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Abstract

An understanding of the applicability and utility of hydrologic models is 
critical to support the effective management of water resources throughout 
the Southeastern United States (SEUS) and Puerto Rico (PR). Hydrologic 
models have the capacity to provide an estimate of the quantity of available 
water at ungauged locations (i.e., areas of the country where a U.S. 
Geological Survey [USGS] continuous record gauge is not installed) and 
provide the baseline flow information necessary to develop the linkages 
between water availability and characteristics of streamflow that support 
ecological communities (i.e., support the development of flow-ecology 
response models). This report inventories and then directly examines and 
compares a subset of hydrologic models used to estimate streamflow at a 
number of gauged basins across the SEUS and PR. This effort was designed 
to evaluate, quantify, and compare the magnitude of error and to investigate 
the potential causes of error associated with predicted streamflows from 
seven hydrologic models of varying complexity and calibration strategy. 
This was accomplished by computing and then comparing classical 
hydrologic model fit statistics (e.g., mean bias, coefficient of determination 
[R2], root mean squared error [RMSE], Nash-Sutcliffe Efficiency [NSE]) and 
understanding the bias in the prediction in these and a subset of ecologically 
relevant flow metrics (ERFMs). Additionally, streamflow predictions from 
a larger regional-scale hydrologic model were compared to those of several 
fine-scale hydrologic models under a range of hypothetical climate change 
scenarios to determine the range of predicted streamflow responses to 
fixed climate perturbations. A pilot study was conducted using predicted 
streamflow and boosted regression trees to develop a set of predictive 
flow-ecology response models to assess the potential change in fish species 
richness in the North Carolina Piedmont under several scenarios of water 
availability change. This report is intended to provide a general assessment 
of all the tools and techniques available to support hydrologic modeling 
for flow-ecology science in the SEUS and PR. It is our hope that the 
approach used herein to understand differences in streamflow predictions 
among a subset of hydrologic models that have been applied in the SEUS 
for developing flow-ecology response models will provide water resource 
managers and stakeholders with an informed pathway for developing the 
capacity to link streamflow and ecological response and an understanding of 
some of the limitations associated with these type of modeling efforts.    

Keywords: Ecological flows, fish species richness, flow alteration, flow-
ecology models, hydrologic models, water supply, water withdrawals.
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CHAPTER 1 

Introduction

Assessing the impact of flow alteration on aquatic 
ecosystems has been identified as a critical area 
of research and a priority science need of the U.S. 

Department of the Interior Southeast Climate Adaptation 
Science Center (SCASC). Beginning in 2012, U.S. 
Department of Agriculture Forest Service scientists 
collaborated with scientists from the U.S. Geological 
Survey (USGS) and North Carolina State University in 
a SCASC-funded project to develop an inventory and 
evaluation of current efforts and knowledge gaps in 
hydrologic modeling for flow-ecology studies across the 
Southeastern United States (SEUS) and Puerto Rico (PR). 
To accomplish this goal, we synthesized and evaluated 
hydrologic modeling efforts in the SEUS (including 
all States of the Southeastern Association of Fish and 
Wildlife Agencies: Alabama, Arkansas, Florida, Georgia, 
Kentucky, Louisiana, Mississippi, Missouri, North 
Carolina, Oklahoma, South Carolina, Tennessee, Texas, 
Virginia, and West Virginia) and Puerto Rico. Because this 
modeling synthesis was performed comprehensively and 
using a consistent methodology, it will provide Landscape 
Conservation Cooperatives (LCCs) and resource managers 
with a useful database of who is doing what, where, how, 
and how well in terms of hydrologic modeling across the 
SEUS and PR. 

BACKGROUND
River flows are essential for sustaining the health of 
aquatic ecosystems and maintaining ecosystem services 
such as water supply for consumptive use. Human 
activities, including regulation by dams (Biemans 
and others 2011, Graf 1999, Poff and others 2007), 
withdrawals (Gerten and others 2008), interbasin 
transfers (Emanuel and others 2015, Jackson and others 
2001), and land cover change (Foley and others 2005) 
have significantly altered the magnitude and timing of 
river flows. The health and biotic condition of aquatic 
ecosystems have declined as a result (Carlisle and others 
2010, Dudgeon and others 2006, Poff and Zimmerman 
2010, USEPA 2011). In addition to anthropogenic 
hydrologic alterations, future changes in climate will 
likely further impact river flows (Georgakakos and 
others 2014). Assessing the effect of flow alteration 
on aquatic ecosystems has been identified as a critical 
area of research in the SEUS (Knight and others 2014, 
SALCC 2012, SARP 2004), nationally (Carlisle and others 
2010, Novak and others 2016), and abroad (Annear and 
others 2004; Arthington and others 2006, 2018; Poff and 

others 2010). The SEUS is recognized as one of the most 
ecologically rich areas in the world (Masters and others 
1998), making it imperative to assess ecological response 
to flow alteration. As a result, and considering recent 
droughts and interstate conflict over water availability 
issues, many States in the SEUS are investigating the 
implementation of regulatory controls on streamflow 
alteration in the interest of maintaining a balance between 
supporting healthy aquatic ecosystems and providing 
ample water supplies for human use (e.g., NCEFSAB 
2013). Reliable, multi-scale hydrologic and ecosystem 
modeling approaches are needed to accomplish this goal 
(Poff and others 2010). However, error (i.e., uncertainty 
or bias) in streamflow predictions by hydrologic models 
and predictions of ecological response to changes in flow 
regime with ecological models can be significant and may 
be compounding, thereby confounding the determination 
of environmental flow requirements and potentially 
exposing managers of water resources to litigation by the 
regulated community.

The Ecological Limits of Hydrologic Alteration (ELOHA) 
framework (Poff and others 2010) is often used as a basis 
for developing regional environmental flow requirements. 
One of the first steps emphasized in the ELOHA process is 
to develop a hydrologic foundation of simulated baseline 
and altered streamflow hydrographs. Hydrologic models 
are commonly used for this purpose because they have the 
ability to simulate streamflow at varying timescales under 
baseline conditions and an infinite number of scenarios 
of flow alteration. Many models have been employed in 
the SEUS to generate a hydrologic foundation on which 
to examine and test hypotheses of changes in water 
availability, land use, and climate. 

Major modeling efforts in the SEUS and PR include:

1.	 The South Atlantic LCC (SALLC) funded a project 
with The Nature Conservancy and Research Triangle 
Institute (RTI) to simulate daily flows in the SALCC 
at a very fine spatial resolution using a rainfall-runoff 
model (https://waterfall.rti.org/).  

2.	 The U.S. Geological Survey is developing multi-
resolution daily rainfall-runoff and statistical 
hydrologic models in the Apalachicola-Chattahoochee-
Flint Basin for climate change and ecohydrological 
assessments as part of the Flint River Science Thrust 
Project, Southeast Regional Assessment Project (Dalton 
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and Jones 2010), and the National Water Census 
(https://www.usgs.gov/mission-areas/water-resources/
science/apalachicola-chattahoochee-flint-river-basin-
focus-area-study?qt-science_center_objects=0#qt-
science_center_objects) (Alley and others 2013). In 
addition, rainfall-runoff models are under development 
for Puerto Rico in support of the Caribbean LCC.  

3.	 The U.S. Environmental Protection Agency (USEPA) 
Global Change Research Program (http://www.
globalchange.gov/agency/environmental-protection-
agency) has contracted with Tetra Tech and others to 
develop rainfall-runoff models to evaluate the potential 
effects of climate and land use change on the hydrology 
and water quality of 20 major U.S. drainage basins, 
including the Albemarle-Pamlico Basin, Apalachicola-
Chattahoochee-Flint (ACF) Basin, and a Georgia-
Florida Coastal Plain basin (USEPA 2013).

4.	 The Georgia Water Resources Institute at Georgia 
Tech developed a decision-support system (http://
gwri.gatech.edu/research/GWRI/ACFS) including 
hydrologic models for the ACF Basin to evaluate water 
management alternatives under several climate change 
scenarios (Georgakakos and others 2010).

5.	 The U.S. Department of Agriculture Forest Service 
developed a national-scale water balance and flow 
routing model for the conterminous United States 
(https://forestthreats.org/research/tools/WaSSI) capable 
of predicting monthly streamflow as influenced by 
changes in climate, land use, and water withdrawals 
(Caldwell and others 2012; Sun and others 2008, 
2011b). The model is currently under development to 
predict monthly streamflow in Puerto Rico.

6.	 Many States have their own hydrologic modeling 
activities to develop water resource adaptation 
strategies for responding to environmental change by 
using various models (Davis 2011). For example, North 
Carolina is developing models for key basins to ensure 
sustainable water resources for the future (https://www.
ncwater.org/Data_and_Modeling/Tar/).

All of these approaches operate at different resolutions, 
extents, time periods, and model performance criteria, 
and take into account different aspects of environmental 
change (climate, land use, and water availability). A 
comprehensive synthesis of these efforts is needed so that 
managers may make informed decisions regarding model 
use and fully understand the uncertainty associated with 
their predictions of streamflow and ecological response. 
Regardless of the hydrologic model used, the model must 
be able to reasonably replicate streamflow observations 
at a monthly, daily, or sub-daily timescale to derive 
ecologically relevant flow metrics (ERFMs) representing 

the five primary components of the flow regime (i.e., 
magnitude, frequency, duration, timing, and rate of 
change) under historical and current conditions across 
points of interest for regulation. The model must also 
predict changes in these metrics as a result of changes in 
climate, land use, flow regulation, and water withdrawals. 
Due to the compounding nature of error in flow-ecology 
modeling, error in hydrologic model prediction of 
streamflow is often carried through the analysis and should 
be quantified and reported to avoid misinterpretation or 
misuse of modeling outcomes. 

Given the diversity of hydrologic models available for 
water supply and environmental flow studies, it would 
be useful for resource managers to have some sense 
of the relative error in streamflow predictions among 
commonly used hydrologic models in terms of classical 
fit statistics of streamflow observations (e.g., bias, Nash-
Sutcliffe Efficiency [NSE]) and ERFMs. Unfortunately, 
the determination as to which model is best suited for 
answering a particular ecological question or even whether 
one model is better suited for a specific region or for a 
specific portion of the flow regime (e.g., low flows) is 
hampered by a lack of comprehensive model comparison 
studies (Knight and others 2012). In addition, the type 
of hydrologic model, model inputs (e.g., climate, soils, 
land cover), and calibration strategy likely influence 
the capacity of a given hydrologic model to predict 
observed streamflow.  

Leveraging the benefits of utilizing large-scale models 
with smaller scale, high-resolution models concurrently, 
rather than using each approach in isolation, has the 
potential to allow more robust environmental change 
assessment studies that maintain a better balance between 
the availability of water to support aquatic assemblages 
while conserving water for long-term human needs across 
broad regions. For example, the Water Supply Stress Index 
(WaSSI) model (Caldwell and others 2012, Sun and others 
2011b) is a regional-scale monthly water balance and flow 
routing model that has been used to evaluate the effects 
of environmental change on water supply and river flows. 
The model is typically run uncalibrated using off-the-
shelf databases and thus could be used to assess broad-
scale environmental change and identify specific areas of 
concern (“hot spots”) where the combined effects of land 
cover change, climate change, and/or flow alteration may 
threaten water resources. Fine-scale, physically based 
models of higher temporal resolution (e.g., Hydrological 
Simulation Program-Fortran [HSPF], Precipitation-Runoff 
Modeling System [PRMS], Soil and Water Assessment 
Tool [SWAT], etc.) could then be applied to those areas of 
concern to provide higher resolution quantitative estimates 



USDA Forest Service, Southern Research Station e-General Technical Report SRS-246

CHAPTER 1

3

of changes in water supply and ERFMs using more site-
specific inputs. To apply such a multi-scale modeling 
approach, the variability of predicted streamflow response 
to different stressors across large- and fine-scale models 
must first be assessed. For example, for a given change 
in precipitation, do the models predict similar changes 
in streamflow?

RESEARCH OBJECTIVES
The objectives of this study were to (1) inventory existing 
hydrologic modeling efforts in the SEUS and PR, (2) 
evaluate and compare the performance of participating 
hydrologic models in predicting observed streamflows at 
multiple scales, (3) demonstrate the feasibility of using 
regional- and fine-scale models to identify unique areas of 
concern and understand fine-scale hydrologic dynamics for 
climate change assessment, respectively, and (4) conduct 
a pilot study at the regional scale using flow-ecology 
response modeling to assess the effect of changes in water 
availability in the North Carolina Piedmont based on a 
series of plausible change scenarios including climate, land 
use, and water withdrawals.   

For objective 1, modeling efforts in the region were 
inventoried by contacting Federal and State agencies, 
members of academia, and environmental consultants 
to create a database of models used in the SEUS and 
PR. Information collected included the organization 
performing the study, intended purpose, model framework, 
spatial extent, spatial and temporal resolution, time period 
simulated, model inputs, model outputs (e.g., flow, water 
quality, ecosystem response), elements of environmental 
change represented (e.g., climate change, land use change, 
withdrawals/flow regulation), and validation procedure, 
criteria, and results.

For objective 2, a subset of the model developers attended 
a workshop where attendees compared and contrasted the 
hydrologic output of both coarse-scale monthly models 
and fine-scale daily models, quantifying their ability to 
estimate observed flows over a common time period for 
selected basin(s) in the SEUS. We did not evaluate model 
applications in PR because no models had streamflow 
predictions at gauged locations at the time of this study.

For objective 3, streamflow predictions from WaSSI, a 
regional-scale model, were compared to those of several 
of the fine-scale models assessed in the model comparison 
workshop under a range of hypothetical climate change 

scenarios, to determine the range of predicted streamflow 
responses to fixed climate perturbations. Our working 
hypothesis was that similarly predicted streamflow 
changes under climate change scenarios among regional- 
and fine-scale models would provide evidence that 
these models could be used in combination to identify 
hot spots of concern and understand unique fine-scale 
hydrologic dynamics.

For objective 4, a set of predictive flow-ecology response 
models were developed that assess the potential change 
in fish species richness in the North Carolina Piedmont 
under several scenarios of water availability change 
including streamflow withdrawals, climate change, and 
land cover change.

RELATIONSHIP TO OTHER STUDIES
Through a partnership between the SALCC and the 
Southeast Aquatic Resources Partnership (SARP), an 
inventory of existing models in the SALCC region was 
completed (Davis 2011). The Appalachian LCC had 
a similar project with the New York Cooperative Fish 
and Wildlife Research Unit for the Appalachian LCC 
region (Fisher and others 2013). The USGS, as part of 
the WaterSMART Initiative National Water Census, led a 
multi-model comparison study in the Southeast which was 
designed to assess the relative uncertainty in hydrologic 
predictions among several daily and monthly time-step 
models (Farmer and others 2014). The project described 
in this report was intended to complement and more 
broadly encapsulate prior work in the SEUS, including 
the SALCC hydrologic model inventory, the Appalachian 
LCC hydrologic model inventory, and the National Water 
Census model comparison study, and provide additional 
insights through direct model comparisons, evaluation of 
model sensitivity, and the development of flow-ecology 
response models.

ORGANIZATION OF THIS REPORT
Chapters 2–5 of this report summarize the results 
of each of the research objectives described above. 
The chapters were written to be “self-contained” and 
can be read without referring to other chapters. This 
format was selected to make reading of the report 
easier. Detailed results, databases, and links to reports 
may be found online at https://cascprojects.org/#/
project/4f8c6557e4b0546c0c397b4c/ 
5016cacde4b06fb5ce8b7371. 

https://cascprojects.org/#/project/4f8c6557e4b0546c0c397b4c/5016cacde4b06fb5ce8b7371
https://cascprojects.org/#/project/4f8c6557e4b0546c0c397b4c/5016cacde4b06fb5ce8b7371
https://cascprojects.org/#/project/4f8c6557e4b0546c0c397b4c/5016cacde4b06fb5ce8b7371
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CHAPTER 2 

Inventory of Existing Hydrologic Models in 
the Southeastern United States and Puerto Rico

INTRODUCTION
There are many researchers, water resource professionals, 
and environmental flow practitioners developing and 
applying hydrologic models in the Southeastern United 
States (SEUS) and Puerto Rico (PR). However, there are 
few databases that describe the various modeling efforts 
underway across the region so that resource managers may 
have access to model outputs to aid in addressing water 
resource problems. To meet this need, an inventory of 
current efforts and knowledge gaps in hydrologic modeling 
for flow-ecology science and environmental change 
assessment studies across the region was created. This 
modeling inventory was performed as comprehensively 
as possible and used a consistent methodology, and thus 
it will provide Landscape Conservation Cooperatives 
(LCCs) and resource managers with a useful database of 
organizations developing hydrologic models for assessing 
environmental change effects across the SEUS and PR.  

METHODS
An inventory of existing hydrologic models in the SEUS 
and PR was compiled by distributing a brief questionnaire 
(table 2.1) to contacts at State and Federal agencies, 
academic institutions, and environmental consultants 
throughout the region (table 2.2). An initial list of contacts 
was developed via the professional knowledge of project 
participants and by using the SEUS Hydrologic Model 
Assessment compiled by Southeast Aquatic Resources 
Partnership (SARP) (https://southeastaquatics.net/
resources/pdfs/Hydrologic%20Model%20Assessment%20
041411.pdf/). The information requested from these 
contacts included model developer, intended purpose, 
model framework, spatial extent, spatial and temporal 
resolution, time period simulated, model inputs, model 
outputs (e.g., flow, water quality, ecosystem response), 
elements of environmental change represented (e.g., 
climate change, land use change, withdrawals/flow 
regulation change), and validation procedure, criteria, and 
results. Questionnaire interviews were primarily conducted 
by phone, with the exception of a few individuals who 

responded to the questionnaire by email. Questionnaire 
results were stored in a Microsoft® Excel spreadsheet.

RESULTS
The results of the modeling inventory are available 
at the project web page at https://cascprojects.org/#/
project/4f8c6557e4b0546c0c397b4c/5016 
cacde4b06fb5ce8b7371. The model inventory contact 
list included 95 individuals applying hydrologic 
models throughout the SEUS and PR. Of the 64 
unique organizations solicited, 19 represented Federal 
agencies, 11 represented State agencies, 32 represented 
universities, and 2 represented private sector organizations 
(environmental consultants). Twenty of the individuals 
agreed to be interviewed or were participants in the 
model comparison workshop, with two of the individuals 
using two different models. Respondents used multiple 
hydrologic models and were working throughout the 
SEUS and PR (table 2.3). Of these, 16 used rainfall-runoff 
models (i.e., models that predict streamflow using climate 
inputs including rainfall), while four of the respondents 
used statistical models (i.e., estimates of streamflow 
derived empirically using streamflow records from 
gauged basins). Thirteen of the respondents represented 
government agencies, while five and two represented 
universities and private sector organizations, respectively. 
Model uses ranged from estimating streamflow under 
scenarios of changing climate and water use to predicting 
effects on water quality, aquatic ecosystems, and water 
availability for humans. Basins in Alabama, Georgia, and 
North Carolina were the best represented in the survey 
results (7 or more of the 20 respondents); however, a 
large proportion of the basins simulated in these States 
were restricted to the Apalachicola-Chattahoochee-Flint 
(ACF) Basin. Basins in Arkansas, Kentucky, Louisiana, 
Mississippi, Missouri, Oklahoma, Texas, West Virginia, 
and Puerto Rico were least represented (three or fewer 
respondents). While these results are based on a subsample 
of modeling efforts in the region, they may suggest areas 
that are less studied, and thus potential environmental 
change effects on streamflow may be less understood.

https://southeastaquatics.net/resources/pdfs/Hydrologic%20Model%20Assessment%20041411.pdf/
https://southeastaquatics.net/resources/pdfs/Hydrologic%20Model%20Assessment%20041411.pdf/
https://southeastaquatics.net/resources/pdfs/Hydrologic%20Model%20Assessment%20041411.pdf/
https://cascprojects.org/#/project/4f8c6557e4b0546c0c397b4c/5016cacde4b06fb5ce8b7371
https://cascprojects.org/#/project/4f8c6557e4b0546c0c397b4c/5016cacde4b06fb5ce8b7371
https://cascprojects.org/#/project/4f8c6557e4b0546c0c397b4c/5016cacde4b06fb5ce8b7371
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Table 2.1—Questions from hydrologic model inventory questionnaire

1. What is the name of your model (e.g., WaSSI, PRMS)?

2. Who developed the model (e.g., individual researcher, agency initiative)?

3. Who applied the model?

4. What is the intended purpose of your model (e.g., to simulate daily flows at a very fine spatial 
resolution, water supply accounting, ecological flow assessment, water quality)? 

5. Please describe the model framework.

6. What is the spatial extent of your model (e.g., Hydrologic Unit Code [HUC], river basin, etc.)? Do you 
have an attributed shapefile available that you could share with us? 

7. What is the spatial resolution of your model (e.g., grid cell, reach, basin, ecoregion) and approximate 
size of model units (e.g., ha, km2)?

8. What is the temporal resolution of your model (e.g., hourly, daily, monthly)?

9. What is the time period represented by your model (e.g., start year and end year simulated)?

10. What inputs does your model require (e.g., weather parameters, soils, land cover, water withdrawals, 
etc.), and how are they derived (calibrated, remote sensing, etc.)? 

11. What are the model outputs (e.g., flow, water quality, ecosystem response)?

12. What elements of environmental change are represented by your model, if any (e.g., climate, land 
use change, withdrawals/flow regulation)? 

