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CHAPTER 3. 
Broad-Scale Patterns of 
Forest Fire Occurrence 
across the 50 United States 
and the Caribbean 
Territories, 2018

Kevin M. Potter

INTRODUCTION

A
s a pervasive disturbance agent operating at 
many spatial and temporal scales, wildland 
fire is a key abiotic factor affecting forest 

health both positively and negatively. In some 
ecosystems, for example, wildland fires have 
been essential for regulating processes that 
maintain forest health (Lundquist and others 
2011). Wildland fire is an important ecological 
mechanism that shapes the distributions of 
species, maintains the structure and function of 
fire-prone communities, and acts as a significant 
evolutionary force (Bond and Keeley 2005). At 
the same time, wildland fires have created forest 
health (i.e., sustainability) problems in some 
ecosystems (Edmonds and others 2011). 

Current fire regimes on more than half of the 
forested area in the conterminous United States 
have been moderately or significantly altered 
from historical regimes (Barbour and others 
1999), potentially altering key ecosystem 
components such as species composition, 
structural stage, stand age, canopy closure, 
and fuel loadings (Schmidt and others 2002). 
Fires in some regions and ecosystems have 
become larger, more intense, and more 
damaging because of the accumulation of fuels 
as a result of prolonged fire suppression (Pyne 
2010). In some regions, plant communities 
have experienced or are undergoing rapid 
compositional and structural changes as a 
result of fire suppression (Nowacki and Abrams 
2008). Additionally, changes in fire intensity 
and recurrence could result in decreased forest 

resilience and persistence (Lundquist and 
others 2011), and fire regimes altered by global 
climate change could cause large-scale shifts 
in vegetation spatial patterns (McKenzie and 
others 1996). 

At the same time, large wildland fires also 
can have long-lasting social and economic 
consequences, which include the loss of human 
life and property, smoke-related human health 
impacts, and the economic cost and dangers of 
fighting the fires themselves (Gill and others 
2013, Richardson and others 2012). 

This chapter presents analyses of daily 
satellite-based fire occurrence data that map 
and quantify the locations and intensities 
of fire occurrences spatially across the 
conterminous United States, Alaska, Hawaii, 
and the Caribbean territories in 2018. It also 
compares 2018 fire occurrences, within a 
geographic context, to all the recent years for 
which such data are available. Quantifying and 
monitoring such large-scale patterns of fire 
occurrence across the United States can help 
improve our understanding of the ecological 
and economic impacts of fire as well as the 
appropriate management and prescribed use of 
fire. Specifically, large-scale assessments of fire 
occurrence can help identify areas where specific 
management activities may be needed, or where 
research into the ecological and socioeconomic 
impacts of fires may be required. Additionally, 
given the potential for climate change and 
shifting species distributions to alter historic fire 
regimes, quantifying the location and frequency 
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of forest fire occurrences across the United States 
can help us to better understand emerging 
spatiotemporal patterns of fire occurrence.

METHODS
Data

Annual monitoring and reporting of active 
wildland fire events using the Moderate 
Resolution Imaging Spectroradiometer (MODIS) 
Active Fire Detections for the United States 
database (USDA Forest Service 2019) allow 
analysts to spatially display and summarize fire 
occurrences across broad geographic regions 
(Coulston and others 2005; Potter 2012a, 
2012b, 2013a, 2013b, 2014, 2015a, 2015b, 
2016, 2017, 2018, 2019). A fire occurrence 
is defined as one daily satellite detection of 
wildland fire in a 1-km pixel, with multiple 
fire occurrences possible on a pixel across 
multiple days resulting from a single wildland 
fire that lasts more than 1 day. The data are 
derived using the MODIS Rapid Response 
System (Justice and others 2002, 2011) to 
extract fire location and intensity information 
from the thermal infrared bands of imagery 
collected daily by two satellites at a resolution 
of 1 km, with the center of a pixel recorded as 
a fire occurrence (USDA Forest Service 2019). 
The Terra and Aqua satellites’ MODIS sensors 
identify the presence of a fire at the time of 
image collection, with Terra observations 
collected in the morning and Aqua observations 
collected in the afternoon. The resulting fire 
occurrence data represent only whether a fire 
was active because the MODIS data bands 

may not differentiate between a hot fire in a 
relatively small area (0.01 km2, for example) 
and a cooler fire over a larger area (1 km2, 
for example) if the foreground to background 
temperature contrast is not sufficiently high. 
The MODIS Active Fire database does well at 
capturing large fires during cloud-free conditions 
but may underrepresent rapidly burning, small, 
and low-intensity fires, as well as fires in areas 
with frequent cloud cover (Hawbaker and 
others 2008). For large-scale assessments, the 
dataset represents a good alternative to the use 
of information on ignition points, which may 
be preferable but can be difficult to obtain or 
may not exist (Tonini and others 2009). For 
more information about the performance of this 
product, see Justice and others (2011). The fire 
occurrence data additionally do not differentiate 
fires intentionally set for management purposes 
(controlled burns), which are common in 
some parts of the United States, particularly in 
the South.  

It is important to underscore that estimates of 
burned area and calculations of MODIS-detected 
fire occurrences are two different metrics for 
quantifying fire activity within a given year. 
Most importantly, the MODIS data contain 
both spatial and temporal components because 
persistent fire will be detected repeatedly over 
several days on a given 1-km pixel. In other 
words, a location can be counted as having a 
fire occurrence multiple times, once for each 
day a fire is detected at the location. Analyses 
of the MODIS-detected fire occurrences, 
therefore, measure the total number of daily 
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1-km pixels with fire during a year, as opposed 
to quantifying only the area on which fire 
occurred at some point during the course of the 
year. A fire detected on a single pixel on every 
day of the year would be equivalent to 365 
fire occurrences.

