequentiels; ce qui ameli ore Ie comportement du modele. Les equations predisant la hauteur utili sent habituellement la hauteur 
a rage de reference (indice de fertilite) comme variable explicative. Comme la mesure de I'indice de fertilite est entachee 
d'erreur, l'equation de la hauteur en est biaisee. Ce biais se manifeste dans les estimes de la hauteur a l'age de reference et 
dans la forme des courbes. L'equation d'indice de fertilite independante de I'age de reference predit la hauteur et l'indice de 
fertilite dans la meme equation, ce qui diminue I'effet des variables explicatives aleatoires. L'equation se compare favorable­
ment avec une equation deja publiee ayant 50 ans comme age de reference. 

[Traduit par la redaction] 

Introduction Criterion 1: polymorphism 
Site index is the most used method of site quality evaluation 

for even-aged forest stands in North America (Carmean 
1975). Site index may be defined as height of trees that have 
always been dominant or codominant and healthy at a pre­
determined age. Typically this age, referred to as base age, is 
set at 25, 50, or 100 years. The base age is specified so that 
it is somewhat less than rotation age. Often, breast-height age, 
rather than total age, is used because early height growth is 
erratic and often determined by factors other than site quality 
(Carmean 1975). Models involving site index include two 
processes: (i) estimating height at base age given height at 
some other age and (iO estimating height at some desired age 
given height at base age. These two processes may be modeled 
by individual functions for each process, or by one equation 
that predicts height at any desired age, given a known height 
at any other age. In either case, a known height and age are 
used to predict height at some other age; thus site index 
equations are inherently of a difference form. 

Early site index equations were typically anamorphic; the 
curve for a given site index was a constant proportion of the 
curve for another site index. Bull' s (1931) early work shed 
doubt on the appropriateness of anamorphic curves, although 
it was largely ignored for 30 years. To allow polymorphism, 
Carmean (1972) broke his data into 10 ft (-3 m) wide classes 
of site index and fit individual equations for each class. 
However, for certain equation forms, polymorphism may be 
obtained by representing selected parameters as a function 
of site index. Clutter et al. (1983) presented two procedures 
that may provide polymorphism, the difference equation 
approach, and the parameter prediction approach. Almost all 
recently developed site index curves are polymorphic. 

Criterion 2: inflection point 
A sigmoid growth pattern is a paradigm of biology. 

Although some data sets may not show an inflection point, a 
function for general use should allow an inflection point. 

Desirable attributes of site index equations 
Past site index equations have taken many forms. The 

various forms may have particular characteristics that are 
desirable and other characteristics that are undesirable. We 
present several characteristics that are desirable for site index 
equations: 
Printed in Canada I Imprimc au Canada 

Criterion 3: asymptote 
Although the height of a tree increases annually until the 

leader is damaged or the tree is killed, an asymptote ensures 
that height is not unbounded at old ages. Ideally, the 
asymptote should be some function of site index such that the 
asymptote increases with increases of site index (Devan and 
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Burkhart 1982). However, a parameter representing an asymp­
tote may be poorly estimated if heights at old ages are not 
included in the data set. 

Criterion 4: logical behavior 
In addition to the previous considerations, the equation 

should not allow unreasonable values for predicted height. 
Height should be zero at age zero (or breast height at breast­
height age of zero), and height should be equal to site index 
at base age. If height decreases over any range of age, the 
equation form should be adjusted or discarded. Devan and 
Burkhart (1982) presented a site index curve that produced 
very large values of height at a young age; they discounted 
the importance, as the behavior was suitable for the range of 
ages that would be used in practice. Limits for usage must be 
appended to such curves; as the functions are continuous, any 
such limit is necessarily arbitrary. 

Criterion 5: theoretical basis 
By developing an equation from a theory, two benefits 

are obtained. The previous considerations may be explicitly 
incorporated into the equation form and the equation may per­
form better outside the data used to fit the equation (Pienaar 
and Turnbull 1973). 

Criterion 6: base-age invariance 
Base-age-specific equations predict height at some age using 

only site index and estimated parameters. If forest manage­
ment for a given species was intensified and thus rotations 
were shorter than the specified base age, the utility of the 
curves would be diminished. Base-age invariant curves pre­
dict height at some age based on base age, height at base 
age, and the estimated parameters. Thus base-age invariant 
curves are more general, as they may predict height at any 
age given height at any other age. This attribute allows one 
function to predict site index, based on a measured height and 
age, as well as height, based on site index and age. 