13. Please explain the procedure, criteria, and results of your model validation (e.g., specific U.S. 
Geological Survey gauges, other flow data)?

14. What time scale was validated (e.g., mean annual, annual, seasonal, monthly, daily, hourly)?

15. What fit statistics were used (e.g., bias, R2, Nash-Sutcliffe Efficiency, etc.), and at what level was the 
model performance considered satisfactory? 

16. How can we use your model (i.e., Is it downloadable, proprietary, publicly available?)?

17. May we contact you again with further questions/technical assistance if necessary?

18. Can you recommend other professionals we should contact regarding hydrologic modeling, 
especially flow ecology/ecohydrology in the Southeast/Puerto Rico?  

19. Has your model ever been used in the Apalachicola-Chattahoochee-Flint (ACF) Basin? Is there any 
reason why your model would not be an appropriate choice to use in the ACF Basin, or, alternatively, 
is there any reason why your model would be an ideal choice to use in the ACF Basin?
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Table 2.2—List of Federal and State agencies, academic institutions, and environmental consultants that were 
contacted for an inventory of existing hydrologic models  

Organizationa Location Type
Total 

solicitedb
Total 

responsesb

Alabama Department of Economic and Community Affairs, Office of 
   Water Resources

Alabama State 1 1

The University of Alabama in Huntsville, Department of Civil and 
   Environmental Engineering

Alabama University 1 0

Auburn University, Alabama Water Resources Research Institute Alabama University 1 0

Auburn University, Department of Biosystems Engineering Alabama University 1 0

Auburn University, School of Forestry and Wildlife Sciences Alabama University 1 0

The University of Alabama in Huntsville, Department of Atmospheric Science Alabama University 2 0

Arkansas Department of Environmental Quality, Water Division Arkansas State 2 0

U.S. Geological Survey, Arkansas Water Science Center Arkansas Federal 1 0

Purdue University, Department of Agricultural & Biological Engineering Arkansas University 1 1

Arkansas Cooperative Fish and Wildlife Research Unit Arkansas State 1 1

University of Arkansas, Division of Agriculture, Arkansas Water Resources Center Arkansas University 2 0

University of Arkansas, Department of Biological and Agricultural Engineering Arkansas University 2 0

University of Arkansas, Department of Crop, Soil, and Environmental Science Arkansas University 1 0

U.S. Geological Survey, Global Change Research Program Colorado Federal 1 2

University of Florida, Water Resources Research Center Florida University 2 0

U.S. Geological Survey, Caribbean-Florida Water Science Center Florida Federal 2 0

Georgia Tech, Georgia Water Resources Institute Georgia University 1 0

U.S. Geological Survey, Global Change Research Program Georgia Federal 1 1

U.S. Department of Agriculture Agricultural Research Service, Southeast 
   Watershed Research

Georgia Federal 1 0

U.S. Geological Survey, South Atlantic Water Science Center Georgia Federal 1 0

University of Notre Dame, Department of Biological Sciences Indiana University 1 1

U.S. Geological Survey, Ohio-Kentucky-Indiana Water Science Center Kentucky Federal 2 2

Kentucky Energy and Environment Cabinet, Department for Environmental 
   Protection, Division of Water 

Kentucky State 3 0

University of Kentucky, Kentucky Water Resources Research Institute Kentucky University 2 0

U.S. Geological Survey, Lower Mississippi-Gulf Water Science Center Louisiana Federal 2 0

Louisiana State University, Louisiana Water Resources Research Institute Louisiana University 3 0

Mississippi State University, Mississippi Water Resources Research Institute Mississippi University 2 0

Mississippi State University, Department of Civil and Environmental Engineering Mississippi University 1 1

U.S. Geological Survey, Lower Mississippi-Gulf Water Science Center Mississippi Federal 1 0

Missouri Department of Natural Resources, Water Resources Center Missouri State 1 0

U.S. Geological Survey, Central Midwest Water Science Center Missouri Federal 3 0

University of Missouri, Missouri Water Resources Research Center Missouri University 1 0

U.S. Geological Survey, South Atlantic Water Science Center North Carolina Federal 1 0

North Carolina Department of Environmental Quality, Division of Water Resources North Carolina State 1 0

North Carolina State University, Department of Civil, Construction, and 
   Environmental Engineering

North Carolina University 2 0

Water Resources Research Institute of the University of North Carolina System North Carolina University 3 0

(continued on next page)
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Organizationa Location Type
Total 

solicitedb
Total 

responsesb

Duke University, Nicholas School of the Environment North Carolina University 1 1

U.S. Department of Agriculture Forest Service, Eastern Forest Environmental Threat 
   Assessment Center

North Carolina Federal 1 1

Tetra Tech North Carolina Consultant 1 2

Research Triangle Institute North Carolina Consultant 1 1

North Carolina State University, Department of Biological Sciences North Carolina University 1 0

Oklahoma Water Resources Board  Oklahoma State 2 1

Oklahoma State University, Oklahoma Water Resources Center Oklahoma University 2 0

Oklahoma State University, Department of Natural Resource Ecology and 
   Management 

Oklahoma University 1 0

U.S. Geological Survey, Oklahoma Water Science Center Oklahoma Federal 1 0

South Carolina Department of Natural Resources, Hydrology Section South Carolina State 1 0

U.S. Geological Survey, South Atlantic Water Science Center South Carolina Federal 1 1

Clemson University, South Carolina Water Resources Center South Carolina University 3 0

University of South Carolina, School of the Earth, Ocean and Environment South Carolina University 1 1

Tennessee Department of Environment & Conservation, Division of 
   Water Resources

Tennessee State 1 0

U.S. Geological Survey, Lower Mississippi-Gulf Water Science Center Tennessee Federal 1 1

The University of Tennessee, Knoxville, Tennessee Water Resources 
   Research Center

Tennessee University 1 0

Tennessee Technical University, Center for the Management, Utilization and 
   Protection of Water Resources

Tennessee University 1 0

Tennessee Technical University, Department of Civil & Environmental Engineering Tennessee University 1 0

Texas Commission on Environmental Quality, Office of Water, Water 
   Availability Division

Texas State 1 0

U.S. Geological Survey, Texas Water Science Center Texas Federal 5 1

Texas Water Resources Institute Texas University 2 0

U.S. Army Corps of Engineers, System-Wide Water Resources Program Texas Federal 1 0

Texas A&M University, Spatial Sciences Laboratory Texas University 1 0

Texas A&M University, Department of Civil Engineering, Environmental and Water 
   Resources Engineering Division

Texas University 1 0

U.S. Geological Survey, Virginia and West Virginia Water Science Center Virginia Federal 2 1

Virginia Tech, Virginia Water Resources Research Center Virginia University 2 0

West Virginia Department of Environmental Protection, Division of Water and 
   Waste Management

West Virginia State 1 0

U.S. Geological Survey, Virginia and West Virginia Water Science Center West Virginia Federal 2 1

a Organizations that were successfully contacted were asked to provide answers to a simple questionnaire (see table 2.1) regarding their hydrologic 
modeling efforts. 
b Total solicited = the number of individuals solicited within each organization; Total responses = the number of modeling efforts described by those 
individuals who were successfully contacted within each organization. Where total responses are greater than the total solicited, there was more than one 
modeling effort described by one or more of the individuals contacted in that organization.

Table 2.2 (continued)—List of Federal and State agencies, academic institutions, and environmental consultants 
that were contacted for an inventory of existing hydrologic models 
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Table 2.3—Summary of survey responses and a description of the general purpose of flow models used in 
Southeastern United States and Puerto Rico modeling studies 

Location of basins simulated

Organization Model type AL AR FL GA KY LA M
S

M
O

NC OK SC TN TX VA W
V

PR Use

USGS Ohio-Kentucky- 
   Indiana Water 
   Science Center

Rainfall-runoff 
(TOPMODEL) X

Assess climate change effects 
on streamflow.

USGS Ohio-Kentucky-
   Indiana Water 
   Science Center

Rainfall-runoff 
(TOPMODEL)

X

Provide historic and baseline 
streamflow hydrographs for 
several USGS gauge locations in 
the Apalachicola-Chattahoochee-
Flint (ACF) Basin.   

Mississippi 
   State University, 
   Department of Civil 
   and Environmental 
   Engineering

Rainfall-runoff 
(HSPF)

X X X

Hydrological assessment of 
listed watersheds

USGS Lower 
   Mississippi-Gulf 
   Water Science Center

Rainfall-runoff 
(PRMS) X X X

Estimate flow at ungauged 
tributaries.

USGS Lower 
   Mississippi-Gulf 
   Water Science Center

Statistical 
(regional linear 
multivariate 
regression)

X X X X

Predict ungauged stream 
characteristics; employ 
predictions to determine their 
effect on documented fish 
communities. 

Arkansas Cooperative 
   Fish & Wildlife 
   Research Unit

Statistical 
(decision trees 
and random 
forest models)

X X X

Impacts on fish and invertebrates 

USGS Virginia and 
   West Virginia Water 
   Science Center

Rainfall-runoff 
(HSPF) X

Determine flow statistics under 
climate scenarios. Identify areas 
where mussel thresholds will be 
crossed under climate change.

USGS Virginia and 
   West Virginia Water 
   Science Center

Rainfall-runoff 
(HSPF) X

Cumulative Hydrologic Impact 
Assessment for coal mining.

Duke University, 
   Nicholas School of 
   the Environment

Rainfall-runoff 
(GR4J) X

Effect of doubling CO2 on 
streamflow

USGS South Atlantic 
   Water Science Center

Statistical 
(Calibrated 
Artificial Neural 
Network)

X X

Simulate salinity levels for water 
utilities’ relicensing purposes.

USGS Texas Water 
   Science Centera

Rainfall-runoff
(RRAWFLOW)

Represent changes in response 
to climate but could also be set 
up to simulate the effects of 
groundwater withdrawals.

University of South 
   Carolina, School of 
   the Earth, Ocean and 
   Environment

Rainfall-runoff 
(HSPF) X X

Climate, land use, and water 
management effects on future 
streamflow and water quality

(continued on next page)
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Location of basins simulated

Organization Model type AL AR FL GA KY LA M
S

M
O

NC OK SC TN TX VA W
V

PR Use

Oklahoma Water 
   Resources Board

Statistical 
(CRAM) X

Administration of water rights; 
diversion of surface water and 
estimates if demands are met

University of Notre 
   Dame, Department of 
   Biological Sciencesa

Rainfall-runoff 
(SWAT)

Both climate and land use change 
scenarios can be represented.

Purdue University, 
   Department of 
   Agricultural & 
   Biological Engineering

Rainfall-runoff 
(SWAT) X

Quantify current and future 
ecosystem services and examine 
changes as a result of growing 
demand for biofuels.

USDA Forest Service, 
   Eastern Forest 
   Environmental Threat 
   Assessment Center

Rainfall-runoff 
(WaSSI) X X X X X X X X X X X X X X X X

Climate, land use, population 
growth

Tetra Tech Rainfall-runoff 
(HSPF & 
SWAT) X X X X X X

Assess the sensitivity of 
streamflow, nutrient, and 
sediment loads to climate change 
and urban development.

Research Triangle 
   Institute

Rainfall-runoff 
(GWLF)

X X X X X X

Hydrologic foundation 
development, resiliency, 
ecological flow development, 
and climate and land use change 
analyses

USGS Global Change 
   Research Program 
   (Colorado)

Rainfall-runoff 
(PRMS & 
MWBM)

X X X X X X X X Provide daily or monthly time 
series of streamflows at several 
sites across the Southeast as part 
of a USGS National Water Census 
study.

USGS Global Change 
   Research Program 
   (Georgia)

Rainfall-runoff 
(PRMS)

X X X Understand the effect of climate 
change on ecosystem responses 
as part of the USGS Southeast 
Regional Assessment Project.

a Respondent was model developer; their response did not describe application of the model. 

CRAM = a proprietary network flow model used to simulate water resources systems; GR4J = a lumped bucket-type daily rainfall-runoff model; 
GWLF = Generalized Watershed Loading Function; HSPF = Hydrological Simulation Program-Fortran; MWBM = Monthly Water Balance Model; PRMS = 
Precipitation-Runoff Modeling System; RRAWFLOW = Rainfall-Response Aquifer and Watershed Flow Model; SWAT = Soil and Water Assessment Tool; 
TOPMODEL = physically based, semi-distributed topographical watershed model; USDA = U.S. Department of Agriculture; USGS = U.S. Geological 
Survey; WaSSI = Water Supply Stress Index model.

Table 2.3 (continued)—Summary of survey responses and a description of the general purpose of flow models 
used in Southeastern United States and Puerto Rico modeling studies 

CONCLUSIONS
Here we created an inventory of existing hydrologic 
modeling efforts in the SEUS and PR. The 22 individuals 
interviewed developed and used hydrologic models 
to answer broad questions regarding the impacts of 
environmental change on water resources. With the rapid 
pace of computing technology and growth of modeling 

approaches, as well as changing threats to watersheds 
across the landscape, it is expected that this model 
inventory will continue to evolve and thus represents a 
snapshot of approaches and knowledge gaps in hydrologic 
modeling for flow-ecology science and environmental 
change assessment studies across the SEUS and PR. 
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Evaluation and Comparison of Hydrologic Model 
Performance in Predicting Observed Streamflows in 

the Southeastern United States

INTRODUCTION
Hydrologic models are commonly used to develop a 
hydrologic foundation (Poff and others 2010) because 
they have the ability to simulate monthly, daily, or 
sub-daily streamflow under baseline conditions and an 
infinite number of scenarios of flow alteration. Available 
hydrologic models vary in their levels of complexity, 
temporal and spatial resolution, and required level of 
calibration. Detailed and highly parameterized fine-
resolution models (e.g., distributed physically based 
watershed and rainfall-runoff models) are well suited for 
smaller domains but can be computationally expensive 
and difficult to parameterize at a large scale. Easily 
parameterized models (e.g., lumped regional models) are 
useful for assessing broad implications of streamflow 
alteration at a large scale and identifying potential water-
limited areas (or “hot spots”) but may have difficulty 
resolving unique sub-watershed physical processes and 
anthropogenic effects. Regardless of the hydrologic model 
used, the model must be able to reasonably replicate 
streamflow observations and ecologically relevant flow 
metrics (ERFMs) describing the five primary components 
of the flow regime (i.e., magnitude, frequency, duration, 
timing, and rate of change) under historical and current 
conditions across points of interest for regulation. The 
model must also predict changes in these metrics as a 
result of changes in climate, land use, flow regulation, 
and water withdrawals. Error (i.e., uncertainty or bias) in 
hydrologic model prediction of streamflow and ecological 
model prediction of ecosystem response to changes in 
flow (e.g., development of flow-ecology response models) 
is compounding; therefore, error in hydrologic model 
prediction of streamflow is often carried through the 
analysis and should be quantified and reported to reduce 
the probability of spurious relations and misinterpretation 
of modeling outcomes.   

Given the number of choices of hydrologic models for 
water supply and environmental flow studies (see chap. 2), 
it would be useful for resource managers to have some 
sense of the relative error in streamflow predictions 
among commonly used hydrologic models in terms of 
classical fit statistics of streamflow observations (e.g., 

bias, Nash- Sutcliffe Efficiency [NSE]) and ERFMs. 
Unfortunately, the determination as to which model is 
best suited for answering a particular ecological question 
or even whether one model is better suited for a specific 
region or for a specific portion of the flow regime (e.g., 
low flows) is hampered by a lack of comprehensive model 
comparison studies (Knight and others 2012). In addition 
to the type of hydrologic model, model inputs (e.g., 
climate, soils, land cover, etc.), calibration strategy, and the 
experience of the modeler will influence the capacity of a 
given hydrologic model to predict observed streamflow. 

The aim of this study was to address gaps in our 
understanding of differences among hydrologic models 
when applied to 195 U.S. Geological Survey (USGS) 
continuous record gauging stations in the Southeastern 
United States (SEUS). We did not evaluate model 
applications in Puerto Rico (PR) because, at the time of 
this study, none of the models were sufficiently developed 
to provide streamflow predictions at gauged locations 
in PR. Since the completion of this work, the WaSSI 
model evaluated here was parameterized to predict 
monthly streamflow in PR (Cohen and others 2017, 
Zhang and others 2018). It was not the intent of this 
study to identify any specific model that is better suited 
for streamflow prediction over another because such 
differences are as likely to be related to model calibration 
strategy, experience, and personal preference as they are 
to differences in model structure. Rather, the overarching 
goal of this investigation was to quantify and compare 
the magnitude and investigate the potential causes of 
error associated with predicted streamflows from seven 
hydrologic models of varying complexity and calibration 
strategy by computing classical hydrologic model fit 
statistics (e.g., mean bias, coefficient of determination 
[R2], root mean squared error [RMSE], and NSE) and 
bias in the prediction of ERFMs. In addition, we tested 
the hypotheses that (1) regional-scale hydrologic models 
would, in general, have poorer predictive capacity and 
higher levels of uncertainty than fine-scale models; and 
(2) models with higher levels of calibration would perform 
better than those with less calibration.
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METHODS
Model Comparison Workshop
A model comparison workshop was held on February 12, 
2013 in the Department of Forestry and Environmental 
Resources Jordan Hall at North Carolina State University. 
Workshop attendees (table 3.1; fig. 3.1) included a subset 
of the developers presented in the model inventory 
(chap. 2). The workshop included an overview of the 
project, a statement from Adam Terando (U.S. Department 
of the Interior Southeast Climate Adaptation Science 
Center [SCASC]) providing an overview of the 
ecohydrology research priority and relevance to the 
SCASC mission, an overview of the National Water 
Census model comparison study by Julie Kiang (USGS 
Office of Surface Water), descriptions of modeling work 
by all modelers, presentation of statistical comparisons 

of predicted streamflow to observations at USGS gauges, 
and a discussion comparing and contrasting modeling 
approaches and how they relate to the ability to predict 
observed streamflow. 

Model Descriptions
Specific models discussed and compared in the 
workshop were the Hydrological Simulation Program-
Fortran (HSPF); the USGS Monthly Water Balance 
Model (MWBM); two parameterizations of the USGS 
Precipitation-Runoff Modeling System (PRMS) model; 
the Soil and Water Assessment Tool (SWAT); three 
parameterizations of the Water Availability Tool for 
Environmental Resources (WATER), based on the USGS 
TOPMODEL (a physically based, semi-distributed 
topographical watershed model); the Generalized 

Table 3.1—Model comparison workshop attendees, the organizations they represent, and the hydrologic 
models used 

Attendee Organization Hydrologic model(s)

Jon Butcher Tetra Tech, Research Triangle Park, NC SWAT, HSPF

Peter Caldwella U.S. Department of Agriculture Forest Service, Eastern Forest 
Environmental Threat Assessment Center, Raleigh, NC

WaSSI

Michele Eddy Research Triangle Institute, Research Triangle Park, NC WaterFALL® (employs 
updated version of GWLF)

Lauren Hay U.S. Geological Survey, Global Change Research Program, Lakewood, CO PRMS, MWBM

Ernie Haina, b North Carolina State University, Department of Forestry and 
Environmental Resources, Raleigh, NC —

Jonathan Kennena, b U.S. Geological Survey, National Water Census, Lawrenceville, NJ —

Julie Kiang U.S. Geological Survey, Water Mission Area, Analysis and Prediction 
Branch, Reston, VA —

Jacob LaFontaine U.S. Geological Survey, Global Change Research Program, Atlanta, GA PRMS

Steven McNultya, b U.S. Department of Agriculture Forest Service, Eastern Forest 
Environmental Threat Assessment Center, Raleigh, NC —

Stacy Nelsona, b North Carolina State University, Department of Forestry and 
Environmental Resources, Raleigh, NC —

Catalina Segurab North Carolina State University, Department of Marine, Earth, and 
Atmospheric Sciences, Raleigh, NC —

Timothy Shortleya, b North Carolina State University, Department of Forestry and 
Environmental Resources, Raleigh, NC —

Ge Suna U.S. Department of Agriculture Forest Service, Eastern Forest 
Environmental Threat Assessment Center, Raleigh, NC

WaSSI

Tanja Williamson U.S. Geological Survey, Ohio-Kentucky-Indiana Water Science Center, 
currently in Lawrenceville, NJ

WATER (based on 
TOPMODEL)

a Project team member.
b Workshop attendees shown without an associated hydrologic model were project team members and/or contributors who did not provide 
model outputs for the comparison study.

GWLF = Generalized Watershed Loading Function; HSPF = Hydrological Simulation Program-Fortran; MWBM = Monthly Water Balance Model; 
PRMS = Precipitation-Runoff Modeling System; SWAT = Soil and Water Assessment Tool; TOPMODEL = physically based, semi-distributed 
topographical watershed model; WaSSI = Water Supply Stress Index model; WATER = Water Availability Tool for Environmental Resources; 
WaterFALL® = Watershed Flow and Allocation modeling system using NHDPlus.
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Figure 3.1—The model comparison workshop was a daylong event hosted by North Carolina State 
University. This workshop allowed hydrologic modelers from multiple organizations across the SEUS 
to meet in a single location and discuss similarities and differences in modeling approaches, input 
data sources, calibration strategies, and model performance. (Photo by Ge Sun, USDA Forest Service)

Watershed Loading Function (GWLF)-based WaterFALL® 
model developed by Research Triangle Institute (RTI); 
and the U.S. Department of Agriculture (USDA) Forest 
Service Water Supply Stress Index (WaSSI) model 
(table 3.2). The MWBM and WaSSI models are regional, 
large-scale monthly streamflow models, while HSPF, 
PRMS, SWAT, WATER, and WaterFALL® are more 
complex highly parameterized, fine-scale daily or hourly 
streamflow models. All of the models evaluated in this 
study were developed by different organizations, for 
different purposes, and calibrated to different degrees 
using different objective functions as described below.  