It is worth noting that the Terra and Aqua 
satellites, which carry the MODIS sensors, 
were launched in 1999 and 2002, respectively, 
and will eventually be decommissioned. An 
alternative fire occurrence data source is the 
Visible Infrared Imaging Radiometer Suite 
(VIIRS) sensor on board the Suomi National 
Polar-orbiting Partnership (Suomi NPP) weather 
satellite. The transition to this new data source 
will require a comparison of fire occurrence 
detections between it and MODIS. This is 
because VIIRS data are available from 2014 
onward, but it will be important for assessments 
of fire occurrence trends to be able to analyze 
as long a window of time as possible (i.e., from 
the beginning of MODIS data availability). 
Additionally, Landsat 8 fire detection data 
are available at 30-m resolution from 2015 
to present, although some issues may affect 
the completeness of the data (USDA Forest 
Service 2019).

Analyses

These MODIS products for 2018, and for the 
17 preceding full years of data, were processed 
in ArcMap® (ESRI 2015) to determine forest 
fire occurrence density (that is, the number of 
fire occurrences per 100 km2 [10 000 ha] of 
tree canopy coverage area) for each ecoregion 

section in the conterminous United States 
(Cleland and others 2007), for ecoregions on 
each of the major islands of Hawaii (see ch. 1 of 
this report), and for the islands of the Caribbean 
territories of Puerto Rico and the U.S. Virgin 
Islands. For the current analyses, the forest fire 
occurrence density metrics for the conterminous 
48 States, Hawaii, and the Caribbean territories 
(the number of fire occurrences per 100 km2 
of tree canopy cover area) were calculated 
after screening out wildland fires that did not 
intersect with tree canopy data. The tree canopy 
data had been resampled to 240 m from a 
30-m raster dataset that estimates percent tree 
canopy cover (from 0 to 100 percent) for each 
grid cell; this dataset was generated from the 
2011 National Land Cover Database (NLCD) 
(Homer and others 2015) through a cooperative 
project between the Multi-Resolution Land 
Characteristics Consortium and the U.S. 
Department of Agriculture Forest Service, 
Geospatial Technology and Applications Center 
(GTAC) (Coulston and others 2012). For our 
purposes, we treated any cell with >0 percent 
tree canopy cover as forest. Comparable tree 
canopy cover data were not available for Alaska, 
so we instead created a 240-m-resolution 
layer of forest and shrub cover from the 2011 
NLCD. The MODIS fire occurrence detection 
data were then intersected with this layer and 
with ecoregion sections for the State (Spencer 
and others 2002) to calculate the number of 
fire occurrences per 100 km2 of forest and 
shrub cover within each ecoregion section in 
Alaska. In previous Forest Health Monitoring 
national reports, the number of fire occurrences 
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per 100 km2 of forest was determined for the 
conterminous States, Alaska, and Hawaii using a 
forest cover mask derived from MODIS imagery 
by the Forest Service GTAC (USDA Forest 
Service 2008).

The total numbers of forest fire occurrences 
were also determined separately for the 
conterminous States, Alaska, Hawaii, and the 
Caribbean territories after clipping the MODIS 
fire occurrences by the canopy cover or tree and 
shrub cover data.

The fire occurrence density value for each 
of the ecoregions of the States and for the 
Caribbean islands in 2018 was then compared 
with the mean fire density values for the first 17 
full years of MODIS Active Fire data collection 
(2001–2017). Specifically, the difference of the 
2018 value and the previous 17-year mean 
for an ecoregion was divided by the standard 
deviation across the previous 17-year period, 
assuming a normal distribution of fire density 
over time in the ecoregion. The result for each 
ecoregion was a standardized z-score, which 
is a dimensionless quantity describing the 
degree to which the fire occurrence density in 
the ecoregion in 2018 was higher, lower, or 
the same relative to all the previous years for 
which data have been collected, accounting 
for the variability in the previous years. The 
z-score is the number of standard deviations 
between the observation and the mean of the 
historic observations in the previous years. 
Approximately 68 percent of observations would 
be expected within one standard deviation of 
the mean, and 95 percent within two standard 

deviations. Near-normal conditions are classified 
as those within a single standard deviation of the 
mean, although such a threshold is somewhat 
arbitrary. Conditions between about one 
and two standard deviations of the mean are 
moderately different from mean conditions but 
are not significantly different statistically. Those 
outside about two standard deviations would be 
considered statistically greater than or less than 
the long-term mean (at p <0.025 at each tail of 
the distribution).

Additionally, we used the Spatial Association 
of Scalable Hexagons (SASH) analytical 
approach to identify forested areas in the 
conterminous United States with higher-
than-expected fire occurrence density in 
2018. This method identifies locations where 
ecological phenomena occur at greater or lower 
occurrences than expected by random chance 
and is based on a sampling frame optimized for 
spatial neighborhood analysis, adjustable to the 
appropriate spatial resolution, and applicable to 
multiple data types (Potter and others 2016). 
Specifically, it consists of dividing an analysis 
area into scalable equal-area hexagonal cells 
within which data are aggregated, followed by 
identifying statistically significant geographic 
clusters of hexagonal cells within which mean 
values are greater or less than those expected by 
chance. To identify these clusters, we employed 
a Getis-Ord Gi* hot spot analysis (Getis and Ord 
1992) in ArcMap® 10.3 (ESRI 2015). 