Some equations based on a specific base age may be solved 
for site index and others may not. The Chapman-Richards 
function (Chapman 1961; Richards 1959; Pienaar and 
Turnbull 1973; Ek 1971) is one of the most commonly used 
equations for site index curves; however, previous formula­
tions of the Chapman-Richards model are impossible to solve 
for site index. 

Separate equations for site index and height estimation will 
provide more efficient parameter estimates (Curtis et at. 
1974). However, this is based on the assumption that it is 
appropriate to consider height or site index as measured with­
out error when they occur on the right-hand side of an equa­
tion, but possess error when they are on the left-hand side of 
an equation. The consequences of that assumption have been 
largely unexplored in regard to site index methodology. Curtis 
et al. (1974) indicated that their findings were dependent on 
their concept of site index. We emphasize a system where the 
objective is to accurately predict height at any age, given 
height at any other age. This is somewhat different than the 
classical concept of site index. 

The purpose of this paper is to present a base-age invariant 
form of the Chapman-Richards function that possesses the 
desirable attributes listed above. We have chosen the 
Chapman-Richards function as it is very flexible, is based on 
theory, and is almost the accepted paradigm for forest biom­
etry. We compare our results to a previous model based on 
the same data set. 

Development of a base-age invariant version of the 
Chapman-Richards function 

In differential equation form, Chapman-Richards general­
ization of Bertalanffy's growth equation is 

[1] 
dH -- = nH" - kH 
dA 

where H represents height, A represents age, and n, m, and 
k are parameters. The first term represents anabolic growth, 
and the second term represents catabolism; the equation is 
derived from a general theory of growth of organisms and 
well represents observed growth trends (Bertalanffy 1941; 
Richards 1959; Chapman 1961). 

Equation 1 may be integrated to provide an equation for 
accumulated height rather than height growth. With the initial 
height and age specified as zero, the following integral form 
is obtained: 

[2] 
I [ ] I 

--- ---
n I-m I-m H=(k} 1-exp(-k(1-m)A) 

where variables are the same as in eq. 1. 
Equation 2 may be simplified and written as 

[3] H = a[l - exp(-bAW 

where a, b, and c, are the respective functions of n, k, and m. 
Equation 3 was used by Lundren and Dolid (1970) to fit 
an equation to graphical site index curves. Carmean (1972) 
fit eq. 3 to individual site index classes. Brickell (1966) 
expanded eq. 3 by expressing each parameter as a function of 
site index. Several subsequent researchers have used other 
functions of site index to represent each parameter. Table 1 
lists formulations used by various researchers. The resulting 
models expand eq. 3 to a function of 2 to 10 parameters. 
Burkhart and Tennent (1977) developed a model that requires 
only two parameters. They solved eq. 3 for a, then set height 
equal to site index and age equal to a base age of 20 years 
and inserted the equation for a back into eq. 3. Thus they 
explicitly rearranged eq. 3 to be a difference equation; this 
had the added benefit of insuring that height would equal site 
index at base age, a property that only the difference equation 
formulations possess. Newnham (1988) rearranged eq. 3 into 
a difference form by solving for b. 

Beck (1971), Graney and Burkhart (1973), and Burkhart 
and Tennent (1977) found that the c parameter was not related 
to site index when eq. 3 was fit to individual trees and thus 
specified c to be common for all sites. Ek (1971) specified 
b to be common for all sites, as this reflected the graphical 
curves to which he wished to fit a function. Ek's (1971) model 
has been used by several other researchers (Hahn and Car­
mean 1982; Payandeh 1974a, 1974b; Carmean and Lenthall 
1989; Carmean et al. 1989). Monserud (1984) found that Ek's 
model fit his data poorly. He modified the logistic equation 
to obtain a better fit. As the logistic equation is a special case 
of eq. 1, Monserud's findings indicate that a particular expan­
sion of eq. 3 performed poorly; some unidentified expansion 
of eq. 3 exists that should fit as well as his logistic function. 