HSPF and SWAT
Both the HSPF and SWAT models used in this study 
were implemented by Tetra Tech as part of a larger study 
to characterize the sensitivity of streamflow, nutrient 
loading, and sediment loading to a range of potential 
mid-21st century climate futures in 20 large U.S. drainage 
basins (Johnson and others 2012, USEPA 2013). Model 
descriptions and information pertinent to this application 
are detailed below.

HSPF—The HSPF (Bicknell and others 2001, 2005) is 
a hydrology and water quality model commonly used for 
determination of Total Maximum Daily Loads to receiving 

waters in response to the Clean Water Act. HSPF is a 
well-documented watershed model that computes the 
water balance based on the Stanford Watershed Model 
(Crawford and Linsley 1966) in multiple surface and 
subsurface layers at an hourly time step. The water balance 
is simulated based on Philip’s infiltration (Bicknell and 
others 2001, 2005) coupled with multiple surface and 
subsurface stores (interception storage, surface storage, 
upper zone soil storage, lower zone soil storage, active 
groundwater, and inactive [deep] groundwater). Individual 
land units within a sub-basin are represented using a 
hydrologic response unit (HRU) approach that combines 
an overlay of land cover, soil, and slope characteristics. 
The stream network links the surface runoff and 
groundwater flow contributions from each of the HRUs 
and routes them through water bodies. The stream model 
includes precipitation (PPT) and evaporation from the 
water surfaces as well as streamflow contributions from 
the watershed, tributaries, and upstream stream reaches.  

SWAT—SWAT was developed to simulate the effects 
of land management practices on water, sediment, 
and agricultural chemical yields in large, complex 
watersheds with varying soils, land use, and management 
conditions over long periods of time (Neitsch and others 
2005). SWAT requires data inputs for weather, soils, 
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Table 3.2—General summary of model attributes 

Model
Time 
step Spatial resolution

Withdrawals, 
flow regulation 

simulated Land cover input

Potential 
evapotranspiration 

method Climate input

HSPF hourly HUC-10
(~410 km2)

yes 2001 NLCD
(Homer and others 

2007)

Penman-Monteith 
(Monteith 1965, 

Jensen and others 
1990)

Station 
observations 

(USEPA 2008)

MWBM monthly Aggregated 
NHDPlus 

catchments
(~78 km2)

no N/A Hamon
(Hamon 1963)

PRISM
(PRISM Climate 

Group 2013)

PRMS-SERAP daily HRU
(~200 km2)

no 2001 NLCD
(Homer and others 

2007)

Jensen-Haise 
(Jensen and Haise 

1963)

Maurer
(Maurer and 
others 2002)

PRMS-DAYMET daily Aggregated 
NHDPlus 

catchments
(~78 km2)

no 2001 NLCD
(Homer and others 

2007)

Jensen-Haise 
(Jensen and Haise 

1963)

DAYMET 
(Thornton and 
others 2013)

SWAT daily HUC-10
(~410 km2)

yes 2001 NLCD
(Homer and others 

2007)

Penman-Monteith 
(Monteith 1965, 

Jensen and others 
1990)

Station 
observations 

(USEPA 2008)

WATER IDW 1992 daily 10 m x 10 m no 1992 NLCD
(Volgelmann and 

others 2001)

Hamon
(Hamon 1963)

IDW
(Hay and others 

2002)
WATER IDW 2006 daily 10 m x 10 m no 2006 NLCD

(Fry and others 2011)
Hamon

(Hamon 1963)
IDW

(Hay and others 
2002)

WATER NR 2006 daily 10 m x 10 m no 2006 NLCD
(Fry and others 2011)

Hamon
(Hamon 1963)

NEXRAD

WaterFALL® daily NHDPlus 
catchment
(~1.0 km2)

no ca. 1970s USGS 
GIRAS (Price and 

others 2006)

Hamon
(Hamon 1963)

USDA
(Di Luzio and 
others 2008)

WaSSI monthly HUC-12
(~80 km2)

no 2006 NLCD
(Fry and others 2011)

Function of leaf 
area, PPT, Hamon 
(Sun and others 

2011b)

PRISM
(PRISM Climate 

Group 2013)

DAYMET = Daily Meteorological Data; GIRAS = Geographic Information Retrieval and Analysis System; HRU = Hydrologic Response Unit; HSPF = 
Hydrological Simulation Program-Fortran; HUC = Hydrologic Unit Code; IDW = Inverse Distance Weighted; MWBM = Monthly Water Balance Model; 
NEXRAD = Next-Generation Radar; NHD = National Hydrography Dataset; NLCD = National Land Cover Database; NR = Next-Generation Radar; PPT = 
precipitation; PRISM = Parameter-elevation Relationships on Independent Slopes Model; PRMS = Precipitation-Runoff Modeling System; SERAP = 
Southeast Regional Assessment Project; SWAT = Soil and Water Assessment Tool; USDA = U.S. Department of Agriculture; WaSSI = Water Supply 
Stress Index model; WATER = Water Availability Tool for Environmental Resources; WaterFALL® = Watershed Flow and Allocation modeling system 
using NHDPlus.

topography, vegetation, and land use to model water and 
sediment movement, nutrient cycling, and numerous 
other watershed processes. SWAT (as implemented 
here) uses the curve number approach (USDA Soil 
Conservation Service 1972) to estimate surface runoff 
and then completes the water balance through simulation 
of subsurface flows, evapotranspiration (ET), soil 
storages, and deep seepage losses at the daily time step. 
The curve number is estimated as a function of land use, 
cover, condition, hydrologic soil group, and antecedent 
soil moisture.  

HSPF and SWAT for this application—For both models, 
the 20 larger watersheds were divided into a series of 
sub-basins at approximately the Hydrologic Unit Code 
(HUC) 10-digit scale, representing the drainage areas that 
contribute to each of the stream reaches. Both the HSPF 
and SWAT models used the 2001 National Land Cover 
Database (NLCD) (Homer and others 2007) to characterize 
the land surface. For HSPF, soils are distinguished on 
the basis of hydrologic soil group (HSG) as defined in 
the State Soil Geographic (STATSGO) database (USDA 
NRCS 2012) soil coverages. The HRU definitions for 
SWAT in this application use the same land cover as HSPF 
but distinguish soils based on STATSGO’s dominant soil 
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classification, not just HSG. Withdrawals were included 
if they resulted in a modification of flow at downstream 
gauges on the order of 10 percent or more. Time series 
of observed PPT and air temperature (TEMP; hourly 
for HSPF, daily for SWAT) from 37 weather stations 
in the Apalachicola-Chattahoochee-Flint (ACF) Basin 
were obtained from the 2006 BASINS 4 Meteorological 
Database (USEPA 2008). Potential evapotranspiration 
(PET) for both HSPF and SWAT was computed using the 
Penman-Monteith energy balance method (Jensen and 
others 1990, Monteith 1965) using solar radiation, wind 
movement, cloud cover, and relative humidity estimated 
using the SWAT weather generator. A full energy balance 
approach was used because the focus of the study is 
on evaluating potential response to future climates, in 
which the relations between different energy inputs may 
change, even though a better calibration fit to current 
climate conditions can often be obtained using simpler 
temperature-based approaches when the energy inputs are 
subject to uncertainty.  

The calibration objectives for both HSPF and SWAT were 
to achieve error statistics for total streamflow volume, 
seasonal streamflow volume, and high and low streamflow 
within recommended ranges (Donigian 2000, Lumb and 
others 1994) while also maximizing the NSE (Nash and 
Sutcliffe 1970). Because the objectives of this application 
focused at the large basin scale, calibration was undertaken 
only at the HUC 8-digit and larger watershed scale. For 
this application of HSPF, four model parameters were 
the primary focus during model calibration to improve 
model fit for hydrology: INFILT (index to mean soil 
infiltration rate), AGWRC (groundwater recession rate), 
LZSN (lower zone nominal soil moisture storage), and 
BASETP (ET by riparian vegetation). For SWAT, 11 
model parameters were adjusted during model calibration 
to improve model fit in this application: curve number; 
SECO (soil evaporation compensation factor); SURLAG 
(surface runoff lag coefficient); groundwater “revap” rates; 
baseflow factor; GW_DELAY (groundwater delay time); 
GWQMN (threshold depth of water in the shallow aquifer 
required for return flow to occur); RevapMN (threshold 
depth of water in the shallow aquifer required for “revap” 
or percolation to the deep aquifer to occur); CANMAX 
(maximum canopy storage); Manning’s “n” value for 
overland flow, main channels, and tributary channels; and 
Sol_AWC (available water capacity of the soil layer [mm 
water/mm of soil]).  

PRMS-SERAP and PRMS-DAYMET
Two applications of the USGS PRMS were evaluated in 
this study: (1) a PRMS model developed for the USGS 
Southeast Regional Assessment Project (PRMS-SERAP), 
and (2) a PRMS model developed for the USGS National 

Water Census using the DAYMET daily climate input data 
provided by the Oak Ridge National Laboratory (PRMS-
DAYMET [Daily Meteorological Data]). The PRMS 
(Leavesley and others 1983, Markstrom and others 2008) 
is a deterministic, distributed-parameter, physical-process-
based hydrologic modeling system. The model simulates 
daily land-surface hydrologic processes including ET 
by the Jensen-Haise radiation method (Jensen and Haise 
1963), runoff, infiltration, and interflow in HRUs by 
balancing energy and mass budgets of the plant canopy, 
snowpack, and soil zone on the basis of distributed climate 
information (TEMP, PPT, and solar radiation). PRMS 
requires the input of daily maximum and minimum air 
TEMP and daily PPT time-series data.  

PRMS-SERAP—The PRMS-SERAP model was 
developed to provide integrated science that helps 
resource managers understand the effect of climate change 
on a range of ecosystem responses in the ACF Basin 
(LaFontaine and others 2013). For this study, daily climate 
inputs were developed for the PRMS-SERAP model using 
a 1/8-degree gridded TEMP and PPT dataset for 1950–
1999 (Maurer and others 2002). Withdrawals and flow 
regulation were considered during model calibration in 
areas where anthropogenic effects were substantial, mostly 
in the form of irrigation withdrawals (see Wen and Zhang 
2009 for details) and releases from U.S. Army Corps of 
Engineers projects. These withdrawals and regulations 
were then removed in the final model runs to simulate 
unaltered flow volumes.

PRMS-DAYMET—The PRMS-DAYMET model was 
developed to provide flow estimates at several sites 
across the Southeast as part of the USGS National 
Water Census model comparison study. The HRUs 
for the PRMS-DAYMET model were developed by 
aggregating catchments of the medium-resolution National 
Hydrography Dataset (NHDPlus) to an average size of 
78 km2. The daily climate data for PRMS-DAYMET were 
derived from the 1- x 1-km gridded DAYMET daily TEMP 
and PPT dataset for 1980–2008 (Thornton and others 
2013). No anthropogenic withdrawals were included.  

For the PRMS applications in this study, soil-zone, 
subsurface, and groundwater-reservoir parameters were 
computed using the Soil Survey Geographic database 
(SSURGO) (https://www.nrcs.usda.gov/wps/portal/nrcs/
detail/soils/survey/geo/?cid=nrcs142p2_053627), maps 
of near-surface permeability (Gleeson and others 2011), 
and hydrographs of USGS stream gauges. Land cover 
characteristics, such as impervious area, canopy density, 
and land cover type, were obtained from the 2001 NLCD 
(Homer and others 2007) and summarized per HRU. 
For land cover type, each HRU was assigned one of four 
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vegetation cover classes (bare soil, grasses, shrubs, trees) 
based on the dominant land cover type, defined as having 
the largest percentage of HRU area.  

An automated parameter estimation procedure (Duan 
and others 1994) was combined with a geographically 
nested approach to calibrate the PRMS models in two 
phases with a total of four steps using the Luca software 
(Hay and Umemoto 2006, Hay and others 2006). The 
first phase of calibration involved matching simulated 
and measured solar radiation (three model parameters) 
and PET (one model parameter), and the second phase of 
calibration involved matching simulated and measured 
streamflow volumes and timing (20 model parameters). 
The objective function in Phase I of model calibration was 
to minimize the absolute difference between predicted and 
observed monthly solar radiation and PET. The objective 
function in Phase II of model calibration depended on the 
application of PRMS. For PRMS-SERAP, the objective 
function in Phase II of model calibration was to minimize 
the normalized root mean squared error (RMSE) of 
flow volumes on an annual, monthly, and mean monthly 
basis and to minimize the normalized RMSE of daily 
flow timing using a 3-day moving average. For PRMS-
DAYMET, Phase II was expanded to four steps with the 
objective functions targeted at minimizing the normalized 
RMSE at a daily time step instead of the 3-day moving 
average of the PRMS-SERAP model. The four steps of 
calibration for PRMS-DAYMET included (1) matching 
annual, monthly, and mean-monthly flow volumes; 
(2) matching all daily streamflow values; (3) matching 
high-flow days only; and (4) matching low-flow days only.

WATER
WATER, developed within the USGS Center for 
Applied Hydrologic Solutions, is a spatially distributed, 
object-oriented, decision-support system that combines 
the expertise of numerous hydrologists, pedologists, 
computer scientists, and other discipline experts into 
a user-friendly computer application for managing 
water resources. WATER is based on the TOPMODEL 
hydrologic model and incorporates physiographic data 
that quantitatively describe topography and soil water 
storage. TOPMODEL, which simulates the variable-
source-area concept of streamflow generation (Wolock 
1993), is well documented (Beven and Kirkby 1979) 
and has been successfully applied in many environments 
(Beaujouan and others 2001, Boyer and others 1996, 
Engel and others 2002). There are three fundamental 
assumptions associated with TOPMODEL: (1) steady-
state recharge to the groundwater; (2) hydraulic gradient 
of the water table that approximates the surface slope; and 
(3) a transmissivity profile that decreases exponentially 
with depth. The foundation of TOPMODEL is built on 
the assumption that the land surface is pervious to rainfall 

and that water movement is a function of topography. 
Separate calculations were added from the USDA Natural 
Resources Conservation Service (NRCS) TR-55 method 
(USDA NRCS 1986) to simulate the disposition of water 
for impervious areas of the basin using runoff curve 
numbers specific to pavement. This simulated runoff 
from impervious-surface areas was then input to the 
TOPMODEL mass-balance equation at the beginning of 
each time step to partition runoff derived from pervious 
areas into its surface and subsurface components. 

WATER as applied here was developed to provide historic 
and baseline streamflow hydrographs for several USGS 
gauge locations in the ACF Basin based on an approach 
developed for Kentucky (Williamson and others 2009, 
2013) with a combination of the U.S. General Soil Map 
(STATSGO2) and the SSURGO. Land cover data from 
both the 1992 NLCD (Vogelmann and others 2001) and 
2006 NLCD (Fry and others 2011) were used in model 
simulations. Both the National Weather Service River 
Forecast Centers Next-Generation Radar (NEXRAD, 
hereafter NR) and Inverse Distance Weighted (IDW; 
Hay and others 2002) climate inputs were used. Three 
combinations of land cover and climate inputs were 
evaluated in this study and are identified as WATER IDW 
1992, WATER IDW 2006, and WATER NR 2006.  

WATER was calibrated for six basins in the ACF Basin 
using a combination of manual calibration and the 
Parameter Estimation Tool (PEST) (Doherty 2008) on 
daily flows. For PEST, the weight of each observation was 
defined as 

ω = yi × σ2

where 	

  w is the weight of an individual observation

  yi is an individual daily observation

  s2 is the variability in error for an individual observation 

If yi < mean daily flow for the site, then w = 0.1; if yi > 
mean daily flow for the site, then w = 0.2.

For days where PPT occurred, w = 0; flow on event days 
was given a zero weight because WATER uses a random 
distribution of daily PPT, so it is unlikely that the initial 
flow from a PPT event will be matched simply due to 
differences in how PPT was modeled versus how the event 
actually occurred. WATER was calibrated by adjusting 
rooting depth and a spatial coefficient that scales the 
topographic wetness index. 
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WaterFALL®

Research Triangle Institute’s WaterFALL® modeling 
system employs an updated version of a well-established 
hydrologic model, the Generalized Water Loading 
Function (GWLF) (Haith and Shoemaker 1987, Haith 
and others 1992), that has been modified to (1) run on 
the U.S. Environmental Protection Agency’s (USEPA) 
enhanced NHDPlus hydrologic network, (2) accept 
parameterization from national datasets, and (3) include 
the impacts of human alterations on streamflows. 
WaterFALL® utilizes the hydrologic simulation within 
GWLF for each catchment of the NHDPlus network in 
the watershed of interest and then accumulates and moves 
water downstream with an embedded time-lagged routing 
routine, providing a distributed hydrologic model across 
the NHDPlus. Parameterization of WaterFALL® occurs 
through the geoprocessing of national datasets for land 
cover, soils, and climate (mean daily TEMP and PPT) 
to each NHDPlus catchment. Each land cover class in a 
catchment is characterized by the predominant HSG and 
predominant percent sand, silt, and clay for the underlying 
soil forming an HRU for runoff calculation within the 
catchment. Mean TEMP and PPT are quantified by 
catchment. Additional basin-specific characteristics such 
as water uses may also be indexed to each catchment from 
local data sources. 

Like SWAT and WATER, surface runoff in WaterFALL® 
is computed on a daily basis using the curve number 
method across each land cover type in a catchment 
(USDA Soil Conservation Service 1972). Discharge 
from shallow groundwater is computed using a lumped 
parameter catchment-level water balance for unsaturated 
and shallow saturated zones controlled by the available 
water capacity (AWC) of the unsaturated zone, a recession 
coefficient (RCoeff) providing the rate of release from 
the saturated zone to the stream channel, and a first-
order approximation of infiltration losses to deep aquifer 
storage simulated using a seepage coefficient (SEEP). 
The seepage release constitutes a loss from the system, 
where the water is no longer available to reach the stream 
in the temporal context of daily rainfall-runoff modeling. 
Daily ET from the unsaturated zone is computed using a 
land use-based cover factor, and PET is computed using 
the Hamon temperature-based method (Hamon 1963). 
Three model parameters (AWC, RCoeff, and SEEP) are 
adjusted during an automated calibration process using a 
customized version of the PEST. Because of the physical 
basis of the AWC and RCoeff parameters, a priori values 
for the parameters are indexed to individual catchments 
within the WaterFALL® database, and a multiplier across 
the physically based values is adjusted during calibration. 
The SEEP parameter is set through calibration and 
consideration of local conditions.

The application of WaterFALL® used for this study was 
developed to create a hydrologic foundation for detailed 
assessment of human and climate effects on stream and 
river flows, including the effects of hydrologic alterations 
on aquatic habitats in the SEUS at the NHDPlus catchment 
scale (~1.0 km2) (Kendy and others 2011). For this study, 
climate inputs included daily PPT and TEMP from a 
4- x 4-km national dataset obtained from the USDA 
(Di Luzio and others 2008), land cover was based on 
the baseline condition assessment represented by the 
USGS Geographic Information Retrieval and Analysis 
System (GIRAS) land cover (Price and others 2006), 
and soils data were obtained from SSURGO (https://
www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/
geo/?cid=nrcs142p2_053627). Although water system 
discharges and withdrawals were obtained from State 
databases on public and non-public systems for other 
scenarios in the SEUS study, the WaterFALL® model 
simulations contributing to this study were unaltered by 
humans. WaterFALL® was calibrated at several USGS 
gauge locations in the study area for periods in the 1970s, 
commensurate with the land use coverage used to simulate 
a less-altered baseline for the SEUS study. Although 
performance was validated with later periods, some 
differentiation from the other models is expected where 
the calibration period more closely matched the period of 
this study. The three model calibration parameters (AWC, 
RCoeff, and SEEP) were optimized to minimize the 
differences in log-transformed daily flows, giving equal 
weight to differences in streamflows at the low and high 
end of the hydrograph.  

MWBM
The USGS MWBM (Hay and McCabe 2002, McCabe 
and Markstrom 2007, McCabe and Wolock 2011) is 
based on the monthly Thornthwaite water balance model 
(Thornthwaite 1948). PET is calculated from monthly 
TEMP using the Hamon equation (Hamon 1963). When 
PPT exceeds PET in a given month, actual ET is equal to 
PET. Water in excess of PET replenishes soil-moisture 
storage. When soil-moisture storage reaches field capacity 
during a given month, the excess water becomes surplus. 
In a given month, some percentage of the total surplus 
becomes runoff, and the remaining surplus is carried 
over to the following month. Like PRMS-DAYMET, the 
MWBM used in this study was developed to provide flow 
estimates at several sites across the Southeast as part of the 
USGS National Water Census model comparison study. 
The model was run on the same HRUs as were developed 
for the PRMS-DAYMET model and used PRISM 
(Parameter-elevation Relationships on Independent Slopes 
Model)-based monthly precipitation and TEMP estimates 
(PRISM Climate Group 2013). Four model parameters 
were adjusted during model calibration: PETfac (a PET 
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correction factor), ROfac (percentage of the total surplus 
that becomes runoff), WHC (water holding capacity), 
and Pbias (monthly PPT bias). The calibration objective 
was to minimize normalized RMSE and bias using the 
same algorithms as the PRMS-SERAP and PRMS-
DAYMET models.