The spatial units of analysis were 9,810 
hexagonal cells, each approximately 834 
km2 in area, generated in a lattice across the 
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conterminous United States using intensification 
of the Environmental Monitoring and 
Assessment Program (EMAP) North American 
hexagon coordinates (White and others 
1992). These coordinates are the foundation 
of a sampling frame in which a hexagonal 
lattice was projected onto the conterminous 
United States by centering a large base hexagon 
over the region (Reams and others 2005, 
White and others 1992). The hexagons are 
compact and uniform in their distance to the 
centroids of neighboring hexagons, meaning 
that a hexagonal lattice has a higher degree of 
isotropy (uniformity in all directions) than does 
a square grid (Shima and others 2010). These 
are convenient and highly useful attributes for 
spatial neighborhood analyses. These scalable 
hexagons also are independent of geopolitical 
and ecological boundaries, avoiding the 
possibility of different sample units (such as 
counties, States, or watersheds) encompassing 
vastly different areas (Potter and others 2016). 
We selected hexagons 834 km2 in area because 
this is a manageable size for making monitoring 
and management decisions in analyses across 
the conterminous United States (Potter and 
others 2016).

Fire occurrence density values for each 
hexagon were quantified as the number of 
forest fire occurrences per 100 km2 of tree 
canopy cover area within the hexagon. The 
Getis-Ord Gi* statistic was used to identify
clusters of hexagonal cells with fire occurrence 
density values higher than expected by chance. 
This statistic allows for the decomposition of 

a global measure of spatial association into its 
contributing factors, by location, and is therefore 
particularly suitable for detecting outlier 
assemblages of similar conditions in a dataset, 
such as when spatial clustering is concentrated 
in one subregion of the data (Anselin 1992).

Briefly, Gi* sums the differences between the
mean values in a local sample, determined in 
this case by a moving window of each hexagon 
and its 18 first- and second-order neighbors 
(the 6 adjacent hexagons and the 12 additional 
hexagons contiguous to those 6) and the 
global mean of the 9,644 hexagonal cells with 
tree canopy cover (of the total 9,810) in the 
conterminous United States. As described in 
Laffan (2006), it is calculated as

where

Gi* = the local clustering statistic (in this case,
for the target hexagon)

i = the center of local neighborhood (the 
target hexagon)

d = the width of local sample window (the 
target hexagon and its first- and second-
order neighbors)

xj = the value of neighbor j

w i j = the weight of neighbor j from location i 
(all the neighboring hexagons in the moving 
window were given an equal weight of 1)
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n = number of samples in the dataset (the 
9,644 hexagons containing tree cover)

Wi* = the sum of the weights

s*1   i = the number of samples within d of the
central location (19: the focal hexagon and its 
18 first- and second-order neighbors)

x̄       *  = the mean of whole dataset (in this case, 
for all 9,644 hexagons containing tree cover)

s*      = the standard deviation of whole dataset 
(for all 9,644 hexagons containing tree cover)

Gi* is standardized as a z-score with a
mean of 0 and a standard deviation of 1, with 
values >1.96 representing significant local 
clustering of higher fire occurrence densities 
(p <0.025) and values <-1.96 representing 
significant clustering of lower fire occurrence 
densities (p <0.025), because 95 percent of 
the observations under a normal distribution 
should be within approximately two standard 
deviations of the mean (Laffan 2006). Values 
between -1.96 and 1.96 have no statistically 
significant concentration of high or low 
values; a hexagon and its 18 neighbors, in 
other words, have a normal range of both 
high and low numbers of fire occurrences per 
100 km2 of tree canopy cover area. It is worth 
noting that the threshold values are not exact 
because the correlation of spatial data violates 
the assumption of independence required for 
statistical significance (Laffan 2006). In addition, 
the Getis-Ord approach does not require that 
the input data be normally distributed, because 

the local Gi* values are computed under a
randomization assumption, with Gi* equating to
a standardized z-score that asymptotically tends 
to a normal distribution (Anselin 1992). The 
z-scores are considered to be reliable, even with
skewed data, as long as the local neighborhood
encompasses several observations (ESRI 2015),
in this case, via the target hexagon and its 18
first- and second-order neighbors.

RESULTS AND DISCUSSION
Trends in Forest Fire Occurrence 
Detections for 2018

The MODIS Active Fire database recorded 
76,692 forest fire occurrences across the 
conterminous United States in 2018, the ninth 
most in 18 full years of data collection (fig. 3.1). 
This was approximately 24 percent less than in 
2017 (100,840 total forest fire occurrences), and 
nearly identical to the annual mean of 76,165 
forest fire occurrences across the previous 17 
years of data collection. In Alaska, meanwhile, 
the MODIS database encompassed 690 forest 
fire occurrences in 2018, about 67 percent fewer 
than the preceding year (2,064) and about 
93 percent fewer than the previous 17-year 
annual mean of 9,340. Meanwhile, Hawaii had 
136 fire occurrences in 2018, an increase of 
about 216 percent from the previous year (43) 
but 57 percent below the average of 317 fire 
occurrences over the previous 17 years. Finally, 
a single forest fire occurrence was detected in 
Puerto Rico, 89 percent fewer than the previous 
average of about 9 per year.
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The decrease in the total number of fire 

occurrences across the United States derived 
from MODIS is generally consistent with 
the official wildland fire statistics, which are 
based on other data sources and reported a 
below-normal number of wildfires (National 
Interagency Coordination Center 2019). In 
2018, 58,083 wildland fires were reported across 
the United States, which was a decrease from 
71,499 in 2017. The area burned nationally 
(3 548 078 ha) was 87 percent of the 2017 
burned area total (4 057 413 ha) but 132 
percent of the 10-year average (National 
Interagency Coordination Center 2018, 2019). 
The number of wildland fires and fire complexes 

exceeding 16 187 ha (a benchmark threshold for 
the National Interagency Coordination Center) 
was 49 in 2018, compared to 44 in 2017 and 
19 in 2016 (National Interagency Coordination 
Center 2017, 2018). As noted in the Methods 
section, estimates of burned area are different 
metrics for quantifying fire activity than 
calculations of MODIS-detected fire occurrences, 
though the two may be correlated.