The formulations in Table 1 expand the parameters of eq. 3 
as functions of site index. Base-age invariant site index equa­
tions may be produced by predicting height at a given age 
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TABLE 1. Functions used to express the parameters of eq. 3 as functions of site index 

Parameter Function Source 

a bl Sb, Ek 1971; Biging 1985; Newnham 1988 
a bl + b2S 
a bl + b2 S + b3 SZ + b4 S3 

Graney and Burkhart 1973; Beck 1971; Trousdell et al. 1974 
Brickell 1966 

S 
a 

1 - exp (20 bl S)b, 
Burkhart and Tennent 1977 

b b3 Ek 1971; Biging 1985 
b b3 + b4S 
b blS 

Graney and Burkhart 1973; Beck 1971 
Burkhart and Tennent 1977 

b exp(b5 + b6S + b7SZ) Brickell 1966 
b b3 + b4S + b5 SZ Trousdell et al. 1974 

b ( (_S )~Sb') In I - bl Sb, b, 150 Newnham 1988 

C 

C 

b4Sb, 
b3Sb, 

Ek 1971 
Newnham 1988 

C 

C 

b5 
b2 

Graney and Burkhart 1973; Beck 1971 
Burkhart and Tennent 1977 

C b4 Biging 1985 

C 
1 - (b6 + b7S + bsSZ) 

Trousdell et at. 1974 

1 c Brickell 1966 
1 - bs Sb, (In (S))blO 

NOTE: Where site index (S) does not enter into the expression, the parameter was not expressed as a function of site index. Numbering of the 
parameters is sequential for a given source. 

dependent on known height at some other age. Thus we sought 
to expand the parameters of either eq. 2 or 3, or some inter­
mediate form, as functions of height and age. 

We considered two very general functions to expand the 
parameters of eq. 2 or 3 as functions of height and age. 
Hoed's special functions (Daniel and Wood 1980) produces 
a family of curves that is very flexible and is well suited to 
simplification if one of the parameters is not significant; we 
expanded Hoed's special functions to yield 

[4] Y = bl X l b2 exp(b3 X I )X/4 

where Y represents any parameter of eq. 2 or 3, Xi represents 
height or age, in either order, and the bi are parameters. As 
the parameters of eq. 2 should be positive values less than 
one, we proposed using the logistic function to describe them: 

[5] 

where Y represents any parameter of eq. 2 and I represents 
some function of age and height. 

For a given tree, eq. 3 would thus be expanded as follows: 

[6] Hi = fI(H(I)A(I) [1 - exp(-h(H(I)A(l)Ai)]HH(~A(i) 

where II is a function representing parameter a, h is a function 
representing parameter b, h is a function representing c, HO) 
represents any height other than Hi' and A(l) represents any 
age other then Ai' Equation 2 was expanded similarly. 

In addition to the six criteria we listed before, we consid­
ered three additional desirable attributes for the behavior of 
the functions describing the parameters: 

Criterion 7 
Each height-age pair produces a curve. Any given point 

along that curve could be used to generate another curve. 
To obtain base-age invariance, all height-age pairs should 
generate identical or similar curves. For a given series of 
height and age observations that follow the function without 
error, the estimated parameters should be relatively constant 
for all ages. Equations 2 and 3 may be solved for a given 
parameter, thus ensuring this behavior for that specific par­
ameter; however, difference equations do not obtain such 
behavior for all parameters. 

Criterion 8 
If 50 years is substituted into A(i) and site index is substi­

tuted into H(I), the parameters should approximate those <: 
obtained from a fit of a base-age-specific version of a function 
fit to the same data, or the parameters should reflect the 
estimates from fits to individual plot data. 

Criterion 9: parsimony 
The final form of the functions describing the parameters 

should possess few terms. 
Our emphasis throughout this work was the development 

of a site index system that possessed the behavior described 
by the nine criteria we listed. Initial screenings of models 
were based on the behavior of the model. Fit statistics were 
used for comparison only after appropriate behavior was 
ensured. The adequacy of our final model was based on com­
parisons to a previously published base-age-specific model 
with regard to the behavior of both the height and site index 
prediction equations. 
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The data 
Data collection is discussed fully in Cannean and Lenthall 

(1989). There were 141 plots located in north central Ontario, 
which were subjectively selected to represent the range of site 
quality and soils in the area. Three to five trees were destruc­
tively sampled at each location. The trees were sectioned at 
the stump, at 0.75, 1.3, and 2.0 m, and 1-m intervals to 13 m, 
and at 0.5-m intervals thereafter. Age at each section height 
was determined in the laboratory. Cannean's (1972) correc­
tion was used to estimate actual height for each age. Dyer and 
Bailey (1987) found that Carmean's method worked best 
among several other methods. Newberry (1991) noted that 
Carmean's correction is not appropriate for the topmost sec­
tion of the tree. However, whorls or annual bud scale scars 
provide exact heights for recent years. The individual trees in 
a plot were averaged into a single series of height-age pairs 
for a given plot. The plot average was used to provide height 
measurements at 5-year increments above breast height. There 
were 109 plots used for estimation, leaving 32 plots for ver­
ification of any model fitted. Estimation plots were randomly 
chosen within classes of site index. 