WaSSI
The WaSSI model was developed by the Forest Service 
to assess the effect of climate change, land use change, 
and population growth on water supply stress, river flows, 
and aquatic ecosystems across the conterminous United 
States (Caldwell and others 2012, Sun and others 2011b). 
WaSSI has been successfully used in climate change 
assessments in the Eastern United States (Lockaby and 
others 2011, Marion and others 2013, Sun and others 
2013, Tavernia and others 2013) and for examining the 
nexus of water and energy at the national scale (Averyt 
and others 2011, 2013). WaSSI is an integrated monthly 
water balance and flow routing model that simulates the 
full hydrologic cycle for each of 10 land cover classes at 
the 12-digit Hydrologic Unit Code (HUC) scale. The 10 
land cover classes are aggregated from the 17 classes of 
the 2006 National Land Cover Database (NLCD) (Fry and 
others 2011). Infiltration, surface runoff, soil moisture, and 
baseflow processes for each HUC watershed land cover 
were computed using algorithms of the Sacramento Soil 
Moisture Accounting Model (SAC-SMA) (Burnash 1995, 
Burnash and others 1973). STATSGO databases (USDA 
NRCS 2012) were used to compute the 11 SAC-SMA 
soil input parameters (Koren and others 2003). Monthly 
ET was modeled with an empirical equation derived 
from multisite eddy covariance ET measurements (Sun 
and others 2011a, 2011b). Required data to estimate ET 
included monthly mean Moderate Resolution Imaging 
Spectroradiometer (MODIS) MOD15A2 leaf area index 
(LAI) (Zhao and others 2005), Hamon PET calculated as 
a function of TEMP and latitude (Hamon 1963), and PPT. 
This estimate of ET was then constrained by the soil water 
content computed by the SAC-SMA algorithm during 
extreme water-limited conditions. Monthly PPT and air 
TEMP inputs were based on PRISM estimates (PRISM 
Climate Group 2013). All water balance components were 
computed independently for each land cover class within 
each HUC watershed and accumulated to estimate the 
totals for the watershed. For the NLCD-based impervious 
cover fraction, storage and ET were assumed to be 
negligible, and thus all PPT falling on the impervious 
portion of a watershed for a given month was assumed to 
generate surface runoff in the same month and was routed 
directly to the watershed outlet. No anthropogenic water 
use was included, and the model was run using off-the-
shelf input datasets without calibration.  

Site Description and Observed Streamflow Sites
The study area included USGS streamflow gauges across 
eight States in the SEUS (fig. 3.2). Central to the study 
area is the ACF Basin which drains approximately 52,000 
km2 of Georgia, Alabama, and Florida. For over 2 decades, 
there have been periodic conflicts over water resources 
in the ACF Basin among Georgia, Alabama, and Florida 
and other stakeholders that depend on the river system for 
public supply, industry, power generation, and agriculture. 
As the region has grown and developed over the past 50 
years, competition among all water users has become 
more pronounced, particularly during drought conditions 
(Seager and others 2009). As a result, the basin has been 
intensely studied over the last decade with multiple 
modeling efforts taking place to evaluate drought and 
environmental change effects on water supply and aquatic 
ecosystems (e.g., Alley and others 2013, Freeman and 
others 2013, Georgakakos and others 2010, LaFontaine 
and others 2013).	

The gauges were selected because they had long records 
of continuous streamflow measurements, and, to our 
knowledge, there were no major dams, diversions, etc. that 
substantially altered the flow regime. While we attempted 
to limit this study to basins with minimally altered flow 
regimes, there could be unknown anthropogenic processes 
in the basins that are not accounted for in the models and 
could affect model predictive performance. Drainage 
areas of the 195 sites ranged from 14 to 44 548 km2. The 
number of gauges and temporal extents varied among 
models (fig. 3.2, table 3.3), so model performance was 
not directly comparable across all gauges. However, a 
subset of gauges (table 3.4) were simulated by the HSPF, 
PRMS-SERAP, PRMS-DAYMET, SWAT, WaterFALL®, 
MWBM, and WaSSI models (i.e., all models except the 
three parameterizations of WATER) from 1980–1999. 
Models were compared in two ways: first, by comparing 
all models across all gauges and time periods simulated 
irrespective of whether or not simulations were performed 
at the same sites (fig. 3.2, table 3.3), and second, by 
directly comparing model predictions at the subset of 
gauges simulated by HSPF, PRMS-SERAP, PRMS-
DAYMET, SWAT, WaterFALL®, MWBM, and WaSSI 
models (fig. 3.3, table 3.4).

The five gauges simulated by HSPF, PRMS-SERAP, 
PRMS-DAYMET, SWAT, WaterFALL®, MWBM, and 
WaSSI models from 1980–1999 were all located in the 
ACF Basin (fig. 3.3) ranging in drainage area from 637 to 
4792 km2 with mean annual PPT ranging from 1282 mm 
to 1728 mm and mean annual TEMP ranging from 13.9 
to 18.7 °C (table 3.4). Land cover ranged from mostly 
forested (site 1: Chattahoochee River near Cornelia, GA), 
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Figure 3.2—Spatial distribution of USGS streamflow gauges in the SEUS used to evaluate model 
performance in predicting observed streamflows. Colors of the gauge sites indicate the number of 
models that simulated streamflow for that site.

to highly urbanized (site 2: Sweetwater Creek near Austell, 
GA), to mixed agriculture and forest along the southern 
extent of the ACF Basin (site 5: Ichawaynochaway Creek 
at Milford, GA). The amount of impervious area ranged 
from 0.4 to 9.4 percent and was highly related to the 
amount of developed land in the basin (R2 = 0.986).

Evaluation and Comparison of Error 
in Modeled Flows
In this study, we compared classical hydrologic model fit 
statistics among model applications, sites, and levels of 
calibration (1) over all sites and time periods simulated by 
each model and (2) over the five sites simulated by HSPF, 
PRMS-SERAP, PRMS-DAYMET, SWAT, WaterFALL®, 
MWBM, and WaSSI models from 1980–1999. Classical 
hydrologic model fit statistics were computed for each 
model and site at the monthly time step for all seven 
models and at the daily time step for hourly and daily 
models only. Fit statistics evaluated included RMSE, R2, 
bias in mean streamflow, and the NSE statistic (Nash and 
Sutcliffe 1970). The NSE can range from negative infinity 
to 1.0; the closer NSE is to 1.0, the better the model fit to 
observations. Negative values of NSE indicate that using 
the mean of the observations provides a better fit than 
the model. NSE values that are >0.50, >0.65, and >0.75 
for prediction of monthly streamflow have been viewed 

as indicative of satisfactory, good, and very good model 
performance, respectively (Moriasi and others 2007). 
Similarly, bias in mean streamflow within ±25, ±15, and 
±10 percent is indicative of satisfactory, good, and very 
good model performance, respectively (Moriasi and 
others 2007).

As discussed previously, models evaluated in this study 
were developed by different agencies, for different 
purposes, with different data inputs and spatial scales, and 
were calibrated using different objective functions. Some 
models were not calibrated at all, and some calibrated 
models were either specifically calibrated at these sites 
during model development or were calibrated for another 
streamflow gauge downstream. Some model calibration 
included adjusting PPT, solar radiation, and PET inputs. 
To examine the role that the level of model calibration 
plays in predictive performance, we define four levels 
of increasing calibration intensity to form a basis for 
comparison among models: calibration level A models 
are uncalibrated (i.e., WaSSI); calibration level B models 
are calibrated to a downstream gauge (i.e., some HSPF, 
SWAT, and WaterFALL® sites); calibration level C models 
are calibrated specifically for that site (i.e., some HSPF, 
SWAT, WATER, and WaterFALL® sites); and calibration 
level D models are calibrated specifically for that site, 
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Table 3.3—Summary of calibration level for gauges simulated by each model  

Model
Number of 

gauges

Drainage area  
(km2)

Time period

Number of gauges in 
calibration levela

Minimum Maximum Median A B C D

HSPF 12 2244 44 548 4274 10/1973–9/2003 0 3 9 0

PRMS-SERAP 27 92 44 548 834 10/1951–12/1999 0 0 0 27

PRMS-DAYMET 174 14 39 075 435 10/1980–9/2011 0 0 0 174

SWAT 12 2244 44 548 4274 10/1973–9/2003 0 3 9 0

WATER IDW 1992 3 262 4792 3160 1/1981–12/2008 0 0 3 0

WATER IDW 2006 9 23 7563 705 1/1981–12/2008 0 0 9 0

WATER NR 2006 9 23 7563 521 10/2001–12/2010 0 0 9 0

WaterFALL® 26 14 4792 254 1/1980–12/2006 0 2 24 0

MWBM 175 14 39 075 440 1/1980–12/2011 0 0 0 175

WaSSI 184 14 44 548 456 10/1980–9/2010 184 0 0 0

a Calibration levels include: (A) uncalibrated, (B) calibrated to downstream gauge, (C) calibrated specifically for site, and (D) calibrated specifically for 
site with adjusted precipitation, solar radiation, and potential evapotranspiration (PET) inputs. 

DAYMET = Daily Meteorological Data; HSPF = Hydrological Simulation Program-Fortran; IDW = inverse distance weighted; MWBM = Monthly Water 
Balance Model; NR = next generation radar; PRMS = Precipitation-Runoff Modeling System; SERAP = Southeast Regional Assessment Project; 
SWAT = Soil and Water Assessment Tool; WaSSI = Water Supply Stress Index model; WATER = Water Availability Tool for Environmental Resources; 
WaterFALL® = Watershed Flow and Allocation modeling system using NHDPlus.

Table 3.4—Descriptionsa of the five U.S. Geological Survey continuous record gauges simulated by HSPF, PRMS-
SERAP, PRMS-DAYMET, SWAT, WaterFALL®, MWBM, and WaSSI models (1980–1999)

Site number 1 2 3 4 5

Station ID 02331600 02337000 02342500 02347500 02353500
Station name Chattahoochee River 

near Cornelia, GA
Sweetwater Creek 
near Austell, GA

Uchee Creek near 
Fort Mitchell, AL

Flint River at 
US 19, near 

Carsonville, GA

Ichawaynochaway 
Creek at Milford, GA

Drainage area (km2) 816 637 834 4792 1606
Screening comments  
   for alteration

Forested headwaters, 
mixed light agriculture/
forest/suburban, many 
flood retention ponds 

on tributaries

Urban basin Urban in 
headwaters of 
main tributary

Upstream urban Proximate irrigated 
agriculture, many small 
ponds in headwaters, 
small towns on some 

tributaries
Developed 8.8% 39% 8.1% 13.9% 3.3%
Impervious 1.1% 9.4% 1.3% 3.6% 0.4%
Forested 72% 41% 52% 55% 39%
Agriculture 13% 11% 16% 16% 37%
Mean TEMP (°C) 13.9 15.3 17.4 16.8 18.7
Mean PPT (mm yr-1) 1728 1384 1320 1282 1330
Mean runoff (mm yr-1) 615 497 448 411 426
Runoff coefficient 36% 36% 34% 32% 32%
a Descriptive watershed data is from Falcone and others (2010) and Falcone (2011).

PPT = precipitation; TEMP = air temperature.



#

#

#

#

#

!

!

!!

!

!
!

!

!

!

!

!

!!

!

Tampa

Athens

Atlanta Augusta

Columbus Savannah

Clearwater

Montgomery

Birmingham

Huntsville

Gainesville

Tallahassee

Jacksonville

GA

FL

AL

SC

TN NC

  Legend
# Gauge station

Gauged basins
Apalachicola-Chattahoochee-Flint Basin̄

0 10050 km

1

2

4

5

3

20

Hydrologic Modeling for Flow-Ecology Science in the Southeastern United States and Puerto Rico

Figure 3.3—Map showing the location of the five USGS continuous record 
gauges and associated drainage basins in the Apalachicola-Chattahoochee-
Flint Basin used to compare simulated flow predictions from the HSPF, 
PRMS-SERAP, PRMS-DAYMET, SWAT, WaterFALL®, MWBM, and WaSSI models 
(1980–1999).

and PPT, solar radiation, and PET inputs were adjusted as 
part of the calibration process to account for uncertainty 
in gridded climate estimates (i.e., PRMS models and 
MWBM) (tables 3.3 and 3.5).

We also evaluated differences between predicted and 
observed ERFMs across the five hourly and daily models 
over the five sites simulated by HSPF, PRMS-SERAP, 
PRMS-DAYMET, SWAT, and WaterFALL® models from 
1980–1999. The monthly MWBM and WaSSI models 
were not evaluated for prediction of ERFMs because many 
of the ERFMs require a daily time step to be calculated. 
Predicted and observed daily mean flows were imported 
into the EflowStats package, an R version of the National 
Hydrologic Assessment Tool (NATHAT) (Henriksen 
and others 2006) developed by the USGS Center for 
Integrated Data Analytics and available on GitHub at 
https://github.com/USGS-R/EflowStats. This R package 

was developed to assist water resource professionals with 
characterizing the five major components of the flow 
regime (i.e., magnitude, frequency, duration, timing, and 
rate of change) considered by many to be important in 
shaping ecological processes in streams (Henriksen and 
others 2006, Kennen and others 2007, Olden and Poff 
2003). A total of 175 ERFMs were evaluated for this 
study. Scatterplots were used to examine data distributions 
and to detect potential outliers in the ERFMs; metrics 
with extreme outliers or with highly limited data ranges 
were removed from further consideration. A Spearman 
rank correlation matrix (SAS Institute Inc. 1989) on the 
reduced set of ERFMs was then examined to eliminate 
any remaining redundant variables with a Spearman’s 
rho >0.75. In cases where two metrics accounting for 
similar aspects of the flow regime were highly collinear, 
selection was based on best professional judgment. 
This approach was highly parsimonious and permitted 
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Table 3.5—Level of model calibration by site for the five sites simulated by HSPF, PRMS-
SERAP, PRMS-DAYMET, SWAT, WaterFALL®, MWBM, and WaSSI models from 1980–1999 

Model

Number of 
parameters 

adjusted Calibration objective function Site
Level of 

calibrationa

HSPF 4 Total, seasonal, high, and low streamflow 
within recommended ranges (Donigian 2000, 
Lumb and others 1994), maximize daily NSE

1 C
2 B
3 B
4 B
5 C

PRMS-SERAP 24 Minimize normalized RMSE of annual, monthly, 
and mean monthly flow volumes, and minimize 
normalized RMSE of daily flow timing using a 

3-day moving average

1 D
2 D
3 D
4 Db

5 D
PRMS-DAYMET 24 Minimize normalized RMSE of annual, monthly, 

mean monthly, and daily flow volumes
1 D
2 D
3 D
4 D
5 D

SWAT 11 Total, seasonal, high, and low streamflow 
within recommended ranges (Donigian 2000, 
Lumb and others 1994), maximize daily NSE

1 C
2 B
3 B
4 B
5 C

WaterFALL® 3 Minimize bias in log-transformed daily flows 1 C
2 C
3 B
4 C
5 B

MWBM 4 Minimize normalized RMSE of annual, monthly, 
and mean monthly flow volumes

1 D
2 D
3 D
4 D
5 D

WaSSI 0 N/A 1 A
2 A
3 A
4 A
5 A

a Calibration levels include: (A) uncalibrated, (B) calibrated to downstream gauge, (C) calibrated specifically for site, 
and (D) calibrated specifically for site with adjusted precipitation, solar radiation, and potential evapotranspiration 
(PET) inputs.
b PRMS-SERAP was calibrated to a downstream gauge at site 4, but this calibration adjusted precipitation, solar 
radiation, and potential evapotranspiration inputs. For the purpose of comparison among calibration levels, PRMS-
SERAP for this site was set at level D.

DAYMET = Daily Meteorological Data; HSPF = Hydrological Simulation Program-Fortran; MWBM = Monthly Water 
Balance Model; NSE = Nash-Sutcliffe Efficiency; PRMS = Precipitation-Runoff Modeling System; RMSE = root mean 
squared error; SERAP = Southeast Regional Assessment Project; SWAT = Soil and Water Assessment Tool; WaSSI = 
Water Supply Stress Index model; WaterFALL® = Watershed Flow and Allocation modeling system using NHDPlus.
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the retention of important streamflow metrics which 
were highly interpretable and management oriented. 
It also helped avoid the possibility of establishing 
significant (p <0.05) correlations among a large suite of 
hydrologic variables simply by chance and introducing 
interdependencies among multiple explanatory variables 
(King and others 2005, Van Sickle 2003). Bias in the 
resulting subset of ERFMs was quantified by computing 
the percent difference between the predicted and observed 
flow metric for each model and site. A hydrologic 
uncertainty of ±30 percent (hereafter range of uncertainty) 
was used to aid in placing model prediction bias into 
context with inherent variability in streamflow and flow 
measurement (Murphy and others 2013). 

All model streamflow predictions were compared to 
USGS flow observations at each site. After comparing 
classical fit statistics and prediction of ERFMs for each 
model, we explored differences in model structure, 
inputs, and calibration strategy that may explain 
differences in predictive performance. In addition, we 
examined differences in model input for monthly PPT 
and predicted ET, runoff, and soil moisture at site 4 
(02347500, Flint River near Carsonville, GA; table 3.4; 
fig. 3.3) and the role these differences may play in the 
predicted water balance and model error for the HSPF, 
PRMS-SERAP, PRMS-DAYMET, SWAT, WaterFALL®, 
MWBM, and WaSSI models. PPT, ET, and runoff were 
directly comparable among all five models; however, soil 
moisture is represented differently in the flow models. 
To accommodate direct comparison, we standardized 
soil moisture predictions by dividing the monthly mean 
soil moisture by the maximum soil moisture storage for 
each model.

RESULTS
All Gauges Simulated by Each Model
Median model fit statistics over all gauges simulated by 
each model are shown in table 3.6. Note that the model fit 
statistics in table 3.6 are not directly comparable across 
models because the specific gauges and time periods 
simulated differed among models. In general, models 
captured the magnitude, variability of observed flows, and 
mean flow for the gauges and time periods they simulated 
with median absolute bias in mean flow <6 percent across 
most models. The WATER IDW simulations tended to 
show high positive bias in many of the fit statistics. There 
was a tendency among some models to overestimate low 
flows. For example, the median bias in 10th percentile 
monthly flows was +17.1, +7.6, +37.0, +4.8, and +15.0 
percent for HSPF, PRMS-SERAP, PRMS-DAYMET, 
WaterFALL®, and WaSSI, respectively. High flows 
were generally well predicted, with median bias in 90th 
percentile monthly flows within ±4.3 percent among most 
models. Although bias in predicted low flows was greater 

than that of high flows in relative terms (i.e., percent), 
there was little difference in low- and high-flow bias in 
absolute terms (i.e., cubic feet per second [cfs]). With the 
exception of WATER NR 2006, models generally under-
predicted the coefficient of variation (CV) of observed 
flows regardless of the time scale. For example, the 
median bias in the CV in daily flows among daily time 
step models ranged from -2.6 percent (WaterFALL®) to 
-20.8 percent (PRMS-DAYMET), while that of WATER 
NR 2006 was +6.2 percent. Winter (December–February) 
and early spring (March–May) flows were generally well 
predicted, but late spring, summer, and early fall flows 
(June–November) were often over-predicted. This likely 
reflects the over-prediction of low flows because the 
lowest flows on an annual basis typically occur during the 
summer and early fall months. Model performance was 
satisfactory or better according to the Moriasi and others 
(2007) criteria for monthly NSE (>0.50) and bias in mean 
flow (within ±25 percent) at most of the gauges simulated 
by each model (fig. 3.4, table 3.7). 