Areas with the highest fire occurrence 
densities in 2018 were in northern California 
and in north-central Washington (fig. 3.2). 
Beginning in July, these areas experienced 
drier-than-normal conditions which expanded 

Figure 3.1—Forest fire occurrences detected by MODIS from 2001 to 2018 for the conterminous United States, Alaska, 
and Hawaii, and for the entire Nation combined. (Data source: U.S. Department of Agriculture Forest Service, 
Geospatial Technology and Applications Center, in conjunction with the NASA MODIS Rapid Response group)
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Figure 3.2—The number of forest fire occurrences, per 100 km2 (10 000 ha) of tree canopy coverage area, by ecoregion section within the 
conterminous 48 States, for 2018. The gray lines delineate ecoregion sections (Cleland and others 2007). Tree canopy cover is based on data from 
a cooperative project between the Multi-Resolution Land Characteristics Consortium (Coulston and others 2012) and the Forest Service Geospatial 
Technology and Applications Center using the 2011 National Land Cover Database. (Source of fire data: U.S. Department of Agriculture Forest 
Service, Geospatial Technology and Applications Center, in conjunction with the NASA MODIS Rapid Response group)
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Table 3.1—The 15 ecoregion sections in the conterminous United States with the highest fire occurrence 
densities in 2018

 
Section

 
Name

Tree canopy
area 

Fire  
occurrences Density

km2 number

fire occurrences 
per 100 km2 of tree 

canopy coverage area

M261B Northern California Coast Ranges 114.1 3,630 31.8
341G Northeastern Great Basin 24.6 754 30.6
M261A Klamath Mountains 338.5 9,818 29.0
M261C Northern California Interior Coast Ranges 18.2 283 15.5
M242D Northern Cascades 251.1 3,838 15.3
M261E Sierra Nevada 427.8 4,863 11.4
M261G Modoc Plateau 128.7 1,427 11.1
411A Everglades 68.7 630 9.2
M331D Overthrust Mountains 262.2 2,147 8.2
M313A White Mountains-San Francisco Peaks-Mogollon Rim 202.5 1,622 8.0
M332F Challis Volcanics 72.2 547 7.6
M341B Tavaputs Plateau 92.0 670 7.3
M242C Eastern Cascades 219.4 1,549 7.1
M333B Flathead Valley 168.9 1,013 6.0
262A Great Valley 19.4 114 5.9

and intensified through the autumn months, 
resulting in fuels that were critically dry 
(National Interagency Coordination Center 
2019). The ecoregion section with the highest 
fire occurrence density was the Northern 
California Coast Ranges (M261B), which 
experienced 31.8 fire occurrences/100 km2 
of tree canopy cover (table 3.1) and included 
the Mendocino Fire Complex, which was the 
largest recorded fire complex in California 
history (CAL FIRE 2019), burning 185 800 ha 
between July 27 and September 18 and costing 

approximately $220 million for containment 
(National Interagency Coordination Center 
2019). In the neighboring M261A–Klamath 
Mountains ecoregion section of northern 
California and southwestern Oregon, fire 
occurrence densities were also extremely high 
(29.0 fire occurrences/100 km2 of tree canopy 
cover). This ecoregion was the location of the 
Carr Fire, which burned 92 936 ha in California, 
killed eight people, and cost approximately 
$162 million (CAL FIRE 2019, National 
Interagency Coordination Center 2019), and of 
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the Klondike and Taylor Creek Fires in Oregon, 
which scorched 70 924 ha and 21 383 ha, 
respectively.

Three other ecoregion sections in northern 
California also had high fire occurrence 
densities: M261C–Northern California Interior 
Coast Ranges (15.5 fire occurrences/100 km2 
of tree canopy cover), M261E–Sierra Nevada 
(11.4 fire occurrences/100 km2 of tree canopy 
cover), and M261G–Modoc Plateau (11.1 fire 
occurrences/100 km2 of tree canopy cover) 
(fig. 3.2). M261E–Sierra Nevada was the location 
of the Camp Fire. This fire burned 62 053 ha 
between November 8 and 25, consumed the 
town of Paradise, CA, and killed 85 people, 
making it the deadliest U.S. fire in more than 
a century (National Interagency Coordination 
Center 2019). 

In northeastern Nevada, 341G–Northeastern 
Great Basin, an area with relatively sparse tree 
canopy cover, had an extremely high 30.6 fire 
occurrences/100 km2 of canopy cover as a result 
of the 176 269-ha Martin Fire, which burned 
in July and was the largest fire in the State’s 
history (National Interagency Coordination 
Center 2019, Rothberg 2018). Meanwhile, the 
fire occurrence density in M242D–Northern 
Cascades (15.3 fire occurrences/100 km2) in 
north-central Washington was also high, in part 
because of the Crescent Mountain Fire, which 
burned 22 909 ha between July and November, 
and the Cougar Creek Fire, which burned 
17 285 ha during the same period (National 
Interagency Coordination Center 2019).