Analysis 
Initially, data for individual plots were fitted to eqs. 2 and 3. 

This was carried out to identify relationships between the 
parameters and height at a given age. The n parameter exhib­
ited a strong linear relationship with height at any given age; 
the relationship was so strong that n could be considered as 
an index of productivity (cf. Hamlin and Leary 1987). This 
strong relationship led us to initially consider eq. 2 with par­
ameters modeled by eq. 4. Starting values for nonlinear regres­
sion were determined from linear estimation of eq. 4 using 
the parameters estimated from fitting individual plots as the 
dependent data. 

Although numerous modifications were attempted, we 
could not fit a height-growth equation that provided parameter 
estimates that were close to the estimates from fitting indi­
vidual plots. The asymptote was much larger than expected. 
The equations were invariably ill-behaved with regard to the 
criteria we had set forth. 

Initial attempts at fitting an expanded version of eq. 2 used 
the previous measurement of height and age as a predictor of 
height at a given age. This is the typical procedure for fitting 
equations that are inherently of a difference form (Clutter 
et al. 1983; Furnival et al. 1990). We hypothesized that the 

) inflated asymptotes were a consequence of using only heights 
immediately preceding the predicted heights. Thus we next 
considered using all height measurements of a given plot, 
other than the dependent variable, as predictor variables. 
Rather than expanding the equation to allow nine or more 
other height and age measurements as predictor variables, we 
expanded the number of observations to allow prediction by 
all other measurements for a plot. A tree with 10 measure­
ments would thus provide 90 observations, each height pre­
dicted by nine heights at other ages. When we used the data 
organized in this way, the parameter estimates were relatively 
consistent with estimates for individual plots. We recognized 
that this would introduce a lack of independence among obser­
vations; we modeled the error structure as detailed later. 

Although parameter estimates were close to the fits to indi­
vidual plots, the resulting curves did not fulfill the desired 
criteria. Specifically, for a sequence of height-age pairs that 

followed the Chapman-Richards function without error, the 
parameters, when solved to the form of eq. 2 or 3, varied 
considerably with age. This observation was in violation of 
criterion 7. By solving for one of the parameters in eq. 2 or 3 
and replacing the solution into the equation, we could elimi­
nate the problem for one parameter and explicitly produce a 
difference equation. Burkhart and Tennent (1977) and Clutter 
et al. (1983) suggested solving for a, while Newnham (1988) 
suggested solving for b in eq. 3. We considered solving for a, 
b, and c in eq. 3, solving for n in eq. 2, and solving for n, 
b, and c in forms intermediate between eqs. 2 and 3. Except 
when n or a were considered, the equations (i) converged to 
poor estimates, (ii) did not converge within 100 iterations, or 
(iii) did not solve the problem. Thus our subsequent efforts 
were based on a difference form after solving for n or a. 

To simplify the functions describing the parameters, we 
needed to make hypothesis tests regarding the parameters of 
eq. 4. To obtain more efficient estimates of errors, autocorre­
lation was considered. The ordinary nonlinear least squares 
model is written 

where the error terms are independent and identically distrib­
uted. The error term may be expanded to allow first-order 
autocorrelation: 

[8] ei = pCi-l + ci 

where the ci are now independent and identically distributed. 
As we used all possible growth intervals, our model is slightly 
more complex: 

[9] Yij = I(Xi, lj, Xj , ~) + eij 

where Yij represents prediction of height i by using lj (height 
i), Xi (age i), and ~ (age) i:- i) as a predictor variables. 
Similarly, the error term must be expanded: 

[10] eij = PCi-l, j + YCi, j-l + cij 

The parameter p represents the autocorrelation between the 
current residual and the residual from estimating Yi- 1 using 
lj as a predictor variable. The parameter Y represents the 
relationship between the current residual and the residual from 
estimating Yi using lj-l as a predictor variable. 

Generalized least squared weights observations according 
to their variance. The autocorrelation parameters vary the 
weight of each observation by reducing the residual propor­
tional to a previous residual. However, when either the first 
observation for a tree is used as a predicted or predictor var­
iable, there is no appropriate previous observation. However, 
the following weighting, derived simply from the model of 
first-order autocorrelation (Wonnacott and Wonnacott 1976), 
is appropriate when i and} are the first observation for a tree 

[11] ffiij = ~ (1 - p2) (1 _ y2) 

when only i is the first observation for a tree 

and when only } is the first observation for a tree 

[13] ffiij = ~1 - y2 
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TABLE 2. Parameter estimates and standard 
errors for eqs. 10 and 16 20 

Parameter Estimate 

0.0185 
1.3382 
0.4257 
1.0464 
0.3975 
0.5721 

Standard error 

0.0005 
0.0218 
0.Ql11 
0.0036 
0.0227 
0.0228 

We fit several models specifying p, y, or both p and yas 
zero. The parameter estimates, with the exception of the auto­
correlation parameters, were insensitive to the specified error 
structure, However, the correct error structure allows correct 
hypothesis tests regarding significance of the parameters. 