Comparison of Models for the Five 
Gauges Simulated by Select Models 
from 1980– 1999
As mentioned previously, the number of gauges and 
temporal extents varied among models, so model 
performance was not directly comparable across all 
gauges. However, a subset of gauges (table 3.4) were 
simulated by the HSPF, PRMS-SERAP, PRMS-DAYMET, 
SWAT, WaterFALL®, MWBM, and WaSSI models (i.e., 
all models except the three parameterizations of WATER) 
from 1980–1999, allowing for direct comparisons among 
these models for the same sites and time periods. A 
complete summary of this comparison can be found in 
Caldwell and others (2015). In general, HSPF, PRMS-
SERAP, PRMS-DAYMET, SWAT, WaterFALL®, MWBM, 
and WaSSI models captured the magnitude and variability 
of observed streamflows at the five study sites (table 3.8, 
figs. 3.5 and 3.6). The median bias in mean streamflow 
across sites by model ranged from -15.1 percent 
(WaterFALL®, site 5, calibration level B) to +15.4 percent 
(WaSSI, site 5, calibration level A), while median absolute 
bias across sites by model ranged from 2.5 percent 
(PRMS-DAYMET, site 1, calibration level D) to 15.4 
percent (WaSSI, site 5, calibration level A). The median 
monthly NSE across all five study sites by model ranged 
from 0.64 (SWAT, site 2, calibration level B) to 0.87 
(PRMS-SERAP, site 4, calibration level D). As expected, 
fit statistics for the daily models at the monthly time step 
were superior to the fit statistics at the daily time step for 
daily and sub-daily models. The median daily NSE across 
sites for the daily models (table 3.8) ranged from 0.37 
(HSPF, site 5, calibration level C) to 0.80 (PRMS-SERAP, 
site 5, calibration level D). Using model performance 
criteria for bias and monthly NSE (Moriasi and others 
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Table 3.6—Median model fit statistics over all gauges simulated by each model  

Statistica HSPF
PRMS- 
SERAP

PRMS- 
DAYMET SWAT

WATER 
IDW 
1992

WATER 
IDW 
2006

WATER 
NR 

2006 WaterFALL® MWBM WaSSI

Number of gauges 12 27 174 12 3 9 8 26 175 184
Calibration levelb B, C D D B, C C C C B, C D A
Bias mean flow 5.9% 2.8% 3.8% 3.2% 38.9% 32.4% -0.3% 2.6% -0.9% 5.7%
Bias median daily flow 3.5% 10.7% 22.0% 6.1% 37.2% 9.1% -41.3% 4.1% N/A N/A
Bias median monthly flow 5.5% 4.5% 10.6% -0.0% 19.5% 4.0% -43.5% 6.6% -0.8% 14.9%
Bias median annual flow 2.1% 4.0% 4.4% 1.0% 35.5% 35.8% 4.2% 1.5% -1.1% 7.1%
Bias 10th percentile daily flow 9.6% -7.0% 25.4% -18.5% 4.4% -7.8% -25.7% 2.7% N/A N/A
Bias 10th percentile monthly flow 17.1% 7.6% 37.0% -9.3% -11.2% -22.0% -32.5% 4.8% -7.6% 15.0%
Bias 90th percentile daily flow 1.4% -1.0% 1.4% -1.6% 60.2% 57.3% 23.3% 9.6% N/A N/A
Bias 90th percentile monthly flow 4.3% -0.8% -3.2% 0.5% 66.7% 51.4% 32.0% -2.8% -0.6% -0.1%
Bias CV daily flow -4.1% -16.0% -20.8% -18.6% -13.6% -15.4% 6.2% -2.6% N/A N/A
Bias CV monthly mean flow 2.3% -4.0% -13.8% 9.2% 5.7% 0.6% 26.5% -10.5% -4.9% -10.7%
Bias CV annual mean flow -12.7% -3.5% -12.3% 8.0% 7.8% 1.6% 25.0% -11.0% -0.9% -7.9%
Bias January mean flow 6.0% 0.1% 8.4% 2.0% 58.6% 53.9% -4.5% 9.5% -0.6% 9.0%
Bias February mean flow 6.5% -1.7% -0.8% 4.2% 57.9% 66.4% 19.4% 2.3% 3.0% 1.5%
Bias March mean flow 4.3% -5.2% -11.6% 3.5% 50.7% 60.0% 26.2% -5.5% -2.9% -8.4%
Bias April mean flow 5.3% -4.6% -12.4% 4.8% 51.6% 49.3% 31.0% -7.6% -0.3% -7.4%
Bias May mean flow 11.6% 1.8% -5.9% 11.1% 33.0% 10.3% -1.4% 0.0% -0.0% -5.4%
Bias June mean flow 21.7% 18.7% 7.4% 12.6% 9.4% -15.0% -32.7% 0.1% 9.3% 10.7%
Bias July mean flow 12.3% 16.7% 15.1% 8.4% -9.3% -17.2% -28.3% 0.9% 2.1% 17.3%
Bias August mean flow 12.9% 26.9% 27.0% -3.4% 20.0% -1.4% -42.7% 4.1% -4.7% 27.9%
Bias September mean flow 9.3% 26.0% 30.0% 2.7% 20.9% -20.6% -35.6% 7.2% -4.6% 31.5%
Bias October mean flow 8.0% 10.1% 26.5% 2.7% 17.4% 7.1% -7.8% 15.0% -12.5% 22.1%
Bias November mean flow 1.7% -4.6% 15.5% -5.1% 24.2% 22.1% -4.9% 6.1% 0.4% 19.9%
Bias December mean flow -1.8% -7.5% 11.6% -9.0% 54.3% 56.9% 2.4% 8.9% -5.6% 10.4%
NSE daily flow 0.62 0.73 0.69 0.42 0.19 0.13 -0.09 0.30 N/A N/A
NSE monthly flow 0.83 0.83 0.84 0.59 0.30 0.30 0.65 0.79 0.84 0.74
NSE annual flow 0.76 0.80 0.81 0.49 -0.72 -0.47 -0.70 0.66 0.87 0.74

a Note that these statistics are not directly comparable across models because they simulated different gauges over different time periods ranging from 
4 to 48 years between 1951 and 2011. 
b Calibration levels include: (A) uncalibrated, (B) calibrated to downstream gauge, (C) calibrated specifically for site, and (D) calibrated specifically for site 
with adjusted precipitation, solar radiation, and potential evapotranspiration (PET) inputs.

CV = coefficient of variation; DAYMET = Daily Meteorological Data; HSPF = Hydrological Simulation Program-Fortran; IDW = Inverse Distance Weighted; 
MWBM = Monthly Water Balance Model; NR = Next-Generation Radar; NSE = Nash-Sutcliffe Efficiency; PRMS = Precipitation-Runoff Modeling System; 
SERAP = Southeast Regional Assessment Project; SWAT = Soil and Water Assessment Tool; WaSSI = Water Supply Stress Index model; WATER = Water 
Availability Tool for Environmental Resources; WaterFALL® = Watershed Flow and Allocation modeling system using NHDPlus.
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Figure 3.4—Distribution of bias in mean flow (A) and monthly NSE (B) across all sites simulated by each model. Only 
NSE values >0 are shown. The region highlighted in green is the bound for satisfactory model performance (Moriasi and 
others 2007) with monthly NSE >0.50 and bias in mean flow <±25 percent.

2007), all models had satisfactory or better performance at 
most sites (fig. 3.6). Model performance was satisfactory 
or better for mean streamflow bias (within ±25 percent of 
observed) with the exception of one site for SWAT (site 
2, bias -26.2 percent, calibration level B), two sites for 
WaterFALL® (site 2, bias -33.7 percent, calibration level 
C; site 3, bias -48.0 percent, calibration level B), and one 
site for WaSSI (site 2, bias +25.0 percent, calibration level 
A). Similarly, model performance was satisfactory or 
better for monthly NSE (>0.50) with the exception of one 
site for SWAT (site 5, NSE 0.46, calibration level C) and 
one site for WaterFALL® (site 3, NSE 0.28, calibration 
level B). The median bias in mean streamflow across 
all models by site ranged from -12.0 percent at site 3 to 
+9.2 percent at site 4, while the median monthly NSE 
across models ranged from 0.72 at site 2 to 0.89 at site 1 
(Caldwell and others 2015).

Differences in mean fit statistics across models by site 
were not significant (p >0.05). The mean bias in mean 
flow across models by site ranged from -9.8 percent at site 
1 to +7.2 percent at site 4, while the mean monthly NSE 
ranged from 0.47 at site 3 to 0.86 at site 4. The range in 
fit statistics among models for site 3 was greater than the 
other sites, with HSPF, SWAT, and WaterFALL® occurring 
as outliers compared to the other models and having 
considerably greater bias and lower NSE (table 3.8, fig. 
3.5). The lower level of fit of these models for this site 
relative to the other models is likely because they were 
not calibrated for this site; rather, they were calibrated at a 
downstream gauge.  

Increasing calibration intensity tended to improve model 
fit across sites and models (fig. 3.7). Calibration level 
A (uncalibrated) included only WaSSI simulations, 
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Table 3.7—Percent of gauges simulated by each model that could be considered satisfactory, good, and very 
good performance by monthly Nash-Sutcliffe Efficiency (NSE) and bias in mean flow criteria established by 
Moriasi and others (2007) 

Monthly NSE Bias mean flow

Model
Number of 

gauges
Satisfactory

(>0.50)
Good

(>0.65)
Very good

(>0.75)
Satisfactory

(within ±25%)
Good

(within ±15%)
Very good

(within ±10%)

HSPF 12 100% 83% 67% 100% 83% 58%

PRMS-SERAP 27 96% 96% 89% 100% 100% 89%

PRMS-DAYMET 174 98% 96% 89% 98% 93% 80%

SWAT 12 67% 42% 33% 75% 67% 42%

WATER IDW 1992 3 0% 0% 0% 0% 0% 0%

WATER IDW 2006 9 11% 0% 0% 33% 22% 0%

WATER NR 2006 8 88% 50% 13% 100% 100% 75%

WaterFALL® 26 96% 77% 54% 81% 69% 46%

MWBM 175 99% 98% 86% 99% 99% 99%

WaSSI 184 93% 76% 45% 86% 70% 56%

DAYMET = Daily Meteorological Data; IDW = Inverse Distance Weighted; MWBM = Monthly Water Balance Model; NR = Next-Generation Radar; 
NSE = Nash-Sutcliffe Efficiency; PRMS = Precipitation-Runoff Modeling System; SERAP = Southeast Regional Assessment Project; SWAT = Soil and 
Water Assessment Tool; WaSSI = Water Supply Stress Index model; WATER = Water Availability Tool for Environmental Resources; WaterFALL® = 
Watershed Flow and Allocation modeling system using NHDPlus.

calibration level B (calibrated to downstream gauge) 
included three sites for HSPF and SWAT and two sites for 
WaterFALL®, calibration level C (calibrated specifically 
for site) included two sites for HSPF and SWAT and three 
sites for WaterFALL®, and calibration level D (calibrated 
for site with adjusted PPT, solar radiation, and PET 
inputs) included all PRMS-SERAP, PRMS-DAYMET, 
and MWBM simulations (table 3.5). The median absolute 
bias in streamflow across models and sites for a given 
level of calibration decreased from 15 and 17 percent 
for calibration levels A and B, respectively, to 6 percent 
for level C, to 3 percent for level D. Similarly, the 
monthly NSE tended to increase with increasing level of 
calibration. Median monthly NSE across sites and models 
for calibration levels A, B, C, and D, were 0.72, 0.68, 0.75, 
0.85, respectively. Daily NSE across sites and daily time-
step models also improved with increasing calibration (not 
shown), with median values of 0.39, 0.37, and 0.74 for 
calibration levels B, C, and D, respectively.

Evaluation of the water balance components at site 4 
revealed the effect of modeling assumptions and 
calibration strategies on model fit statistics. Models 
generally over-predicted streamflow at site 4 (fig. 3.5), and 
thus calibration strategies for some models were aimed 
at either adjusting PPT (i.e., PRMS-SERAP, PRMS-
DAYMET, and MWBM) or increasing losses through 
deep seepage (i.e., WaterFALL®) (table 3.5). Absolute 
streamflow over-prediction was most prevalent during 
the seasonally high-flow months of January, February, 
and March, but streamflow over-predictions expressed 

as a percentage were highest in the low-flow months of 
July, August, and September (fig. 3.8B). Input for mean 
annual PPT was similar for HSPF, SWAT, WaterFALL®, 
and WaSSI, ranging from 1221 mm (WaterFALL®) to 
1258 mm (HSPF and SWAT) for a total difference of 
approximately 3 percent (fig. 3.8A). Mean annual PPT 
for PRMS-SERAP, PRMS-DAYMET, and MWBM was 
reduced for site 4 during model calibration, resulting in 
decreases in mean annual PPT of approximately 9, 15, 
and 10 percent, respectively, whereas the other models 
did not adjust input PPT. WaterFALL® included deep 
seepage losses (approximately 127 mm, or 10 percent of 
PPT) to reduce streamflow predictions to more closely 
match observations by adjusting the seepage coefficients 
in the calibration process. Had deep seepage not been 
included, bias in mean streamflow for WaterFALL® may 
have increased from 11.3 to 44.2 percent, although other 
model parameters would have likely been adjusted to 
improve model fit. HSPF and SWAT simulations included 
consumptive use terms that also reduced streamflow 
predictions, amounting to approximately 33 mm and 
67 mm, respectively. Had consumptive use not been 
considered, bias in mean streamflow would have increased 
from 9.3 to 18.0 percent for HSPF and from 5.1 to 
22.5 percent for SWAT. 

Differences in seasonal runoff bias among models can 
be partially explained by differences in ET estimates. 
Assuming no consumptive use or deep seepage losses, 
ET can be estimated as the difference between long-
term mean annual PPT and runoff (fig. 3.8A). Using the 
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Table 3.8—Summary of classical model fit statistics for the seven select models compared in this 
study at the five common sites from 1980–1999  

Monthly Dailyb

Site Model
Calibration 

levela

Bias in mean 
streamflow 
(percent ) NSE

RMSE 
(cfs) R2 NSE

RMSE 
(cfs) R2

1 HSPF C -6.4 0.85 145.5 0.87 0.66 353.2 0.67
1 PRMS-SERAP D -1.8 0.92 115.8 0.92 0.80 265.5 0.81
1 PRMS-DAYMET D -2.5 0.92 103.9 0.93 0.87 208.2 0.88
1 SWAT C -3.6 0.56 255.5 0.79 0.36 544.5 0.56
1 WaterFALL® C 4.6 0.90 119.0 0.91 0.59 429.1 0.67
1 MWBM D -1.4 0.89 135.3 0.89 — — —
1 WaSSI A -2.8 0.68 227.4 0.79 — — —

2 HSPF B 2.6 0.71 147.2 0.73 -0.23 543.6 0.20
2 PRMS-SERAP D 1.3 0.92 81.2 0.92 0.84 207.8 0.84
2 PRMS-DAYMET D 0.1 0.86 102.5 0.87 0.60 292.6 0.60
2 SWAT B -26.2 0.64 137.7 0.75 0.41 253.3 0.44
2 WaterFALL® C -33.7 0.62 69.5 0.87 0.31 302.5 0.37
2 MWBM D -2.1 0.84 114.2 0.84 — — —
2 WaSSI A 25.0 0.72 123.3 0.84 — — —

3 HSPF B -24.6 0.62 211.8 0.67 -0.18 855.1 0.26
3 PRMS-SERAP D -12.0 0.76 135.0 0.82 0.75 296.9 0.77
3 PRMS-DAYMET D -2.9 0.82 158.6 0.83 0.64 400.4 0.64
3 SWAT B -18.2 0.65 173.8 0.70 0.50 300.3 0.55
3 WaterFALL® B -48.0 0.28 114.2 0.61 0.38 378.1 0.43
3 MWBM D -6.6 0.85 157.7 0.86 — — —
3 WaSSI A -1.7 0.75 179.8 0.75 — — —

4 HSPF B 9.2 0.92 506.5 0.93 0.74 1408.9 0.75
4 PRMS-SERAP D 16.8 0.87 615.1 0.91 0.74 1569.1 0.75
4 PRMS-DAYMET D -0.3 0.89 577.6 0.89 0.67 1528.3 0.68
4 SWAT B 5.0 0.86 725.6 0.88 0.63 1499.7 0.64
4 WaterFALL® C 11.2 0.86 691.4 0.90 0.79 1383.5 0.80
4 MWBM D -8.4 0.83 755.5 0.85 — — —
4 WaSSI A 16.2 0.77 858.6 0.82 — — —

5 HSPF C -2.1 0.75 283.2 0.77 0.37 667.3 0.46
5 PRMS-SERAP D 3.9 0.83 235.1 0.85 0.80 370.6 0.80
5 PRMS-DAYMET D -15.3 0.73 280.9 0.82 0.47 525.1 0.50
5 SWAT C 5.8 0.46 401.9 0.77 0.24 794.5 0.52
5 WaterFALL® B -15.1 0.83 182.0 0.88 0.17 761.8 0.37
5 MWBM D -9.4 0.77 265.3 0.79 — — —
5 WaSSI A 15.4 0.69 300.9 0.81 — — —

a Calibration levels include: (A) uncalibrated, (B) calibrated to downstream gauge, (C) calibrated specifically for site, and (D) 
calibrated specifically for site with adjusted precipitation, solar radiation, and potential evapotranspiration (PET) inputs.
b The monthly MWBM and WaSSI models were not evaluated for prediction of ERFMs because many of the ERFMs require a daily 
time step to be calculated.

cfs = cubic feet per second; DAYMET = Daily Meteorological Data; IDW = Inverse Distance Weighted; MWBM = Monthly Water 
Balance Model; NR = Next-Generation Radar; NSE = Nash-Sutcliffe Efficiency; PRMS = Precipitation-Runoff Modeling System; R2 = 
coefficient of determination; RMSE = root mean squared error; SERAP = Southeast Regional Assessment Project; SWAT = Soil and 
Water Assessment Tool; WaSSI = Water Supply Stress Index model; WATER = Water Availability Tool for Environmental Resources; 
WaterFALL® = Watershed Flow and Allocation modeling system using NHDPlus. 
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Figure 3.5—Distribution of selected classical model fit statistics across models by site for the 
flow time series from 1980–1999; bias in mean flow (A) and monthly NSE (B). 
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Figure 3.6—Distribution of sites falling into performance categories for absolute bias in 
mean flow (A) and monthly NSE (B) established by Moriasi and others (2007). Bias in mean 
flow within ±25, ±15, and ±10 percent is considered to be indicative of satisfactory, good, 
and very good model performance, respectively, while monthly NSE values that are >0.50, 
>0.65, and >0.75 for prediction of monthly streamflow are indicative of satisfactory, good, 
and very good model performance, respectively. 
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Figure 3.7—Distribution of selected classical model fit statistics across sites by level of calibration for the 1980–1999 
flow time series; absolute bias in mean streamflow (A) and monthly NSE (B). Calibration levels include A (uncalibrated), 
B (calibrated to downstream gauge), C (calibrated specifically for site), and D (calibrated specifically for site with 
adjusted precipitation, solar radiation, and PET inputs). 
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Figure 3.8—Partitioning of mean annual precipitation into evapotranspiration and runoff and residual lost to either 
consumptive use or deep seepage (A) and monthly median precipitation, evapotranspiration, soil moisture, and runoff (B) 
for all models at site 4: USGS gauge 02347500 Flint River at US 19 near Carsonville, GA. Runoff was computed by dividing 
discharge by drainage area. Observed ET was computed by taking the difference between the mean precipitation across 
models and the observed mean annual runoff at the gauge. 
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mean PPT across models as the mean PPT for the basin, 
estimated ET, calculated as the difference between mean 
PPT and runoff, was 797 mm. Bias in predicted ET was 
then 0.8, -14.4, -15.6, -1.4, -16.5, -5.9, and -1.7 percent 
for HSPF, PRMS-SERAP, PRMS-DAYMET, SWAT, 
WaterFALL®, MWBM, and WaSSI, respectively. There 
was good agreement between HSPF, SWAT, WaSSI, and 
the estimated observed mean annual ET. WaterFALL® 
predicted less ET relative to other models and the 
estimated observed ET, but the deep seepage term partially 
compensated for this difference. Soil moisture levels were 
considerably lower for WaterFALL® than the other models 
(fig. 3.8B), indicating that available soil water storage 
and/or recession coefficients may explain the lower ET 
estimates. The PRMS and MWBM models also under-
predicted ET relative to other models and the estimated 
observed ET largely because PPT was reduced during 
model calibration.