High fire occurrence densities (6.01–12.00 fire 
occurrences/100 km2 of tree canopy cover) were 
recorded in a handful of other western ecoregion 
sections: M331D–Overthrust Mountains, in 
western Wyoming, southeastern Idaho, and 
northern Utah; M313A–White Mountains-San 
Francisco Peaks-Mogollon Rim, in east-central 
Arizona and west-central New Mexico; M332F–
Challis Volcanics in central Idaho; M341B–
Tavaputs Plateau, in northeastern Utah and 
northwestern Colorado; and M242C–Eastern 
Cascades, in central Washington and Oregon 
(table 3.1). Only one ecoregion in the Eastern 
United States had a high fire occurrence density 
in 2018, 411A–Everglades (9.2) (fig. 3.2).

Higher-than-usual temperatures throughout 
the year in Alaska, meanwhile, were combined 
with consistently above-average precipitation 
throughout the State (National Interagency 
Coordination Center 2019). As a result, fire 
occurrence densities across the State were 
low, which no ecoregions exceeding 1 fire 
occurrence/100 km2 of forest and shrub cover 
(fig. 3.3).

In Hawaii, the dramatic Big Island eruption of 
lava through 24 new fissures in the lower east 
rift zone of the Kīlauea volcano burned forests 
and consumed 700 homes at the very eastern 
tip of the island (Andrews 2018), resulting in a 
fire occurrence density of 7.4/100 km2 of tree 
canopy cover in the island’s Lowland Wet-
Hilo-Puna ecoregion (LWh-hp) (fig. 3.4). The 
eruption also affected the neighboring Mesic 
ecoregion (MEh), where fire occurrence density 
was 3.2/100 km2 of tree canopy cover. All other 
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Figure 3.3—The number of forest fire occurrences, per 100 km2 (10 000 ha) of forest and shrub cover, by ecoregion section within Alaska, for 2018. The 
gray lines delineate ecoregion sections (Spencer and others 2002). Forest and shrub cover is derived from the 2011 National Land Cover Database. (Source 
of fire data: U.S. Department of Agriculture Forest Service, Geospatial Technology and Applications Center, in conjunction with the NASA MODIS Rapid 
Response group)
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Figure 3.4—The number of forest fire occurrences, per 100 km2 (10 000 ha) of tree canopy coverage area, by island/ecoregion 
combination in Hawaii, for 2018. Tree canopy cover is based on data from a cooperative project between the Multi-Resolution 
Land Characteristics Consortium (Coulston and others 2012) and the Forest Service Geospatial Technology and Applications 
Center using the 2011 National Land Cover Database. See figure 1.2 for ecoregion identification. (Source of fire data: U.S. 
Department of Agriculture Forest Service, Geospatial Technology and Applications Center, in conjunction with the NASA 
MODIS Rapid Response group)
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ecoregions in the State had fire occurrence 
densities of ≤1 fire occurrence/100 km2 of tree 
canopy cover.  

Finally, fire occurrence densities were all ≤1 
fire occurrence/100 km2 of tree canopy cover for 
all of the islands constituting the U.S. Caribbean 
territories (Puerto Rico and the U.S. Virgin 
Islands) in 2018 (fig. 3.5).

Comparison to Longer Term Trends

The nature of the MODIS Active Fire data 
makes it possible to contrast, for each ecoregion 
in the conterminous States, Alaska, and Hawaii, 
and for each Caribbean island, short-term (2018) 
forest fire occurrence densities with longer term 
trends encompassing the first 17 full years of 
data collection (2001–2017). In general, the 
ecoregion sections of the conterminous States 
with the highest annual fire occurrence means 
are located in the northern Rocky Mountains, 
California, the Southwest, and the Southeastern 
Coastal Plain, while most ecoregion sections 
within the Northeastern, Midwestern, Middle 
Atlantic, and Appalachian regions experienced 
≤3 fire occurrences/100 km2 of tree canopy 
cover annually during the multiyear period 
(fig. 3.6A). The forested ecoregion section that 
experienced the most annual fire occurrences on 
average was M332A–Idaho Batholith in central 
Idaho (mean annual fire occurrence density of 
13.4) (table 3.2). Other ecoregion sections with 
high mean fire occurrence densities (6.01–12.00 
fire occurrences/100 km2 of canopy cover) were 
located along the Gulf Coast in the Southeast; in 
coastal, northern, and central areas of California; 

in north-central Washington; in central 
Arizona and New Mexico; in the northern 
Rocky Mountains; and in central Kansas 
and northeastern Oklahoma (table 3.2). The 
ecoregion section with the greatest variation in 
fire occurrence densities from 2001 to 2017 was 
M332A–Idaho Batholith, with more moderate 
variation in California, northern Washington, 
southern and northeastern Oregon, western 
Montana, and central Arizona and west-central 
New Mexico (fig. 3.6B). Less variation occurred 
throughout the central Rocky Mountain States, 
the Great Basin, the Southeast, and central 
Oregon and Washington. The lowest levels 
of variation occurred throughout most of the 
Midwest and Northeast.