Heteroscedasticity was also apparent during fitting 
attempts. Rather than use empirical weighting, we observed 
a pattern that was described well by the following weighting 
function: 

[14] ffiij = min(Wij, ~iJ 
where 

The above formula assumes use of eq. 3; a similar formula 
could be given for eq. 2, In eq. IS, band c could be expanded 
as functions of predictor height and age; XI represents pre­
dictor age and X2 represents age at predicted height. The func­
tion weights proportionally to the ratio of predicted height at 
XI to predicted height at X2• 

Results and discussion 

Description of the final model 
Although approximately 100 models were fit, almost all 

lacked the appropriate behavior. One model was selected 
based on its superiority in regard to bias and root mean 
squared error for both calibration and validation data and in 
regard to bias for subsets of age and height. The form of the 
selected model is 

[16] 

Equation 16 is the difference form of eq. 3 based on solving 
for parameter a. H I~ and A I represent the predictor height and 
age, respectively; H2 represents the predicted height at age 
A2, which may be greater or less than AI' The b parameter of 
eq. 3 was expanded as a function of the predictor height and 
age. Al appears twice in the function representing b. Although 
this is largely an artifact of the fitting process (a preliminary 

-§. 15 -.r:. 
C) 
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.. Age 80 
Age 50 
Age 20 

o~~~~~~~~~~~~~ 

o 25 50 75 100 
Breast-Height Age 

FIG. 1. Height-growth curves using three different base ages. The 
base-age-50 line is for a height of 16 m at base age. The base-age-20 
and the base-age-80 lines intersect the base-age-50 line at their respec­
tive base ages. 

form included the HIIAI term) we did not simplify because 
eq. 16 converged faster. The parameter estimates and standard 
errors of the estimates are presented in Table 2. 

Equation 16 was not constrained to produce the behavior 
described by criterion 7. The degree of similarity is expressed 
in Fig. 1. The height-age pair 16 m - SO years breast-height 
age was used to generate a curve. From this curve, heights at 
20 years breast-height age (8.83 m) and at 80 years breast­
height age (19.82 m) were also used to generate curves; the 
range of age from 20 to 80 represents the range of stand 
breast-height age that would likely be applied to site index 
equations for jack pine in north central Ontario. In essence, 
we are using three different base ages to generate curves. 
Although there is a systematic pattern (the base-age-20 curve 
is slightly less than the base-age-SO curve for older ages and 
the base-age-80 curve is less than the base-age-SO curve for 
young ages) the discrepancy is never greater than O.S m. 

Our difficulties in fitting a base-age invariant form of the 
Chapman-Richards function reflected those found by 7 

Monserud (1984) in fitting a base-age-specific form. Simi­
larly, Cieszewski and Bella (1989) report an inability to pro­
duce consistent height-growth and site index curves from 

~ 
the Chapman-Richards equation and several related func-
tions. However, we were eventually able to produce a model 
that fulfilled our criteria. Equation 16 indicates that the c par­
ameter of eq. 3 does not depend on site quality. This agrees 
with Graney and Burkhart (1973), Beck (1971), and Burkhart 
and Tennent (1977). The results of fitting eq. 2 to data for 
individual plots indicated that n was very strongly related to 
height at a given age and thus possibly was indicative of site 
qUality. Unfortunately, subsequent analysis indicated that a 
difference equation form was required that eliminated the 
asymptote parameter. 