The full suite of 175 flow metrics computed with the 
EflowStats package in R was evaluated for redundancy 
and reduced to a subset of 14 ERFMs which accounted 
for all five components of the flow regime (table 3.9). We 
evaluated differences between predicted and observed 
ERFMs across the five hourly and daily models; the 
monthly MWBM and WaSSI models were not evaluated 
for prediction of ERFMs because many of the ERFMs 
require a daily time step to be calculated (table 3.8). 
Overall bias in the prediction of the ERFMs among 
sub-monthly time-step models varied by site and by flow 
metric (fig. 3.9), with no model or calibration level clearly 
having superior predictive performance for all sites and 
metrics (table 3.10). The median absolute bias across all 
ERFMs and sites was 19.4, 19.1, 18.7, 31.9, and 24.1 
percent for HSPF, PRMS-SERAP, PRMS-DAYMET, 
SWAT, and WaterFALL®, respectively. Increasing 
calibration tended to reduce bias for individual models 

Table 3.9—Definitions of the reduced set of 14 ecologically relevant flow metrics (ERFMs) used in this study to 
describe the five primary components of the flow regime

Streamflow 
component ERFM Description Unit of measurement

Magnitude (M) MA41 Mean annual runoff: Compute the annual mean daily streamflow and 
divide by the drainage area. 

cubic feet per second (cfs) 
per square mile (cfsm)

MA25 Variability of February flow values: Compute the standard deviation for 
each month in each year. Divide the standard deviation by the mean for 
each month and take the mean of these values for each month across 
years. 

percent

ML6 Minimum June streamflow: minimum June streamflow across the 
period of record 

cfs

ML9 Minimum September streamflow: minimum September streamflow 
across the period of record 

cfs

ML21 Variability of annual minimum flows: Compute the standard deviation of 
annual minimum streamflow and divide by the mean annual minimum 
streamflow. 

percent

MH20 Specific mean annual maximum flow: Divide mean annual maximum 
flow across the period of record by watershed area. 

cfsm

Frequency (F) FL1 Frequency of low flood: low flood pulse count n/year
FL2 Variability in low-pulse count: coefficient of variation for the number of 

annual occurrences of daily flows less than the 25th percentile 
dimensionless

Duration (D) DL17 Variability in low pulse duration: standard deviation for the yearly 
average low-flow pulse durations (daily flow less than the 25th 
percentile) 

percent

DH20 High flow duration days
DL4 Mean of the annual minimum 30-day average flows cfs
DH4 Mean of the annual maximum 30-day moving average flow for the 

entire record 
cfs

Timing (T) TH1 Average Julian date of the annual maximum flow for the entire record Julian day
Rate of change (RA) RA4 Variability of the fall rate for the entire record percent

A = average; L = low or minimum flow; H = high or maximum flow.
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Figure 3.9—Bias in prediction of the 14 ERFMs across the five study sites for the daily time-step hydrologic models. [See 
table 3.9 for definitions of ERFMs.] 
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Table 3.10—Observed and predicted ecologically relevant flow metricsa for the five sites used in this study 

Magnitude Frequency Duration Timing
Rate of 
change

Site
MA41 
(cfsm)

MA25 
(%)

ML6 
(cfs)

ML9 
(cfs)

ML21 
(%)

MH20 
(cfsm)

FL1 
(n/

year) FL2
DL17 
(%)

DH20 
(days)

DL4 
(cfs)

DH4 
(cfs)

TH1 
(Julian 
day) RA4

Observed 1 2.40 62.0 446.5 276.8 37.8 21.99 13.7 67.0 42.9 7.9 303.2 1,530.5 21 342.5
HSPF 1 2.25 53.4 411.1 320.6 31.0 15.37 9.2 56.1 60.8 9.6 293.6 1,523.7 31 249.4
PRMS-SERAP 1 2.36 50.3 444.1 289.9 50.7 14.90 9.2 64.0 43.2 8.0 271.8 1,434.5 362 240.9
PRMS-DAYMET 1 2.34 52.1 465.9 309.9 42.7 18.36 9.8 61.6 45.1 5.8 297.8 1,373.5 1 320.4
SWAT 1 2.31 57.3 127.7 119.6 92.5 16.03 11.2 55.9 36.1 4.5 113.1 1,886.1 26 185.5
WaterFALL® 1 2.51 64.7 481.8 345.7 28.7 20.68 8.4 59.8 44.9 4.2 330.1 1,524.2 13 294.9

Observed 2 1.49 90.1 92.2 51.2 62.4 17.62 9.5 40.8 45.8 5.4 59.9 1,007.3 58 269.3
HSPF 2 1.53 82.6 110.5 74.6 31.6 23.90 13.9 38.9 42.3 3.7 84.1 993.2 50 363.8
PRMS-SERAP 2 1.51 91.5 99.6 42.2 41.8 16.56 13.2 38.5 27.8 4.9 67.6 994.1 35 217.6
PRMS-DAYMET 2 1.49 75.2 99.9 64.0 35.7 17.06 13.7 48.0 32.0 4.3 66.1 959.6 23 270.6
SWAT 2 1.10 49.1 86.4 56.0 92.7 7.03 5.9 41.9 38.3 14.5 32.8 797.4 48 217.0
WaterFALL® 2 0.99 83.8 53.8 41.7 34.5 14.82 13.4 37.4 35.1 5.8 42.3 663.9 18 430.3

Observed 3 1.26 92.1 42.6 26.5 41.3 27.95 7.1 46.9 41.5 8.4 25.5 1,495.6 60 418.3
HSPF 3 0.95 105.7 52.2 39.0 36.8 31.86 8.0 49.7 43.0 6.2 37.8 1,183.2 67 740.3
PRMS-SERAP 3 1.11 89.4 72.4 56.5 34.7 18.99 11.9 41.7 27.1 6.4 70.4 1,112.5 59 338.0
PRMS-DAYMET 3 1.23 82.5 82.6 33.2 64.7 21.34 13.0 39.5 34.9 7.3 50.7 1,259.5 38 386.9
SWAT 3 1.04 61.8 156.3 77.8 97.9 9.65 3.7 48.8 61.4 14.4 44.4 1,002.9 53 273.1
WaterFALL® 3 0.66 95.5 46.3 37.3 44.8 17.71 15.1 37.3 25.5 5.6 44.9 713.3 38 519.1

Observed 4 1.12 73.0 475.3 302.5 42.9 14.79 6.9 30.5 44.4 9.4 342.8 6,650.1 52 296.9
HSPF 4 1.22 56.5 723.8 531.7 30.6 11.98 9.8 41.9 33.2 8.0 532.5 6,562.3 58 218.9
PRMS-SERAP 4 1.31 58.7 827.6 479.6 45.0 12.02 8.8 46.7 29.0 14.1 511.5 6,941.4 55 265.6
PRMS-DAYMET 4 1.12 65.1 750.2 511.5 29.8 12.88 12.2 54.2 32.5 8.3 494.9 5,948.9 44 298.4
SWAT 4 1.17 39.7 884.3 577.5 57.4 7.52 5.3 42.1 58.1 15.1 366.9 6,511.7 63 177.9
WaterFALL® 4 1.24 52.8 486.2 272.2 60.5 11.99 6.7 42.0 45.0 10.6 220.7 7,191.2 55 310.7

Observed 5 1.19 48.1 197.8 196.3 37.3 11.36 7.9 38.2 58.4 11.4 202.9 2,014.0 47 338.0
HSPF 5 1.17 58.1 310.2 249.7 40.6 10.67 6.7 59.2 84.7 13.1 198.7 1,973.4 38 278.1
PRMS-SERAP 5 1.24 42.7 287.2 234.9 24.1 8.46 7.7 47.8 34.1 10.9 232.5 1,999.4 36 268.8
PRMS-DAYMET 5 1.01 35.9 76.2 67.3 84.1 5.99 11.8 30.4 28.9 20.5 71.5 2,046.9 25 166.7
SWAT 5 1.26 62.8 200.8 180.8 66.2 11.00 4.9 48.6 66.9 16.5 109.1 2,632.4 43 243.8
WaterFALL® 5 1.01 79.3 293.2 184.8 51.4 14.04 3.8 53.0 50.7 7.6 124.4 1,719.4 29 454.4

a See table 3.9 for definitions of ecologically relevant flow metrics.

cfs = cubic feet per second; cfsm = cubic feet per second per square mile; DAYMET = Daily Meteorological Data; HSPF = Hydrological Simulation Program-
Fortran; SERAP = Southeast Regional Assessment Project; PRMS = Precipitation-Runoff Modeling System; SERAP = Southeast Regional Assessment 
Project; SWAT = Soil and Water Assessment Tool; WaterFALL® = Watershed Flow and Allocation modeling system using NHDPlus.



overall, with median absolute bias across all sites and 
ERFMs decreasing from calibration level B to level C for 
HSPF (22.6 percent for level B, 16.9 percent for level C), 
SWAT (36.2 percent for level B, 27.1 percent for level C), 
and WaterFALL® (36.7 percent for level B, 14.9 percent 
for level C). The median absolute bias across all sites and 
ERFMs for calibration level D (19.1 percent) was similar 
to that of all models at calibration level C (18.4 percent). 

All models had at least one flow metric falling outside 
the ±30-percent range of hydrologic uncertainty at every 
site (figs. 3.9 and 3.10A). The number of ERFMs out 
of the total of 14 (table 3.9) that fell outside this range 
at three or more of the five sites included three, four, 
five, nine, and five for HSPF, PRMS-SERAP, PRMS-
DAYMET, SWAT, and WaterFALL®, respectively. Some 
of the magnitude, frequency, and duration ERFMs tended 
to be better represented across models than others. For 
example, MA41 (mean annual runoff), FL2 (variability 
in low-pulse count), and DH4 (mean of annual maximum 
30-day average flow) were generally well predicted, with 
bias outside the range of uncertainty at less than three of 
the five sites for all models. Bias in FL1 (frequency of 
low flood), however, was outside the range of uncertainty 
for three or more of the five sites for all models, and 
bias in ML21 (variability of annual minimum flows) and 
DL4 (mean of annual minimum 30-day average flows) 
was outside the range of uncertainty for three or more of 
the five sites for four of the five models. The hydrologic 
models evaluated in this study generally had lower bias 
in the prediction of flow metrics representing mean flows 
(e.g., MA41) than metrics representing the extremes of 
flow (e.g., FL1), particularly low-flow conditions. Bias 
was greater for many of the low-flow metrics due to the 
low absolute magnitudes of these metrics (table 3.10, 
fig. 3.9). This result is a fairly common outcome for 
many modeling studies due to choices made during the 
calibration process; however, it should be noted that this 
modeling bias may directly affect the predictive capacity 
of flow-ecology response models derived using ERFMs 
that fall outside the established range of uncertainty. 

There was considerable variability in ERFM predictive 
performance across sites (table 3.10, figs. 3.9 and 3.10B). 
The ERFMs (table 3.9) with prediction bias outside the 
range of hydrologic uncertainty for three or more of the 
five models included FL1 and TH1 for site 1 (two of 14 
ERFMs); ML21, FL1, and TH1 for site 2 (three of 14); 
ML6, ML9, MH20, FL1, DL17, and DL4 for site 3 (six 
of 14); ML6, ML9, ML21, FL2, and DL4 for site 4 (five 
of 14); and ML6, ML21, FL1, DL17, DH20, and DL4 for 
site 5 (six of 14). The ERFMs at site 1 were generally well 
predicted, likely reflecting the fact that (1) all models were 
calibrated for this site (i.e., calibration levels C and D), 
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Figure 3.10—Number of sites per model out of a total of five (A) 
and number of models per site out of a total of five (B) for which 
bias in the 14 ERFMs fell outside of the ±30-percent range of 
hydrologic uncertainty. Monthly models (MWBM and WaSSI) are 
not shown because computation of most ERFMs used in this 
study requires a daily time step. [See table 3.2 for hydrologic 
model definitions and table 3.9 for definitions of ERFMs.]
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and (2) the watershed upstream of the site was mostly low-
intensity forested land (table 3.4) and likely had fewer flow 
alterations that may affect model performance. Although 
sites 1 and 3 had similar levels of urban development, 
ERFMs were not as well predicted at site 3. In particular, 
those ERFMs relating to low flows (e.g., ML6, ML9, FL1, 
DL17, and DL4) were generally over-predicted with bias 
exceeding 30 percent (fig. 3.10B). The HSPF, SWAT, and 
WaterFALL® models were not specifically calibrated for 
site 3 (calibration level B), which may explain the higher 
bias for this site, but the PRMS-SERAP and PRMS-
DAYMET models, calibrated specifically for this site, 
(calibration level D) also had higher bias for ERFMs at 
site 3 than site 1, indicating that there may be underlying 
natural (e.g., higher than expected ET losses) and/or 
anthropogenic processes (e.g., surface and groundwater 
use, interbasin transfers, water diversions, etc.) that are 
not being accounted for in the models despite the fact 
that these sites are assumed to be minimally altered. Most 
model predictions of ERFMs for site 2 were within the 
range of uncertainty despite having higher levels of urban 
development (table 3.4), except that ML21 (variability 
in annual minimum flows) was generally under-
predicted, FL1 (frequency of low flood) was generally 
over-predicted, and TH1 (average Julian date of annual 
maximum flow) was generally under-predicted (table 3.10, 
fig. 3.9). The ERFMs relating to low flows were generally 
over-predicted by most models for site 4 (e.g., ML6, ML9, 
FL2, and DL4) and site 5 (e.g., ML6 and ML21). 

DISCUSSION
The intent of this model comparison study was not to 
suggest that the performance of any particular model is 
superior to that of the others. Rather, we were interested in 
understanding differences among hydrologic models and 
calibration strategies by quantifying and comparing the 
potential causes of error associated with model prediction 
and testing our hypotheses that (1) in general, regional-
scale hydrologic models (e.g., MWBM, WaSSI) would 
have poorer predictive capacity and higher levels of 
uncertainty than the fine-scale models (e.g., HSPF, PRMS, 
SWAT, WaterFALL®); and (2) models with higher levels 
of calibration would perform better than those that were 
less calibrated. In order to accomplish these objectives, we 
summarized a subset of classical model fit statistics (e.g., 
mean bias, R2, RMSE, and NSE) for seven hydrologic 
models of varying calibration intensity across five study 
sites where modeling efforts overlapped with USGS 
continuous record gauges. 

We found that all models had “satisfactory” or better 
performance (as defined in this paper) at most sites. 
Comparing classical model fit statistics across all sites, 
the broad-scale MWBM and WaSSI had comparable 

error in predicting observed streamflows at the monthly 
time step as that of the fine-scale HSPF, PRMS, SWAT, 
and WaterFALL® models (fig. 3.5), which refutes our 
hypothesis that regional-scale models have poorer 
predictive performance than fine-scaled models at the 
monthly time step. For example, according to monthly 
NSE criteria (Moriasi and others 2007), the uncalibrated 
WaSSI model predictions would be considered “good” at 
all of the five sites simulated by multiple models and “very 
good” at one site, while the calibrated MWBM predictions 
would be “very good” at all sites (fig. 3.6B). Achieving 
good model fit at the monthly time step with either 
monthly or smaller time-step models generally indicates 
that the correct balance of PPT and ET is represented, but 
it does not necessarily indicate that the separation between 
surface and subsurface flows is accurately represented. 
Thus, good model fit in monthly time-step simulations 
may not indicate that the model would be useful in 
answering resource questions that require detailed 
information regarding surface runoff and baseflows.

We also found evidence supporting our hypothesis that 
increasing calibration intensity generally improved 
model fit across sites and models. For classical model 
fit statistics, the more intensive site-specific calibrations 
(levels C and D) generally decreased bias and increased 
NSE at the monthly scale relative to uncalibrated models 
(level A) and models calibrated to a downstream site 
(level B); however, differences between calibration 
levels A and B were not as large (fig. 3.7). For ERFMs, 
increasing calibration tended to reduce bias for individual 
models overall, but no model or calibration level clearly 
had superior predictive performance for all sites and 
ERFMs. For example, bias in ERFM predictions was 
generally lower for sites calibrated at level C than for sites 
calibrated at level B for HSPF, SWAT, and WaterFALL®. 
However, differences in ERFM bias between models 
calibrated for sites at level C and models calibrated for 
sites at level D were generally smaller. Clearly, adjusting 
PPT, solar radiation, and PET during model calibration 
(i.e., calibration level D) can result in improved model fit 
relative to other levels of calibration; however, caution 
should be used when applying models calibrated in 
this manner to make projections using other sources of 
climate input (e.g., future climate change scenarios). For 
example, it is common to use a climate dataset based on 
historical weather observations to calibrate a model and 
to use one or more downscaled climate datasets produced 
by General Circulation Models (GCMs) for future 
scenarios. Often the GCM-predicted climate variables will 
differ from observations in magnitude and distribution 
over the historical period. If historical observed climate 
data are adjusted in the calibration process to achieve 
a better model fit to streamflow observations, then a 
modeler would need to determine how to incorporate 
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this adjustment into the model when the GCM-predicted 
climate variable over the historical period may be 
different than the observed variable used to derive the 
adjustment factors. While this could be done, the modeler 
would need to exercise caution in doing so. In addition 
to model calibration, model inputs and assumptions also 
played a role in predictive performance. For example, the 
WaterFALL® model used land cover from the 1970s (with 
lower levels of impervious cover than in 2001 or 2006 
used by other models) and tended to have negative bias for 
sites with some level of urbanization (e.g., site 2) because 
surface runoff was lower. 

Similar to other ecological flow modeling studies 
(Murphy and others 2013, Wenger and others 2010), 
the sub-monthly time-step models evaluated in this 
study tended to have “good” predictive performance for 
ERFMs representing the mean of flow, but had difficulty 
in predicting flow metrics related to low or extreme 
flows (table 3.10, figs. 3.9 and 3.10). The variability in 
prediction bias across ERFMs for the sub-monthly models 
is indicative of the variability in level of calibration 
across models and sites but also the challenges associated 
with calibrating hydrologic models for all streamflow 
conditions. Model calibration is generally intended to 
capture the variability and mean magnitude of streamflow. 
It is nearly impossible to calibrate models to fit the entire 
range of observed streamflows because adjusting model 
parameters to fit a portion of the flow regime has an 
effect on how well the model fits observed streamflows 
outside of that range. For example, WaterFALL® was 
calibrated to log-transformed daily streamflows (table 3.5) 
to provide improved fit for low flows, but calibrating in 
this way can degrade fit for high or median flows. There 
was considerable variability in classical fit statistics and 
ERFM predictive performance across sites (figs. 3.5, 3.9, 
and 3.10). Fit statistics and ERFMs at some sites (e.g., 
site 1) were better predicted by all models than other sites 
(e.g., site 3), illustrating the fact that model performance 
is site-specific regardless of model framework or level of 
calibration. These findings may have implications for the 
development of flow-ecology response models because 
it is often the low flows (baseflows), annual-flow pulses, 
and seasonality of high flows that provide the conditions 
necessary to support natural-assemblage complexity 
(Matthews 2005, Poff and Ward 1989, Poff and others 
1997, Richter and others 1997, Stanford and others 1996). 
Because streamflow models in this study tended to perform 
better when predicting mean ERFMs than when predicting 
low or extreme flow ERFMs, great care should be taken 
when using ERFMs with high prediction bias (e.g., ML6, 
ML9, FL1, DL17, and DL4) to develop flow-ecology 
response models. 

Other approaches to predicting ERFMs (e.g., regression 
models) have been recently shown to have better 
predictive performance for low-flow metrics (Knight and 
others 2012, Murphy and others 2013). However, rainfall-
runoff and other physically based hydrologic models 
are still needed for evaluating environmental change 
and hydrologic alteration effects on aquatic ecosystems 
because they are more flexible and can simulate scenarios 
of change. Additionally, even though some regression 
models appear to perform well in parts of the SEUS, it is 
difficult to predict whether they will show the same level 
of performance or have a high level of transferability in 
the snowmelt-driven Rocky Mountain States or in areas 
such as the Southwestern United States where low flows 
predominate and where there are fewer gauges available to 
establish statistical relations. While rainfall-runoff models 
are more flexible and can simulate scenarios of change, 
it should be kept in mind that all hydrologic models, 
regardless of their level of complexity, are simplified 
mathematical representations of natural systems and 
therefore may not adequately reflect all of the processes 
that affect streamflow and/or may not adequately predict 
streamflow response to environmental change. Further, 
uncertainty of hydrologic model predictions are inherently 
dependent on the uncertainty of model inputs (e.g., soils, 
land cover, climate).

LIMITATIONS
While this report likely represents what may be the most 
rigorous evaluation of the use of hydrologic models 
for flow-ecology science compiled for the SEUS, we 
acknowledge that it may provide a limited overview of the 
many tools and techniques available. Some limitations of 
this study include:

1.	 Only a subset of the available hydrologic models were 
considered in this study.

2.	 The models evaluated were not developed using 
the same calibration objective functions and input 
datasets, making it difficult to separate differences 
in model performance that may be related to the 
model framework (e.g., HSPF or PRMS) from 
differences associated with the choice of model inputs 
and calibration.

3.	 New methods are being developed all the time. The 
findings in this report are not stationary and should be 
reevaluated from time to time.

4.	 The capacity to fully understand non-stationary 
conditions associated with climate change requires 
rigorous calibration of models and careful attention to 
model inputs and representation of physical processes 
that may assume stationarity. For example, adjusting 
PPT and other climate variables may improve model fit 
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for historical flow observations, but these adjustments 
may not be appropriate when using the model to make 
projections using other sources of climate input (e.g., 
future climate change scenarios).

5.	 Models evaluated were applied to several basins 
in SEUS region. The relative model performance 
may be different in other hydroclimatic settings 
(e.g., snowmelt-dominated streams and streams in 
arid climates).  

6.	 There are tradeoffs between regional- and fine-scale 
models. Regional-scale models are often easier to 
parameterize but are often of a coarser resolution 
in space and time. Fine-scale models are often 
more difficult to parameterize but can have finer 
resolution and smaller time steps. Resource managers 
should consider the desired resolution of streamflow 
predictions when selecting a model for addressing 
a particular resource problem and balance the need 
for that resolution with the expense in input data 
requirements, computational limitations, and desired 
level of uncertainty. 

7.	 In this study, we have demonstrated that similar levels 
of model performance may be obtained at the monthly 
time step using regional- and fine-scale hydrologic 
models. We have also shown that regional-scale and 
some fine-scale hydrologic models predict similar 
changes in runoff for a given change in climate inputs. 
However, these results only provide a demonstration 
of the potential of multi-scale modeling approaches to 
evaluate environmental change effects on streamflow 
and ecological response. Due to differences in land 
cover input data, we were not able to determine 
whether there would be similar streamflow response 
to land cover change among the models evaluated. 
Additional study is required to determine the best way 
to use regional- and fine-scale models to identify hot 
spots and develop flow-ecology relations, respectively. 
Models should be developed using the same inputs 
and calibration objective functions and then used 
to evaluate the same scenarios of climate and land 
cover change.  

8.	 There are tradeoffs between calibrating models to best 
match observed high-flow or low-flow portions of the 
hydrograph that may affect flow-ecology modeling. 
Model calibration is generally intended to capture the 
variability and the central tendency of streamflow. It is 
nearly impossible to calibrate models to fit the entire 
range of observed streamflows because adjusting model 
parameters to fit a portion of the flow regime has an 
effect on how well the model fits observed streamflows 
outside of that range. For example, it is fairly common 
for many modeling studies to have relatively large 

biases in the prediction of low-flow ERFMs due to 
choices made during the calibration process; however, 
it should be noted that this modeling bias may directly 
affect the predictive capacity of flow-ecology response 
models derived using ERFMs that fall outside the 
established range of uncertainty.

Despite these limitations, it is our hope that this rigorous 
approach to understanding differences in streamflow 
predictions among a subset of hydrologic models currently 
in use in the SEUS and developing flow-ecology response 
models will provide water resource managers and 
stakeholders with an informed pathway for developing the 
capacity to link streamflow and ecological response and an 
understanding of some of the limitations associated with 
these type of modeling efforts.    