As determined by the calculation of 
standardized fire occurrence z-scores, ecoregion 
sections in northern California; northeastern 
Nevada; the central Rocky Mountains of 
southeastern Idaho, southwestern Wyoming, 
northeastern Utah, northwestern and south-
central Colorado, and northeastern New 
Mexico; and southern Florida experienced 
significantly greater fire occurrence densities 
than normal in 2018, compared to the previous 
17-year mean and accounting for variability 
over time (fig. 3.6C). The ecoregion section 
with the highest z-score in 2018 was 341G–
Northeastern Great Basin, location of the Martin 
Fire. Additionally, some ecoregion sections in 
the West had moderately or slightly higher fire 
occurrence density than expected as indicated 
by their z-scores (fig. 3.6C), including M261A–
Klamath Mountains in northern California 



Mona Vieques

Puerto Rico U.S. Virgin
Islands

Culebra

Saint Croix

Saint
Thomas

Saint
John

SE
CT

IO
N 

1  
   C

ha
pte

r 3

Fire occurrences per 100 km2

of tree canopy cover, 2018

0.00–1.00 (very low)
1.01–3.00 (low)
3.01–6.00 (moderate)
6.01–12.00 (high)
12.01–24.00 (very high)
> 24.00 (extremely high)
Island 

Fo
res

t H
ea

lth
 M

on
ito

rin
g

70

Figure 3.5—The number of forest fire occurrences, per 100 km2 (10 000 ha) of tree canopy coverage area, by island in Puerto Rico and 
the U.S. Virgin Islands, for 2018. Tree canopy cover is based on data from a cooperative project between the Multi-Resolution Land 
Characteristics Consortium (Coulston and others 2012) and the Forest Service Geospatial Technology and Applications Center using the 
2011 National Land Cover Database. (Source of fire data: U.S. Department of Agriculture Forest Service, Geospatial Technology and 
Applications Center, in conjunction with the NASA MODIS Rapid Response group)
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Figure 3.6—(A) Mean number and 
(B) standard deviation of forest fire 
occurrences per 100 km2 (10 000 ha) 
of tree canopy coverage area from 2001 
through 2017, by ecoregion section within 
the conterminous 48 States. (C) Degree 
of 2018 fire occurrence density excess or 
deficiency by ecoregion relative to 2001–
2017 and accounting for variation over 
that time period. The gray lines delineate 
ecoregion sections (Cleland and others 
2007). Tree canopy cover is based on data 
from a cooperative project between the 
Multi-Resolution Land Characteristics 
Consortium (Coulston and others 2012) and 
the Forest Service Geospatial Technology 
and Applications Center using the 2011 
National Land Cover Database. (Source of 
fire data: U.S. Department of Agriculture 
Forest Service, Geospatial Technology and 
Applications Center, in conjunction with the 
NASA MODIS Rapid Response group)
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Table 3.2—The 15 ecoregion sections in the conterminous United States with the highest annual 
mean fire occurrence densities from 2001 through 2017

Section Name
Tree canopy

area 
Mean annual fire

occurrence density

  km2

fire occurrences per 
100 km2 of tree canopy 

coverage area

M332A Idaho Batholith 338.9 13.4
M261A Klamath Mountains 338.5 9.6
M262B Southern California Mountain and Valley 58.1 9.2
313C Tonto Transition 17.5 7.8
M261E Sierra Nevada 427.8 7.7
M313A White Mountains-San Francisco Peaks-Mogollon Rim 202.5 7.7
251F Flint Hills 57.8 7.1
261A Central California Coast 66.8 6.7
M242D Northern Cascades 251.1 6.1
232B Gulf Coastal Plains and Flatwoods 888.7 6.1
331A Palouse Prairie 33.4 6.0
M332B Northern Rockies and Bitterroot Valley 154.9 6.0
M333C Northern Rockies 176.3 6.0
M332F Challis Volcanics 72.2 6.0
232J Southern Atlantic Coastal Plains and Flatwoods 604.0 5.3
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and southwestern Oregon, 242B–Willamette 
Valley in northwestern Oregon, and M332E–
Beaverhead Mountains in east-central Idaho and 
southwestern Montana. A number of ecoregions 
in the Midwest and Northeast also experienced 
slightly or moderately more fire occurrences 
than normal: 212K–Western Superior Uplands 
in west-central Minnesota and northwest 
Wisconsin, 212H–Northern Lower Peninsula in 
Michigan, 211F–Northern Glaciated Allegheny 

Plateau in southern New York and northern 
Pennsylvania, and 221A–Lower New England.

A handful of ecoregion sections in the south-
central part of the country, meanwhile, had 
lower fire occurrence densities in 2018 compared 
to the longer term as indicated by their z-scores: 
231E–Mid Coastal Plains-Western in eastern 
Texas, southwestern Arkansas, and southeastern 
Oklahoma; 234E–Arkansas Alluvial Plains in 
southeastern Arkansas; 232F–Coastal Plains and 
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Flatwoods-Western Gulf in southeastern Texas 
and central Louisiana; and 232E–Louisiana 
Coastal Prairie and Marshes in southern 
Louisiana (fig. 3.6C). Each of these had a very 
low fire occurrence density score in 2018, with 
some having somewhat higher annual mean fire 
occurrence densities for 2001–2017.

In Alaska, meanwhile, moderate mean fire 
occurrence density existed in the east-central 
and central parts of the State, encompassing 
132A–Yukon-Old Crow Basin and M132E–
Ray Mountains (fig. 3.7A). These same areas, 
along with M132C–Yukon-Tanana Uplands and 
M132F–North Ogilvie Mountains, experienced 
the greatest degree of variability over the 17-
year period preceding 2018 (fig. 3.7B). In 2018, 
no ecoregion sections were outside the range of 
near-normal fire occurrence density (z-score ≤-1 
or >1) for the previous 17 years and accounting 
for variability (fig. 3.7C). 