The data structure used to fit a difference equation may 
greatly affect parameter values. We found that the best data 
structure for fitting this difference equation was all possible 
growth intervals. Borders et al. (1988) considered three pos­
sible data structures for fitting a basal area growth model: 
(i) nonoverlap ping sequential intervals, (ii) all possible 
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TABLE 3. Error criteria for eq. 16 and for Carmean 
and Lenthall's (1989) model 

Eq.16 Carmean and Lenthal1 

Calibration data 

All data 
Bias 0.l32 
MAD 0.764 
RMSE 1.149 

AI =50 
BiasH -0.179 0.007 
MADH 0.551 0.544 
RMSEH 0.777 0.722 

Az=50 
BiasS 0.4l3 0.004 
MADS 0.856 0.869 
RMSES 1.295 1.218 

Validation data 

All data 
Bias 0.186 
MAD 0.647 
RMSE 0.933 

AI =50 
BiasH -0.110 0.129 
MADH 0.443 0.478 
RMSEH 0.606 0.621 

Az=50 
BiasS 0.410 0.033 
MADS 0.754 0.751 
RMSES 1.106 1.076 

NOTE: Bias, mean absolute deviation (MAD), and root mean 
squared error (RMSE) are presented for the calibration data 
(109 plots) and the validation data (32 plots). The values are 
given for three different situations: (i) all data, which represents 
all possible combinations of using heights as predictor and 
predicted variables; (il) AI = 50, which represents using height 
at age 50 as a predictor variable; (iiI) A2 = 50, which represents 
using height at age 50 as the predicted variable. The error cri­
teria could not be calculated for all data with Carmean and 
Lenthall's model, as it uses a base age of 50. 

growth intervals, and (iii) longest growth intervals. They 
found modest differences in their parameters depending on 
the data organization. Although the data of all possible growth 
intervals were not superior, with regard to prediction of a 
validation data set, the result is specific to their data and 
models. We intend to conduct a simulation study to investi-

• gate bias and efficiency of parameter estimation under several 
alternative data structures. Furnival et ai. (1990) demon­
strated that using all possible differences is identical with an 
analysis of covariance method and a method of weighted 
parameter prediction for linear models. 

Comparison to a published base-age-50 system/or site index 
Error criteria 
Carmean and Lenthall (1989) used the same data to develop 

a base-age-50 site index system. The curves generated by 
eq. 16 are presented in Fig. 2, along with the corresponding 
height-growth curves of Carmean and Lenthall (1989). In 
Table 3 we list error criteria for our model and for Carmean 
and Lenthall's (1989) model. For the data used in fitting, 
Carmean and Lenthall's (1989) model is slightly superior 
for mean absolute deviation and root mean squared error. 
Carmean and Lenthall's model is considerably superior with 
regard to bias. 

-E --.l: m 
CI) 

20 

J: 10 

o~--~--~~--~~~~ 

o 25 50 75 100 
Breast-Height Age 

FIG. 2. Height-growth curves for jack pine at four values of site 
index (SI). The solid lines are generated with the base-age invariant 
curves from this study, with base age set at 50 years. The dotted lines 
are from the base-age-specific curves of Carmean and Lenthall 
(1989). 

The same error criteria were calculated for the validation 
data. Equation 16 was better than Carmean and Lenthall's 
(1989) height-growth model (AI = 50) with regard to all three 
error criteria. Carmean and Lenthall's (1989) site index pre­
diction model (A2 = 50) has considerably lower bias and was 
slightly better for the other error criteria. 

These error criteria indicate that eq. 16 produces a mean 
absolute deviation and root mean squared error that is about 
the same as, or slightly larger than, the corresponding equa­
tion presented in Carmean and Lenthall (1989). The equations 
of Carmean and Lenthall have much lower bias. Two factors 
provide an advantage to base-age-specific equations over a 
base-age invariant equation fit by weighted least squares 
in these comparisons based on unweighted residuals: 
(i) weighted least squares will consistently produce 
unweighted residuals that are biased and with a greater mean 
squared error than unweighted least squares (we compared 
residuals derived from an inappropriate error assumption with 
those from a proper assumption, but compared them on the 
basis of the inappropriate structure) and (ii) comparisons were 
necessarily made using a base age of 50; the base-age-specific 
equations minimized residual squared error for this age, and the 
base-age invariant equations minimized residual squared error 
for all possible base ages, These factors minimize the obser­
vation of greater bias although it may be important in some 
instance. Thus, neither system for site index is conclusively 
superior for a base age of 50. As eq, 16 may predict height 
at any age, given height at any age, it has greater capabilities, 

Curve shape 
The shape of the height over age curves vary according to 

some pattern. Individual curves for each unique site index 
could be fit; this would provide the best fit for each site index; 
it would recover all of the variation of shape across the range 
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of site indices. Alternatively, individuals could be classified 
into several site index classes and functions fit for each class 
(Carmean 1972); this would recover most, but not all, of 
the variation across site index. The narrower the classes, the 
greater would be the degree of resolution. At the extreme of 
pooling all data, the curve shape would be identical for all 
site indices; the curves would be anamorphic. By expressing 
one or more parameters of a height-growth equation as a 
function of site index, the curve shape will vary across the 
range of site indices. The changing pattern across site index 
will necessarily be continuous, but ideally most of the varia­
tion in curve shape will be recovered. 