CONCLUSIONS
The primary objective of this study was to provide 
resource managers and environmental flow practitioners 
with some insight into the relative error in streamflow 
predictions among a subset of hydrologic models 
commonly used for water supply assessment, 
environmental flow studies, and climate change 
predictions. All of the models evaluated were developed 
by different agencies, for different purposes, with 
different input datasets, and, in general, were calibrated 
to different degrees using different objective functions. 
As a result, we could not separate the relative effect of 
model structure on prediction error from that of model 
calibration and modeler expertise. To fully evaluate the 
effect of model structure alone, all models should be 
developed using the same inputs and calibrated to meet 
the same objective functions. However, our results do not 
indicate that any specific hydrologic model is superior 
to the others evaluated at all sites and for all measures of 
model performance, and do not support the hypothesis that 
regional-scale models have less predictive power than fine-
scale models at a monthly time step. Differences among 
model predictions for specific fit statistics or ERFMs are 
as likely to be related to differences in model calibration 
strategy as they are related to differences in model 
structure. As a result, we do not provide recommendations 
of one hydrologic model over another based on the results 
of this study. Instead we stress that it is incumbent upon 
resource managers, environmental flow practitioners, and 
policymakers to consider the expertise of the modeler, the 
applicability of a model to a particular resource problem, 
the context to which the model is being applied, the scale 
of interest, and the important components of the flow 
regime that may be used for model calibration to minimize 
error across the targeted range of flows and thus improve 
flow-ecology relations.
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CHAPTER 4 

Feasibility of Combining Regional- and Local-Scale Models to 
Identify Unique Areas of Concern and Understand Fine-Scale 

Hydrologic Dynamics Under Climate Change

INTRODUCTION
Leveraging the benefits of both large-scale models and 
high-resolution models has the potential to allow more 
robust environmental change assessment studies to balance 
water resources needed to support aquatic assemblages 
while conserving water for long-term human needs across 
broad regions. For example, the Water Supply Stress 
Index (WaSSI) model, a regional-scale monthly water 
balance and flow routing model (Caldwell and others 
2012, Sun and others 2011b) is used to evaluate the 
effects of environmental change on water supply and river 
flows. The model is run uncalibrated using off-the-shelf 
databases and thus could be used to more broadly assess 
environmental change effects and identify specific areas 
of concern (“hot spots”) where the combined effects of 
land cover change, climate change, and/or flow alteration 
may threaten water resources. Fine-scale, physically 
based models of higher temporal resolution, such as the 
Hydrological Simulation Program-Fortran (HSPF) and 
the Soil and Water Assessment Tool (SWAT), could then 
be applied to those areas of concern to provide higher 
resolution quantitative estimates of changes in water 
supply and ecologically relevant flow metrics (ERFMs) 
using more site-specific inputs. To apply such a multi-
scale modeling approach, the variability of predicted 
streamflow response to different stressors across large- and 
fine-scale models must be assessed. For example, for a 
given change in precipitation (PPT), do the models predict 
similar changes in streamflow? The aim of this study 
was to examine the potential for combined application 
of large- and fine-scale hydrologic modeling approaches 
over large regions for climate change assessment studies. 
This was done by quantifying differences in sensitivity to 
climate change (i.e., PPT and temperature [TEMP]) among 
hydrologic models.   

METHODS
Study Site
The study site chosen for this assessment was U.S. 
Geological Survey (USGS) gauge 02347500 (Flint River at 
US 19, near Carsonville, GA) located in the Apalachicola-
Chattahoochee-Flint (ACF) Basin (fig. 4.1). The upstream 
drainage area of this site is 4792 km2, with mean annual 
PPT and TEMP of 1282 mm and 16.8 °C, respectively. 

Predominant land cover consists of 13.9 percent developed 
land (3.6 percent impervious), 55 percent forest, and 16 
percent agriculture, with woody wetland (5.6 percent), 
grassland (5.3 percent), shrubland (2.6 percent), open 
water (1.4 percent), and barren (0.2 percent) land covers 
comprising the remaining area of the basin (Falcone and 
others 2010, 2011). The headwaters of this basin drain 
portions of the city of Atlanta, GA. The ACF Basin has 
been subject to water shortages and development pressure 
in the past and thus has been intensely studied over the 
last decade with multiple modeling efforts taking place 
to evaluate drought and environmental change effects on 
water supply and aquatic ecosystems (e.g., Freeman and 
others 2013, Georgakakos and others 2010, LaFontaine 
and others 2013).	

Model Descriptions
Models included in this study were among those discussed 
and compared in the model comparison workshop (see 
chap. 3): Hydrological Simulation Program-Fortran 
(HSPF), the Soil and Water Assessment Tool (SWAT), the 
Generalized Watershed Loading Function (GWLF)-based 
WaterFALL® model developed by Research Triangle 
Institute (RTI), and the U.S. Department of Agriculture 
(USDA) Forest Service Water Supply Stress Index 
(WaSSI) model (table 4.1). The two parameterizations of 
Precipitation-Runoff Modeling System (PRMS) and the 
Monthly Water Balance Model (MWBM) (see chap. 3) 
were not included in this analysis because PPT and TEMP 
inputs for these models were adjusted in the calibration 
process and thus were not comparable to the climate 
inputs of HSPF, SWAT, WaterFALL®, and WaSSI. The 
WaSSI model is a regional, large-scale model, while 
HSPF, SWAT, and WaterFALL® are more complex, 
highly parameterized fine-scale models. All of the models 
evaluated in this study were developed by different 
agencies, for different purposes, and calibrated to different 
degrees using different objective functions as described 
below (Caldwell and others 2015).  

HSPF and SWAT
Both the HSPF and SWAT models used in this study 
were implemented by Tetra Tech as part of a larger study 
to characterize the sensitivity of streamflow, nutrient 
loading, and sediment loading to a range of potential 
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Figure 4.1—Map of the Apalachicola-Chattahoochee-Flint Basin highlighting 
the location of the Flint River at US 19 near Carsonville, GA (USGS gauge 
02347500).

Table 4.1—General summary of hydrologic model attributes 

Model HSPF SWAT WaterFALL® WaSSI

Time step hourly daily daily monthly

Spatial resolution HUC-10
(~410 km2)

HUC-10
(~410 km2)

NHDPlus catchment 
(~1.0 km2)

HUC-12
(~80 km2)

Withdrawals, flow regulation 
   simulated

yes yes no no

Land cover input 2001 NLCD 
(Homer and others 

2007)

2001 NLCD (Homer 
and others 2007)

ca. 1970s USGS 
GIRAS (Price and 

others 2006)

2006 NLCD (Fry and 
others 2011)

Climate Input Station 
observations

Station observations USDA (Di Luzio and 
others 2008)

PRISM (PRISM 
Climate Group 2013)

GIRAS = Geographic Information Retrieval and Analysis System; HSPF = Hydrological Simulation Program-Fortran; HUC = Hydrologic Unit Code; 
NHD = National Hydrography Dataset; NLCD = National Land Cover Database; PRISM = Parameter-elevation Relationships on Independent Slopes 
Model; SWAT = Soil and Water Assessment Tool; USDA = U.S. Department of Agriculture; USGS = U.S. Geological Survey; WaSSI = Water Supply 
Stress Index model; WaterFALL® = Watershed Flow and Allocation modeling system using NHDPlus.
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mid-21st century climate futures in 20 large U.S. drainage 
basins (Johnson and others 2012, USEPA 2013). Model 
descriptions and information pertinent to this application 
are detailed below.

HSPF—The HSPF (Bicknell and others 2001, 2005) is 
a hydrology and water quality model commonly used for 
determination of Total Maximum Daily Loads to receiving 
waters in response to the Clean Water Act. HSPF is a 
well-documented watershed model that computes the 
water balance based on the Stanford Watershed Model 
(Crawford and Linsley 1966) in multiple surface and 
subsurface layers at an hourly time step. The water balance 
is simulated based on Philip’s infiltration (Bicknell and 
others 2001, 2005) coupled with multiple surface and 
subsurface stores (interception storage, surface storage, 
upper zone soil storage, lower zone soil storage, active 
groundwater, and inactive [deep] groundwater). Individual 
land units within a sub-basin are represented using a 
hydrologic response unit (HRU) approach that combines 
an overlay of land cover, soil, and slope characteristics. 
The stream network links the surface runoff and 
groundwater flow contributions from each of the HRUs 
and routes them through water bodies. The stream model 
includes PPT and evaporation from the water surfaces 
as well as streamflow contributions from the watershed, 
tributaries, and upstream stream reaches.  

SWAT—SWAT was developed to simulate the effect 
of land management practices on water, sediment, 
and agricultural chemical yields in large, complex 
watersheds with varying soils, land use, and management 
conditions over long periods of time (Neitsch and others 
2005). SWAT requires data inputs for weather, soils, 
topography, vegetation, and land use to model water and 
sediment movement, nutrient cycling, and numerous 
other watershed processes. SWAT (as implemented 
here) uses the curve number approach (USDA Soil 
Conservation Service 1972) to estimate surface runoff 
and then completes the water balance through simulation 
of subsurface flows, evapotranspiration (ET), soil 
storages, and deep seepage losses at the daily time step. 
The curve number is estimated as a function of land use, 
cover, condition, hydrologic soil group, and antecedent 
soil moisture.  

HSPF and SWAT for this application—For both models, 
the 20 larger watersheds were divided into a series of 
sub-basins at approximately the Hydrologic Unit Code 
(HUC) 10-digit scale, representing the drainage areas that 
contribute to each of the stream reaches. Both the HSPF 
and SWAT models used the 2001 National Land Cover 
Database (NLCD) (Homer and others 2007) to characterize 
the land surface. For HSPF, soils are distinguished on the 
basis of hydrologic soil group (HSG) as defined in State 
Soil Geographic (STATSGO) database (USDA NRCS 

2012) soil coverages. The HRU definitions for SWAT 
in this application use the same land cover as HSPF but 
distinguish soils based on STATSGO’s dominant soil 
classification, not just HSG. Withdrawals were included 
if they resulted in a modification of flow at downstream 
gauges on the order of 10 percent or more. Time series 
of observed PPT and air TEMP (hourly for HSPF, daily 
for SWAT) from 37 weather stations in the ACF Basin 
were obtained from the 2006 BASINS 4 Meteorological 
Database (USEPA 2008). Potential evapotranspiration 
(PET) for both HSPF and SWAT was computed using the 
Penman-Monteith energy balance method (Jensen and 
others 1990, Monteith 1965) using solar radiation, wind 
movement, cloud cover, and relative humidity estimated 
using the SWAT weather generator. A full energy balance 
approach was used because the focus of the study was 
to evaluate potential response to future climates, in 
which the relations between different energy inputs may 
change, even though a better calibration fit to current 
climate conditions can often be obtained using simpler 
temperature-based approaches when the energy inputs are 
subject to uncertainty.  

The calibration objectives for both HSPF and SWAT were 
to achieve error statistics for total streamflow volume, 
seasonal streamflow volume, and high and low streamflow 
within recommended ranges (Donigian 2000, Lumb and 
others 1994) while also maximizing the Nash-Sutcliffe 
Efficiency (NSE) (Nash and Sutcliffe 1970). Because the 
objectives of this application focused at the large basin 
scale, calibration was undertaken only at the HUC 8-digit 
and larger watershed scale. For this application of HSPF, 
four model parameters were the primary focus during 
model calibration to improve model fit for hydrology: 
INFILT (index to mean soil infiltration rate), AGWRC 
(groundwater recession rate), LZSN (lower zone nominal 
soil moisture storage), and BASETP (ET by riparian 
vegetation). For SWAT, 11 model parameters were 
adjusted during model calibration to improve model fit in 
this application: curve number; SECO (soil evaporation 
compensation factor); SURLAG (surface runoff lag 
coefficient); groundwater “revap” rates, baseflow factor; 
GW_DELAY (groundwater delay time); GWQMN 
(threshold depth of water in the shallow aquifer required 
for return flow to occur); RevapMN (threshold depth 
of water in the shallow aquifer required for “revap” or 
percolation to the deep aquifer to occur); CANMAX 
(maximum canopy storage); Manning’s “n” value for 
overland flow, main channels, and tributary channels; and 
Sol_AWC (available water capacity of the soil layer, mm 
water/mm of soil).  

WaterFALL®

Research Triangle Institute’s WaterFALL® system employs 
an updated version of a well-established hydrologic 
model, the Generalized Water Loading Function (GWLF) 
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(Haith and Shoemaker 1987, Haith and others 1992) that 
has been modified to (1) run on the U.S. Environmental 
Protection Agency’s enhanced National Hydrography 
Dataset (NHDPlus) hydrologic network, (2) accept 
parameterization from national datasets, and (3) include 
the impacts of human alterations on streamflows. 
WaterFALL® utilizes the hydrologic simulation within 
GWLF for each catchment of the NHDPlus network in 
the watershed of interest and then accumulates and moves 
water downstream with an embedded time-lagged routing 
routine, providing a distributed hydrologic model across 
the NHDPlus. Parameterization of WaterFALL® occurs 
through the geoprocessing of national datasets for land 
cover, soils, and climate (mean daily TEMP and PPT) 
to each NHDPlus catchment. Each land cover class in a 
catchment is characterized by the predominant HSG and 
predominant percent sand, silt, and clay for the underlying 
soil forming an HRU for runoff calculation within the 
catchment. Mean TEMP and PPT are quantified by 
catchment. Additional basin-specific characteristics such 
as water uses may also be indexed to each catchment from 
local data sources. 

Like SWAT, surface runoff in WaterFALL® is computed on 
a daily basis using the curve number method across each 
land cover type in a catchment. Discharge from shallow 
groundwater is computed using a lumped parameter 
catchment-level water balance for unsaturated and shallow 
saturated zones controlled by the available water capacity 
(AWC) of the unsaturated zone, a recession coefficient 
(RCoeff) providing the rate of release from the saturated 
zone to the stream channel, and a first-order approximation 
of infiltration losses to deep aquifer storage simulated 
using a seepage coefficient (SEEP). The seepage release 
constitutes a loss from the system, where the water is 
no longer available to reach the stream in the temporal 
context of daily rainfall-runoff modeling. Daily ET from 
the unsaturated zone is computed using a land use-
based cover factor and PET computed using the Hamon 
temperature-based method (Hamon 1963). Three model 
parameters (AWC, RCoeff, and SEEP) are adjusted during 
an automated calibration process using a customized 
version of the Parameter Estimation Tool (PEST). Because 
of the physical basis of the AWC and RCoeff parameters, 
a priori values for the parameters are indexed to individual 
catchments within the WaterFALL® database, and a 
multiplier across the physically based values is adjusted 
during calibration. The SEEP parameter is set through 
calibration and consideration of local conditions.

The application of WaterFALL® used for this study was 
developed to create a hydrologic foundation for detailed 
assessment of human and climate effects on stream and 
river flows, including the impacts of hydrologic alterations 
on aquatic habitats in the Southeastern United States 

(SEUS) at the NHDPlus catchment scale (~1.0 km2) 
(Kendy and others 2011). For this study, climate inputs 
included daily PPT and TEMP from a 4- x 4-km national 
dataset obtained from the USDA (Di Luzio and others 
2008), land cover was based on the baseline condition 
assessment represented by the USGS Geographic 
Information Retrieval and Analysis System (GIRAS) land 
cover (Price and others 2006), and soils data were obtained 
from the Soil Survey Geographic database (SSURGO) 
(https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/
survey/geo/?cid=nrcs142p2_053627). Although water 
system discharges and withdrawals were obtained from 
State databases on public and non-public systems for other 
scenarios in the SEUS study, the WaterFALL® model 
simulations contributing to this study were unaltered by 
humans. WaterFALL® was calibrated at several USGS 
gauge locations in the study area for periods in the 1970s, 
commensurate with the land use coverage used to simulate 
a less-altered baseline for the SEUS study. Although 
performance was validated with later periods, some 
differentiation from the other models is expected where 
the calibration period more closely matched the period of 
this study. The three model calibration parameters (AWC, 
RCoeff, and SEEP) were optimized to minimize the 
differences in log-transformed daily flows, giving equal 
weight to differences in streamflows at the low and high 
end of the hydrograph.  

WaSSI
The WaSSI model was developed by the Forest Service to 
assess the effects of climate change, land use change, and 
population growth on water supply stress, river flows, and 
aquatic ecosystems across the conterminous United States 
(Caldwell and others 2012, Sun and others 2011b). WaSSI 
has been successfully used in climate change assessments 
in the Eastern United States (Lockaby and others 2011, 
Marion and others 2013, Sun and others 2013, Tavernia 
and others 2013) and for examining the nexus of water 
and energy at the national scale (Averyt and others 2011, 
2013). WaSSI is an integrated monthly water balance and 
flow routing model that simulates the full hydrologic cycle 
for each of 10 land cover classes at the 12-digit Hydrologic 
Unit Code (HUC) scale. The 10 land cover classes are 
aggregated from the 17 classes of the 2006 NLCD (Fry 
and others 2011). Infiltration, surface runoff, soil moisture, 
and baseflow processes for each HUC watershed’s land 
cover were computed using algorithms of the Sacramento 
Soil Moisture Accounting Model (SAC-SMA) (Burnash 
1995, Burnash and others 1973). STATSGO databases 
(USDA NRCS 2012) were used to compute the 11 SAC-
SMA soil input parameters (Koren and others 2003). 
Monthly ET was modeled with an empirical equation 
derived from multisite eddy covariance ET measurements 
(Sun and others 2011a, 2011b). Required data to estimate 
ET included monthly mean Moderate Resolution Imaging 
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Spectroradiometer (MODIS) MOD15A2 leaf area index 
(LAI) (Zhao and others 2005), Hamon PET calculated 
as a function of TEMP and latitude (Hamon 1963), and 
PPT. This estimate of ET was then constrained by the 
soil water content computed by the SAC-SMA algorithm 
during extreme water-limited conditions. Monthly PPT and 
air TEMP inputs were based on Precipitation Elevation 
Regression on Independent Slopes Model (PRISM) 
estimates (PRISM Climate Group 2013). All water balance 
components were computed independently for each land 
cover class within each HUC watershed and accumulated 
to estimate the totals for the watershed. For the NLCD-
based impervious cover fraction, storage and ET were 
assumed to be negligible, and thus all PPT falling on the 
impervious portion of a watershed for a given month was 
assumed to generate surface runoff in the same month 
and was routed directly to the watershed outlet. No 
anthropogenic water use was included, and the model was 
run using off-the-shelf input datasets without calibration.  

Runoff Sensitivity to Changes in Climate
We quantified and compared changes in flow predictions 
at the study site under eight hypothetical climate change 
scenarios (table 4.2). Climate scenarios included: 
(1) increase PPT 10 percent, (2) decrease PPT 10 percent, 
(3) increase PPT 20 percent, (4) decrease PPT 20 percent, 
(5) increase TEMP 1 °C, (6) increase TEMP 2 °C, 
(7) increase PPT 10 percent and increase TEMP 2 °C, and 
(8) decrease PPT 10 percent and increase TEMP 2 °C. 
These climate change scenarios are hypothetical; however, 
they are reasonable projections of potential long-term 
changes in PPT and TEMP in the SEUS by the middle of 
the 21st century derived from General Circulation Models 
(Walsh and others 2014) or were designed to represent 
extremes in dry (e.g., 20 percent decrease in PPT) or 
wet (e.g., 20 percent increase in PPT) years. For each 
scenario, PPT and/or TEMP were adjusted uniformly by 
the specified amount at each time step. Predicted annual 
and seasonal flows for each scenario were compared to 
the baseline climate scenario to quantify changes in flow 
resulting from the hypothetical change in climate. The 
slope of the linear relation between the relative change 
in runoff and the relative change in PPT was computed, 
representing the sensitivity of runoff to changes in PPT or 
the climate elasticity of streamflow (Sankarasubramanian 
and Vogel 2001). This metric has been successfully used 
in several other assessments evaluating the influence of 
climate change on runoff (Jha and others 2006, Legesse 
and others 2010, Mengistu and Sorteberg 2012).

RESULTS
Predicted changes in mean annual runoff at the study site 
using the large-scale, uncalibrated WaSSI model were 
similar to those of the fine-scale, calibrated HSPF and 
WaterFALL® models under many of the hypothetical 

Table 4.2—Climate scenarios used to evaluate sensitivity 
of predicted runoff to climate change 

Scenarioa Identifier PPT change TEMP change

1 PPT +10% +10% No change

2 PPT -10% -10% No change

3 PPT +20% +20% No change

4 PPT -20% -20% No change

5 TEMP +1 No change +1 °C

6 TEMP +2 No change +2 °C

7 PPT +10%, TEMP +2 +10% +2 °C

8 PPT -10%, TEMP +2 -10% +2 °C

a For all scenarios, precipitation (PPT) and temperature (TEMP) were adjusted 
by the amount shown at each time step relative to the historical baseline period 
from 1980–1999. 

climate change scenarios considered (fig. 4.2). For 
example, under a climate scenario of a 10-percent 
reduction in PPT, the change in runoff among HSPF, 
WaterFALL®, and WaSSI was -18.8, -18.0, and -21.3 
percent, respectively. Under the more extreme changes 
in PPT (e.g., 20-percent decrease), WaSSI’s predicted 
change in runoff (-41.8 percent) was slightly higher than 
that predicted by HSPF (-36.0 percent) and WaterFALL® 
(-34.5  percent). Predicted changes in runoff for scenarios 
of TEMP change were lower than those for changes in 
PPT, but HSPF, WaterFALL®, and WaSSI models generally 
agreed on the magnitude of change. For example, under 
TEMP changes of 2 °C, the change in runoff was -4.9, 
-7.2, and -8.0 percent among HSPF, WaterFALL®, and 
WaSSI, respectively. The SWAT model was generally 
more sensitive to changes in PPT and TEMP than the 
other models.  