In Hawaii, both mean annual fire occurrence 
density (fig. 3.8A) and variability (fig. 3.8B) 
were highest in the Lowland Wet-Hilo-Puna 
ecoregion (LWh-hp) of the Big Island during 
the 2001–2017 period. The annual mean was 
≤1 fire occurrence/100 km2 of tree cover for all 
other ecoregions except the Mesic region on the 
Big Island (MEh), which was 2.2. In 2018, only 
one Hawaiian island/ecoregion combination 
was outside the range of near-normal fire 
occurrence density, controlling for variability 
over the previous 17 years (z-score ≤-1 or >1). 
This was the Lowland/Leeward Dry ecoregion 
on Maui (LLDm), which had slightly fewer fire 
occurrences than expected (fig. 3.7C). 

All the islands of the Caribbean territories 
had annual fire occurrence means and standard 
deviations ≤1 (figs. 3.9A and 3.9B). Among the 
Caribbean islands, only Puerto Rico was outside 
the range of near-normal fire occurrence density 
(z-score ≤-1 or >1) in 2018, having slightly fewer 
fire occurrences than expected (fig. 3.9C).

Geographical Hot Spots of Fire 
Occurrence Density

Although summarizing fire occurrence data 
at the ecoregion section scale allows for the 
quantification of fire occurrence density across 
the country, a geographical hot spot analysis 
can offer insights into where, statistically, 
fire occurrences are more concentrated than 
expected by chance. In 2018, the SASH method 
detected one geographic hot spot of extremely 
high fire occurrence density (Gi* >24) and 
four hot spots of very high fire occurrence 
density (Gi* >12 and ≤24) (fig. 3.10). The 
hot spot of extremely high density was in 
northern California, in ecoregion sections 
M261B–Northern California Coast Ranges and 
M261C–Northern California Interior Coast 
Ranges. Three of the four hot spots of very 
high occurrence density were also in northern 
California and southwestern Oregon, contained 
within ecoregions shown by earlier analysis to 
be locations of high fire occurrence density (fig. 
3.2). The fourth hot spot was in north-central 
Washington (M242D–Northern Cascades).

Hot spots of high fire occurrence density 
(Gi* >6 and ≤12) were identified in south-
central Oregon (M242C–Eastern Cascades and 
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Figure 3.7—(A) Mean number and 
(B) standard deviation of forest fire 
occurrences per 100 km2 (10 000 ha) 
of forest and shrub cover from 2001 
through 2017, by ecoregion section 
in Alaska. (C) Degree of 2018 fire 
occurrence density excess or deficiency 
by ecoregion relative to 2001–2017 
and accounting for variation over that 
time period. The gray lines delineate 
ecoregion sections (Spencer and others 
2002). Forest and shrub cover is 
derived from the 2011 National Land 
Cover Database. (Source of fire data: 
U.S. Department of Agriculture Forest 
Service, Geospatial Technology and 
Applications Center, in conjunction 
with the NASA MODIS Rapid 
Response group)



0.00–1.00
1.01–3.00
3.01–6.00
6.01–12.00

 
Fire occurrence density  
annual mean, 2001–2017

>12.00

Ecoregion 

(A)

0.00–1.00
1.01–5.00
5.01–10.00
10.01–20.00

Annual fire occurrence density 
standard deviation, 2001–2017

>20.00
Ecoregion 

(B)

75

MEh

LLDh

SAh

MEk

MEo

LWh-hp

LLDm

LLDo

MWh-hp

ALh

MEm-e

LLDl

LLDmo

LWk
LLDk

LWo

MWh-ka

MWh-ko

ALh

LLDn

MEm-w

MWk

LWm-e
MWm-e

MEmo

LLDka

MWh-kh

LLDk

LWh-kh

MEl

MWo

Hawai’i

Kaho’olawe

Maui

Lana’i

Moloka’i

O’ahu

Kaua’i

Ni’ihau

≤-2.00 (many fewer)
-1.99– -1.50 (moderately fewer)
-1.49– -1.00 (slightly fewer)
-0.99–1.00 (near normal)
1.01–1.50 (slightly more)

>2.00 (many more)
1.51–2.00 (moderately more)

Ecoregion

2018 fire occurrence density z-score 

(C)
Figure 3.8—(A) Mean number and 
(B) standard deviation of forest fire 
occurrences per 100 km2 (10 000 ha) 
of tree canopy coverage area from 2001 
through 2017, by island/ecoregion 
combination in Hawaii. (C) Degree of 
2018 fire occurrence density excess or 
deficiency by ecoregion relative to 2001–
2017 and accounting for variation over 
that time period. Tree canopy cover 
is based on data from a cooperative 
project between the Multi-Resolution 
Land Characteristics Consortium 
(Coulston and others 2012) and the 
Forest Service Geospatial Technology 
and Applications Center using the 2011 
National Land Cover Database. See 
figure 1.2 for ecoregion identification. 
(Source of fire data: U.S. Department of 
Agriculture Forest Service, Geospatial 
Technology and Applications Center, 
in conjunction with the NASA MODIS 
Rapid Response group)
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Figure 3.9—(A) Mean number and (B) standard deviation of forest fire occurrences per 100 km2 (10 000 ha) of forested area from 2001 through 2017, 
by island in Puerto Rico and the U.S. Virgin Islands. (C) Degree of 2018 fire occurrence density excess or deficiency by ecoregion relative to 2001–2017 
and accounting for variation over that time period. Tree canopy cover is based on data from a cooperative project between the Multi-Resolution Land 
Characteristics Consortium (Coulston and others 2012) and the U.S. Department of Agriculture Forest Service, Geospatial Technology and Applications Center 
using the 2011 National Land Cover Database.
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Figure 3.10—Hot spots of fire occurrence across the conterminous United States for 2018. Values are Getis-Ord Gi* scores, with values >2 
representing significant clustering of high fire occurrence densities. (No areas of significant clustering of lower fire occurrence densities, <-2, 
were detected). The gray lines delineate ecoregion sections (Cleland and others 2007). Background tree canopy cover is based on data from a 
cooperative project between the Multi-Resolution Land Characteristics Consortium (Coulston and others 2012) and the Forest Service Geospatial 
Technology and Applications Center using the 2011 National Land Cover Database. (Source of fire data: U.S. Department of Agriculture Forest 
Service, Geospatial Technology and Applications Center, in conjunction with the NASA MODIS Rapid Response group)
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M261G–Modoc Plateau), the Sierra Nevada 
of California (M261E), northeastern Nevada 
(341G–Northeastern Great Basin), and central 
Utah (M331D–Overthrust Mountains, M331E–
Uinta Mountains, M341B–Tavaputs Plateau, and 
M341C–Utah High Plateau). 