We sought to compare eq. 16 with Carmean and Lenthall's 
(1989) height-growth equation with regard to how well they 
recover the change of shape across site index. Lenthal1 (1986) 
fit the Chapman-Richards function (eq. 3) to the same data 
for individual site index classes (9-, 11-, 14-, 16-, 18-, and 
20-m classes). Presumably, the equations for these individual 
classes will represent the true curve shape better than a single 
equation fit for all values of site index. As the 9-m class was 
based on only four plots, we chose to compare the 11- and 
20-m site index class equations to the base-age-specific curve 
of Carmean and Lenthall (1989) and our results for eq. 16. In 
Fig. 3, the deviations from the equations for the individual 
classes are presented for Carmean and Lenthall (1989) and 
eq. 16. For site index 11, Carmean and Lenthall's curve 
(1989) performs slightly better before age 50, but diverges 
afterward. For site index 20, eq. 16 recovers the true shape 
of the curves very well, while Carmean and Lenthall's (1989) 
equation underestimates height at older ages. Equation 16 is 
better at recovering the true change of shape in response to 
site qUality. 

"Regression towards the mean" (Wittink 1988) implies that 
the slope of the regression line is less than the slope of the 
major axis of the data. This property follows directly from 
the assumption of fixed predictors. In nonlinear regression the 
predicted values also exhibit regression towards the mean; 
however, the effect is not simply a function of a linear slope 
parameter, but is additionally expressed as a change in the 
shape of the curve. As site index increases, the shape of 
the curve changes from a relatively linear, gradual approach 

to the asymptote to a more strongly curvilinear, more rapid 
approach to the asymptote. As shown in Figs. 2 and 3, the base­
age-50 curves underestimate this trend. The site index 20 
curves for Carmean and Lenthall (1989) do not flatten out as 
abruptly as they should, and the site index 11 curves flatten 
out too much. In Fig. 3, the curves for Carmean and Lenthall 
(1989) are corrected to pass through site index at base age, 
although in Fig. 2 they are not. Regression towards the mean 
was also evident in the more typical sense; the equations of 
Carmean and Lenthall (1989) slightly underestimated height 
at base age for higher values of site index and slightly over­
estimated height at base age for lower values of site index 
(Fig. 2). 

Regression towards the mean was also evident in the results 
of the studies included in Table 1. Insufficient information 
was available to assess whether the studies produced equa­
tions whose shape was incorrect. However, with the exception 
of the difference equations and the results of Biging (1985), 
the equation fit in these studies consistently underestimated 
height at base age for higher site index and overestimated 
height at base age for lower site index. 

As a substitute for linear regression, geometric mean 
regression (Ricker 1973) may be used when the predictor 
variables are stochastic. As an alternative to minimizing least 

",' 
squares, we considered minimizing: 

where the predicted heights are determined by current param­
eter values. This is analogous to the geometric mean regres­
sion for simple linear regression. This procedure did not 
provide the appropriate behavior for the models we tested. 
We considered several variations of eq. 17, but found similar 
results. 

Northway (1985) considered the problem of fitting base­
age specific site index equations while recognizing that site 
index is a stochastic predictor variable. Given current param­
eter values and a number of height-age pairs for a tree, 
Northway suggested using the average of the predicted site 
index for that tree as the independent variable and then 
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FIG. 4. Root mean squared error of height estimation related to 
choice of base age. The minimum occurs at age 45. 

updating after each interation. Northway's (1985) suggestions 
can be considered a type of nonoptimal instrumental variable 
regresson (Walters et al. 1989), where the instrument, pre­
dicted site index, is not independent of the errors. From 
another prespective, Northway's method is also similar 
to two-stage least squares, where the functions may be non­
linear and the endogenous variables are used to estimate the 
instruments; the two stages are repeated at each iteration of 
fitting. Thus, it could be shown that Northway's method is 
not optimal from this perspective as well. We attempted a 
procedure similar to Northway's method; however, it was 
slow to converge and did not predict as well as alternative 
models, particularly for the extremes of site index. 

While we do not provide a method that explicitly considers 
stochastic predictor variables, our observations from fitting 
numerous models indicates that base-age invariant difference 
equation models minimize the effect of stochastic predictor 
variables. Specifically, difference equations assure that pre­
dicted height equals site index at base age and, for our models, 
follow observed paterns of height growth better than other 
forms. Fitting base-age invariant models is analogous to 
fitting Y on X and X on Y equations simultaneously and thus 
can minimize the effect of stochastic predictor variables. We 
believe that using all possible growth intervals, rather than 
using one height as a predictor variable, may also improve 
recovery of the observed patterns of height growth. 

Choice of a base age 
The base age for site index equations should be selected 

according to the following considerations: (i) The base age 
should be less than or equal to the youngest rotation age under 
typical management. Presumably, stands older than the rota­
tion age will be uncommon after a forest has been regulated. 
(ii) The base age should be close to the rotation age, as site 
index is mainly required for estimation of yield, and yield at 
final harvest is most important and should be predicted most 
precisely. (iiI) The base age should be chosen such that it is 
a reliable predictor of height at other ages. Height at young 
ages may not reliably predict height at older ages; conversely, 

if the height-growth curves for different site indices converge 
at older ages, a somewhat younger age may best differentiate 
site quality. In northern Ontario, most jack pine stands are 
harvested between 50 and 80 years; more intensive manage­
ment (harvesting smaller products, thinning, initial spacing) 
could shorten the rotation. 

To address the third consideration, we calculated root mean 
squared error from the estimation data using different ages as 
a predictor variable; this indicates which base age is best for 
predicting heights at other ages. The results are displayed in 
Fig. 4; the lowest root mean squared error is for a base age 
of 45, although the curve is very flat from 40 to 50 years and 
thus any base age within this range would be acceptable. 
Although, clearly, young base ages are not appropriate, we 
suggest that our results are largely dependent on the range of 
ages in the data; ages that are intermediate would be best 
simply because extreme ages would poorly predict height at 
the opposite extreme of age. Ideally, selection of a base age 
should incorporate (i) distribution of site quality for the pop­
ulation; (ii) ranges of ages to which the equations would be 
applied, for each site index; (iii) yield for stands of different 
age and site index. The selection procedure should be devised 
such that error in prediction of volume is minimized. As we 
lack the necessary information, we are forced to assume that 
the estimation data are representative of the population to 
which the equations are to be applied and conclude that a base 
age of 40 to 50 years is appropriate. 

Conclusions 
We found that parameter estimates were insensitive to the 

error structures we tried. However, the standard errors of the 
parameters were somewhat sensitive, particularly when com­
parison was between an assumption of independence and any 
alternative autocorrelation structure. Thus, error structure 
could have a large impact when model selection includes 
testing significance of parameters. 

Weighting is necessary in our difference equation as the 
variance is dependent on the difference between the observed 
ages. An analytic weighting function worked well for our 
model. 

Model selection should proceed from parameter estimation 
for individual plots. Some variations of Chapman-Richards 
function for site index equations specify that one or more 
parameters are constants independent of site quality. Rather 
than test alternative, previously published models, emphasis 
should be placed on building a model that reflects the given 
data set. 

The parameters of a difference equation will depend on 
which differences are used to fit the equation (previous mea­
surement vs. all possible differences). We did not obtain suit­
able estimates when only the previous measurement was used 
to predict height. A simulation study is required to determine 
how this result is dependent on data and model. Potentially, 
a discrepancy could be due to the model being incorrect; 
ideally the parameter estimates should be consistent regard­
less of the structure of the data set. The discrepancy could be 
regarded as a sort of goodness of fit; however, more study is 
required to determine the behavior of this discrepancy. 

Height-growth models often predict height at some age 
based on height at some other age (i.e., site index). However 
standard procedures assume that predictor variables are con­
stant. By fitting base-age invariant site index equations, site 
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index and height-prediction equations are fit simultaneously. 
Although it is known that individual equations will have lower 
variance (Curtis et al. 1974), the curves will be biased; that 
is, neither the height-prediction equation nor the site index 
prediction equation will possess a shape that represents the 
true functional relationship between height and age across 
levels of site index. For example, when predicting height 
based on site index, the predicted height at base age will be 
overestimated for low site index and underestimated for high 
site index. This behavior may be avoided by fitting difference 
equations. "Regression towards the mean" is also evident in 
the shape of the curves; there is typically some consistent 
pattern in the shape of the curves as site index increases, and 
this pattern is underestimated when either height or site index 
is represented as a function of the other. 

Choice of base age is typically specified so that it is less 
than rotation age. We found that a base age of 40 to 50 was 
superior for predicting height at other ages; this result is likely 
to be highly dependent on the range of age in the data set. 
Ideally, base age should be chosen such that variance of the 
volume estimates for the forest of interest are minimized; this 
requires that site index equations be integrated into a growth 
and yield system. 
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