Hot spots of moderate fire density in 2018 
(Gi* >2 and ≤6) were identified in scattered 
locations within the Rocky Mountain States, the 
southern Plains States, and the Southeast (fig. 
3.10). From west to east, these were detected in:

• Northwestern Montana and northern Idaho 
(M333B–Flathead Valley)

• Central Idaho (M332A–Idaho Batholith, 
M332E–Beaverhead Mountains, and M332F–
Challis Volcanics)

• Eastern Nevada (M341A–East Great Basin 
and Mountains)

• Northern Arizona (313A–Grand Canyon)
• Central Arizona (M313A–White Mountains-

San Francisco Peaks-Mogollon Rim)
• Western Wyoming (M331D–

Overthrust Mountains)
• Southwestern New Mexico (M313A–

White Mountains-San Francisco Peaks-
Mogollon Rim)

• Southwestern Colorado (M331G–South 
Central Highlands and 313B–Navajo 
Canyonlands)

• North-central Colorado (M331I–Northern 
Parks and Ranges)

• West-central Oklahoma (332F–South Central 
and Red Bed Plains)

• Southeastern Kansas and northeastern 
Oklahoma (251F–Flint Hills, 255A–Cross 
Timbers and Prairie, and 251E–Osage Plains)

• Florida Panhandle and southwestern Georgia 
(232B–Gulf Coastal Plains and Flatwoods, 
232J–Southern Atlantic Coastal Plains and 
Flatwoods, and 232L–Gulf Coastal Lowlands)

• Southern Florida (232D– Florida Coastal 
Lowlands-Gulf and 411A–Everglades)

CONCLUSIONS AND  
FUTURE WORK

In 2018, the number of MODIS satellite-
detected forest fire occurrences recorded 
for the conterminous States was the ninth 
most in 18 full years of data collection and 
was nearly identical to the annual mean of 
forest fire occurrences across the previous 
17 years of data collection. Ecoregion sections 
in northern California/southwestern Oregon, 
north-central Washington, and northeastern 
Nevada had the highest forest fire occurrence 
density per 100 km2 of tree canopy cover area. 
Geographic hot spots of high fire occurrence 
density were detected in these same areas, 
as well as in Utah and the Sierra Nevada of 
California. Ecoregion sections in northern 
California; the Cascade Mountains of Oregon 
and Washington; northern and eastern Nevada; 
the central Rocky Mountains; central Minnesota; 
northern Michigan; and the Northeastern States 
experienced greater fire occurrence density 
than normal compared to the previous 17-year 
mean and accounting for variability over time. 
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Ecoregions in eastern Texas, southern Arkansas, 
and much of Louisiana, meanwhile, had lower 
fire occurrence density than expected. Alaska 
had low fire occurrence densities throughout 
the State. In Hawaii, the Lowland Wet ecoregion 
of the Big Island experienced relatively high 
fire occurrence density because of a volcanic 
eruption near the eastern tip of the island.

The results of these geographic analyses 
are intended to offer insights into where fire 
occurrences have been concentrated spatially 
in a given year and compared to previous years 
but are not intended to quantify the severity of 
a given fire season. Given the limits of MODIS 
active fire detection using 1-km resolution data, 
these products also may underrepresent the 
number of fire occurrences in some ecosystems 
where small and low-intensity fires are 
common, and where high cloud frequency can 
interfere with fire detection. These products can 
also have commission errors. However, these 
high-temporal-fidelity products currently offer 
the best means for daily monitoring of forest 
fire occurrences. 

Future work related to understanding 
geographic patterns of forest fire occurrences in 
the United States could include a comparison of 
the MODIS detections with those of the VIIRS 
sensor, an analysis of fire occurrence detections 
by forest cover types, an evaluation of whether 
the fire occurrences correspond with mapped 
burned areas, an assessment of the relationships 
between fire occurrence and drought conditions, 

and an analysis of the potential ecological 
consequences of high fire occurrence densities 
using data such as those available from the 
Forest Inventory and Analysis program.

Ecological and forest health impacts 
relating to fire and other abiotic disturbances 
are scale-dependent properties, which in 
turn are affected by management objectives 
(Lundquist and others 2011). Information 
about the concentration of fire occurrences 
may help pinpoint areas of concern for aiding 
management activities and for investigations 
into the ecological and socioeconomic impacts 
of forest fire potentially outside the range of 
historic frequency.
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