The sensitivity of mean annual runoff to changes in PPT, 
or climate elasticity of streamflow, was similar among the 
HSPF, WaterFALL® and WaSSI models. The SWAT model, 
however; appeared to be more sensitive to both increases 
and decreases in PPT than the other models (fig. 4.3). 
Under increasing PPT scenarios, WaSSI (slope = 2.2) had 
similar sensitivity to that of HSPF (slope = 2.1), but both 
were slightly more sensitive than WaterFALL® (slope = 
1.9). Under decreasing PPT scenarios, WaSSI (slope = 
2.1) appeared to be somewhat more sensitive than HSPF 
(slope = 1.8) and WaterFALL® (1.7).  

Inspection of changes in monthly mean runoff as a result 
of a 20-percent decrease in PPT reveals that while changes 
in mean annual runoff were similar among some models, 
changes in monthly mean runoff were quite variable at 
this site (fig. 4.4). WaSSI and SWAT models were most 
sensitive to changes in PPT during the winter months 
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Figure 4.2—Predicted relative change in mean annual runoff for the Flint River study site based on the 
eight hypothetical climate change scenarios. [See table 4.1 for hydrologic model definitions; see table 4.2 
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Figure 4.3—Predicted change in mean annual runoff for various changes in 
precipitation. The slope of the linear relationship between change in runoff and 
change in precipitation represents the sensitivity of runoff to precipitation change. 
The dotted line represents the 1:1 line, and the slopes of the modeled output for 
HSPF, SWAT, WaterFALL®, and WaSSI would fall directly on the 1:1 line if the change 
in runoff were equal to the change in precipitation. [See table 4.1 for hydrologic 
model definitions.]
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Figure 4.4—Relative (A) and absolute (B) changes in monthly mean runoff for a 20-percent precipitation 
decrease. [See table 4.1 for hydrologic model definitions.]

when runoff is highest, which likely explains why they are 
more sensitive to PPT decreases at the mean annual scale 
than HSPF or WaterFALL®. For example, mean relative 
changes in runoff in February were 47.3 and 52.6 percent 
for WaSSI and SWAT, respectively, while changes in 
February runoff for HSPF and WaterFALL® were 38 and 
31 percent, respectively. 

These differences in sensitivity of runoff to changes 
in PPT across months are related to the differences in 
seasonality of ET and soil moisture storage among models 
(fig. 4.5). While PPT was similar for all models, WaSSI 
and SWAT predicted higher ET rates during the winter 
months (November, December, and January) than did 
HSPF and WaterFALL®. Thus, reductions in PPT in the 
climate change scenarios during the winter months may 
impact runoff more than ET for WaSSI and SWAT because 

less excess water would be available to generate runoff 
due to the higher winter ET rates. WaterFALL® predicted 
the lowest winter ET rates, resulting in the highest winter 
runoff rates among models. 

DISCUSSION
Large- and fine-scale hydrologic models could be used in 
combination to identify specific areas of concern across 
large regions and to provide high-resolution quantitative 
estimates of changes in water supply ERFMs in these 
areas under changes in climate, but the differences in 
predicted streamflow response across large- and fine-
scale models must be assessed before applying such a 
multi-scale modeling approach. The goal of this study 
was to examine the potential for combined application of 
large- and fine-scale hydrologic modeling approaches over 
large regions for climate change assessment studies. We 
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Figure 4.5—Monthly median precipitation, evapotranspiration, soil moisture, and runoff for all models under 
baseline conditions. [See table 4.1 for hydrologic model definitions.]

quantified differences in sensitivity of predicted runoff to 
climate change (i.e., PPT and TEMP) among one large-
scale (WaSSI) and three fine-scale (HSPF, SWAT, and 
WaterFALL®) hydrologic models.   

While the absolute magnitude of model-predicted runoff 
sensitivity to changes in PPT and TEMP may differ, the 
general pattern of the results of this study are consistent 
with previous work. Tang and others (2012) found that 
annual mean streamflow in the Salmon River Basin, ID, 
decreased 2–6 percent across sub-watersheds in the basin 
for a TEMP increase of 2 °C using the Variable Infiltration 
Capacity (VIC) model. Legesse and others (2010) used 
PRMS to evaluate the effect of changes in PPT and 
TEMP on runoff in the Meki River, Ethiopia, and found 
that runoff was more sensitive to increases in PPT (+80 
percent for +20 percent PPT) than decreases (-62 percent 
for -20 percent PPT), and a 1.5 °C increase in TEMP 
resulted in a 13-percent decrease in runoff. Mengistu and 
others (2012) used the SWAT model to evaluate changes 
in annual runoff in the Eastern Nile Basin and found that 
runoff increased 10–35 percent for a 10-percent increase 
in PPT, decreased 17–26 percent for a 10-percent decrease 
in PPT, and decreased up to 6 percent for a 2 °C increase 
in TEMP across three sub-watersheds in the basin. Jha and 

others (2006) used SWAT to evaluate sensitivity to PPT 
changes in the Upper Mississippi River Basin and found a 
26-percent reduction and 28-percent increase in runoff for 
10-percent decreases and increases in PPT, respectively.

Results of this study suggest that runoff predicted by large-
scale models (e.g., WaSSI) and fine-scale models (e.g., 
HSPF), despite differences in model structure and level of 
calibration, is similar in sensitivity to changes in PPT and 
TEMP at the annual scale (figs. 4.2 and 4.3). Annual runoff 
sensitivity for increases in PPT at the Flint River study site 
ranged from 1.9 to 2.2 among the HSPF, WaterFALL®, 
and WaSSI models, and sensitivity for decreases in PPT 
ranged from 1.8 to 2.1. These values are well within the 
range of streamflow elasticity to climate reported for the 
SEUS (Sankarasubramanian and Vogel 2001). Although 
there was generally good agreement in sensitivity of runoff 
to changes in PPT among models at the annual scale, there 
were differences in predicted sensitivity among models at 
the monthly scale (fig. 4.5). For example, under a scenario 
of a 20-percent decrease in PPT, the predicted change in 
March runoff was -33.9, -47.9, -28.9, and -42.0 percent for 
HSPF, SWAT, WaterFALL®, and WaSSI, respectively (fig. 
4.4a). The combination of differences in model structure 
(e.g., ET calculation method), parameterization (e.g., land 
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cover characteristics), and calibration strategy evidently 
influences model predictions at the monthly scale. Further 
study is necessary to tease out the root cause of the 
differences in runoff sensitivity. While large- and fine-
scale models have similar predictive performance at the 
monthly time step, in light of these findings caution should 
be used when combining large- and fine-scale models for 
regional resource management applications at time scales 
other than the long-term annual scale.  

LIMITATIONS
While this study provided unique insights into differences 
in predicted runoff sensitivity to climate among models, 
it is not a comprehensive assessment taking into account 
all of the factors that could influence these relationships. 
Some limitations of this study include:

1.	 Only a subset of the hydrologic models evaluated 
elsewhere in this report were considered in this 
study. Models included here consisted of those from 
government agencies and private organizations that 
were able to simulate the additional climate scenarios.

2.	 The models evaluated were not developed using 
the same calibration objective functions and input 
datasets. It is not known how these differences in 
model calibration strategy may affect predicted runoff 
sensitivity to changes in PPT and TEMP. 

3.	 Models evaluated were applied to a single basin in 
the SEUS region. The relative differences in predicted 
runoff sensitivity to changes in PPT and TEMP may 
vary in other hydroclimatic settings.

4.	 In general, hydrologic model streamflow predictions 
are subject to uncertainty in climate, land cover, soil, 
and LAI input data, as well as uncertainty in the 
representation of the physical processes that govern 
streamflow magnitude and timing. 

CONCLUSIONS
The objective of this study was to examine the potential 
for combining large- and fine-scale hydrologic modeling 
approaches over large regions for climate change 
assessment studies. We compared the sensitivity of runoff 
predictions from one large-scale and three fine-scale 
models to changes in PPT and TEMP and found that, while 
there were differences in model complexity and calibration 
strategy, predicted changes in runoff to changes in climate 
were similar at the long-term annual scale, but there were 
differences in predicted sensitivity among models at the 
monthly scale. Due to these seasonal differences, caution 
should be used when combining large- and fine-scale 
models for regional resource management applications 
at time scales other than the long-term annual scale. 
Future research is needed to understand the differences in 
predicted change in monthly runoff and to investigate the 
effect of model calibration strategy, as well as to evaluate 
differences in predicted runoff sensitivity across a larger 
set of gauged watersheds. Despite these limitations, the 
results of this study show promise in the potential to use 
a combination of large- and fine-scale models to examine 
climate change effects on regional water resources.
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CHAPTER 5 

Using Regional-Scale Flow-Ecology Modeling to 
Identify Catchments Where Fish Assemblages are 
Most Vulnerable to Changes in Water Availability

INTRODUCTION
Environmental water studies over the last 2 decades have 
emphasized the inherent linkage and, in some cases, the 
tension between maintaining water for human use as 
well as for ecosystem needs (Acreman and others 2008, 
Kendy and others 2012, Poff and others 2010, Shenton and 
others 2012). Considerable emphasis has been placed on 
understanding the broad discharge patterns that influence 
the structural, functional, and life history strategies of 
biotic communities (Bunn and Arthinton 2002, Mims and 
Olden 2012, Naiman and others 2008). More recently, 
there has been an emphasis on developing hydrologic 
indices for characterizing the flow regime (Henriksen 
and others 2006, Monk and others 2007, Worrall and 
others 2014), systematically arranging streams and rivers 
into specific stream classes with respect to flow regime 
characteristics (Archfield and others 2013; Kennard and 
others 2010; Kennen and others 2007, 2009; McManamay 
and others 2012; Olden and Poff 2003), and building flow-
ecology response models that link changes in streamflow 
and water availability to changes in assemblage structure 
and function (e.g., Arthington and others 2014; Chessman 
and others 2010; Freeman and others 2013; Kennen 
and others 2010, 2014; McManamay and others 2013; 
Stewart-Koster and others 2014; Turner and Stewardson 
2014). All of these studies emphasize the identification 
of the streamflow components needed to help determine 
ecological and environmental endpoints and the inherent 
linkages between changes in streamflow processes and 
ecosystem response. 

Changes in riparian and watershed-scale land use and 
associated alterations in stream habitat and streamflow 
processes have been linked to declines in native stream fish 
populations (Olden 2016) and a general downward trend in 
aquatic biodiversity across the globe (Dudgeon and others 
2006, Vörösmarty and others 2010). While minimizing 
impervious surfaces and maximizing the conservation of 
contiguous tracts of forested lands in watersheds support 
the preservation of stream fish populations (Kennen and 
others 2005), alterations in water availability, including 
impoundments, streamflow regulation, and water resource 

development, which are essential to meet the water needs 
of a growing population, are strongly linked to changes in 
native fish diversity, abundance, and resilience (Conroy 
and others 2003, Poff and Zimmerman 2010, Warren 
and others 2000). Confounding the effects of land use 
change and streamflow alteration are projected increases 
in drought frequency and duration associated with climate 
change (IPCC 2013, Melillo and others 2014), which can 
place further stress on water supplies and fish assemblage 
structure (Keaton and others 2005, Matthews and Marsh-
Matthews 2003, White and others 2016). Understanding 
these linkages and the potential effect of changes in water 
availability on aquatic ecosystems is critical for long-
term water management in areas facing significant water 
stress, especially when the needs of humans and aquatic 
ecosystems appear to conflict and sometimes result in 
legal proceedings. This is periodically the case in the 
Southeastern United States (SEUS) where water stress is 
known to occur in conjunction with drought cycles (e.g., 
Seager and others 2009). It is under these conditions that 
water managers must identify areas of concern and make 
informed decisions about water conservation that affect 
human and ecological use in these areas. Unfortunately, 
there is a lack of decision-support tools that identify 
areas of concern across broad regions, especially 
tools with a spatial resolution relevant to management 
decision making. 

The primary objective of this study was to demonstrate the 
efficacy of using relatively simple, large-scale hydrologic 
models in conjunction with ecological data to develop 
empirical flow-ecology response models that predict the 
effect of changes in water availability on fish species 
richness (FSR), an easily quantified assemblage metric. 
Additionally, we sought to use this modeling approach to 
identify catchments or “hot spots” of FSR change under 
a plausible set of future land use, climate, and withdrawal 
change scenarios and test the hypothesis that FSR in the 
North Carolina Piedmont will decrease with predicted 
increases in urban land use (i.e., impervious surfaces), 
changes in climate, and increases in water withdrawals 
(see Hain and others 2018).
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METHODS
Study Area
We focused on catchments in the Piedmont ecoregion 
of North Carolina to develop empirical relationships 
between streamflow and FSR (fig. 5.1A). Seven major 
river basins are partially located within the Piedmont 
region. These include the Broad (BRD), Cape Fear 
(CPF), Catawba (CTB), Neuse (NEU), Roanoke (ROA), 
Tar-Pamlico (TAR), and Yadkin (YAD) River Basins 
(fig. 5.1B). The North Carolina Piedmont contains 
or intersects 886 12-digit Hydrological Unit Code 
catchments (hereafter HUC-12s) identified by the U.S. 
Department of Agriculture (USDA) Natural Resources 
Conservation Service’s (NRCS) Watershed Boundary 
Dataset Geographic Information System (GIS) layer. North 
Carolina has one of the highest rates of population growth 
in the United States and is now among the top 10 most 
populous States (U.S. Census Bureau 2016). Much of this 
growth has occurred in the Piedmont, which contains many 
of the State’s most rapidly growing cities (i.e., Charlotte, 
Durham, Raleigh, and Winston-Salem) (fig. 5.1A). 

The Piedmont region of North Carolina (fig. 5.1A) has 
a humid subtropical climate of warm summers and cool, 
moist winters. The region receives, on average, 107–117 
cm year-1 of precipitation (PPT) (North Carolina Climate 
Office 2016) and is made up of gently rolling forested 
hills, with elevations ranging from 60 to 470 m. The 
geology of the Piedmont is dominated by metamorphic 
(gneisses and schist) and igneous (granite, diorite, and 
gabbro) rocks overlain by “clayey” ultisols (soils with 
light upper layers and a reddish sub-soil) that were 
mainly formed through physical weathering and alluvial 
processes. These soils are rich in aluminum and silicates 
and contain eroded sediments mixed with organic material. 
Natural vegetative cover in this region consists mainly 
of mesic mixed hardwoods (e.g., American beech [Fagus 
grandifolia], tulip poplar [Liriodendron tulipifera], hickory 
[Carya spp.], and red and white oak [Quercus spp.]), 
though wetlands occur in some lower elevations, and 
patches of pine (Pinus spp.) forests are found in more xeric 
regions. Population growth and development in the North 
Carolina Piedmont have altered the natural landscape and 
increased water demand. Surface water and groundwater 
withdrawals have reduced baseflow, and estimates of water 
use show that, in 2010, the total gross fresh surface water 
withdrawals across the 54 counties in the region amounted 
to 11.7 billion m3 year-1 (Maupin and others 2014).

Modeling Approach
For this study, we implemented a multi-step modeling 
approach (fig. 5.2). First, FSR was calculated for 385 
distinct fish sampling sites in the North Carolina Piedmont 
using data collected by the North Carolina Division of 

Water Resources (NCDWR). Average monthly streamflow 
for the sites was then predicted using the well-documented 
Water Supply Stress Index (WaSSI) model (Caldwell 
and others 2015). Fish species richness and streamflow 
predictions were used to build a boosted regression tree 
(BRT) flow-ecology model, which was used to predict 
the relationship between a subset of ecologically relevant 
flow metrics (ERFMs) and FSR in all HUC-12s in the 
North Carolina Piedmont. The results of the model were 
then used to predict FSR under three plausible scenarios 
of future water withdrawals, climate change, and increases 
in impervious surfaces. Finally, a “hot spot” analysis was 
used to identify individual HUC-12s that were most likely 
to be affected by changes in water availability.

Biological Data Aggregation
The Biological Assessment Unit (BAU) of the NCDWR 
began sampling each of the State’s 17 river basins on 
a 5-year rotation in 1990 (NCDENR 2006). Streams 
wadeable from shoreline to shoreline were sampled by 
the Stream Fish Community Assessment Program for an 
average distance of 183 m (600 feet). A four-person team 
collected all fish at each site using a modified two-pass 
depletion technique with two backpack electrofishing units 
and two persons netting. All fish were identified to species, 
enumerated, inspected for disease and deformities, and 
measured for total length before being released back into 
the stream. Specimens not easily identified in the field 
were preserved in 10-percent formalin and transported 
to the BAU laboratory in Raleigh, NC. Between 1990 
and 2012, 967 sampling events were performed by BAU 
at 385 unique sampling stations in the North Carolina 
Piedmont region. The sampling time window was limited 
to the spring between April and June which helped 
control for seasonal variability in flow conditions and was 
important for maintaining a consistent dataset for analysis 
across samples. Where unique stations were sampled 
multiple times, measures of FSR were averaged across all 
sampling events, resulting in a final sample size of 385 for 
developing flow-ecology relationships.

Upstream contributing catchments were delineated 
for each of the 385 unique NCDWR sampling stations 
(fig. 5.1B). Delineations were performed using Arc Hydro 
tools in ArcGIS 10.1 using digital elevation models 
procured from the North Carolina Floodplain Mapping 
Program (NC Floodplain Mapping Program 2013).

Streamflow Prediction
Streamflow was predicted for all study catchments using 
the WaSSI model, which was developed by the USDA 
Forest Service to assess the effects of climate change, 
land use change, and population growth on water supply 
stress, river flows, and aquatic ecosystems across the 
conterminous United States (Caldwell and others 2012, 
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Figure 5.1—Map of North Carolina showing the study area spanning the Piedmont ecoregion, as well as parts of the 
Mountain and Coastal Plain ecoregions (A), and the range in FSR values for the BRT model training dataset in the North 
Carolina Piedmont and locations of seven USGS reference gauges used for the WaSSI model validation (B). Study area extent 
was chosen based on best professional judgement and discussions with NCDWR personnel (A). Each colored polygon in (B) 
represents the delineated contributing watershed for each ecological sample site.
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Figure 5.2—Study modeling approach. Biological data were aggregated from NCDWR stream community assessment data. Streamflow was 
predicted using the WaSSI model.

2015, Sun and others 2011b). WaSSI has been successfully 
used in climate change assessments in the Eastern United 
States (Lockaby and others 2011, Marion and others 
2013, Sun and others 2013, Tavernia and others 2013) 
and for examining the nexus of water and energy at the 
national scale (Averyt and others 2011, 2013). WaSSI 
is an integrated monthly water balance and flow routing 
model that simulates the full hydrologic cycle for each of 
10 land cover classes at the HUC-12 scale. The 10 land 
cover classes are aggregated from the 17 classes of the 
2006 National Land Cover Database (NLCD) (Fry and 
others 2011). Infiltration, surface runoff, soil moisture, and 
baseflow processes for each HUC-12 catchment land cover 
class were computed using algorithms of the Sacramento 
Soil Moisture Accounting Model (SAC-SMA) (Burnash 
1995, Burnash and others 1973). State Soil Geographic 
(STATSGO) databases (USDA NRCS 2012) were used to 
compute the 11 SAC-SMA soil input parameters (Koren 
and others 2003). Monthly evapotranspiration (ET) was 
modeled with an empirical equation derived from multisite 
eddy covariance ET measurements (Sun and others 
2011a). Required data to estimate ET included monthly 
mean Moderate Resolution Imaging Spectroradiometer 
(MODIS) MOD15A2 leaf area index (LAI) (Zhao and 
others 2005), potential ET (PET) calculated as a function 
of air temperature (TEMP) and latitude (Hamon 1963), 
and PPT. This estimate of ET was then constrained by the 
soil water content computed by the SAC-SMA algorithm 
during extreme water-limited conditions. Monthly PPT 
and TEMP inputs were based on Parameter-elevation 
Relationships on Independent Slopes Model (PRISM) 

estimates (PRISM Climate Group 2013). All water balance 
components were computed independently for each land 
cover class within each catchment and accumulated to 
estimate the totals for the catchment. For the NLCD-based 
impervious cover fraction, storage and ET were assumed 
to be negligible, and thus all PPT falling on the impervious 
portion of a catchment for a given month was assumed to 
generate surface runoff in the same month and was routed 
directly to the catchment outlet. 

Although the WaSSI model can be calibrated, no 
calibration of model input parameters was performed 
for this study. WaSSI was developed to include the 
key ecohydrological processes that affect the water 
balance with off-the-shelf input datasets while having 
an acceptable level of predictive performance without 
calibration. In doing so, the model is not subject to the 
complexities and uncertainties associated with transferring 
model parameters from calibrated to ungauged catchments 
(Siviplan and others 2003) and using the model to assess 
the effect of climate or land cover scenarios outside of 
the conditions for which the model is calibrated. Despite 
being uncalibrated, WaSSI has been found to have 
similar predictive performance at the monthly time step 
to other calibrated, process-based models (Caldwell and 
others 2015).  

Streamflow was predicted using the monthly WaSSI output 
from the years 1991–2010. This output represented the 
average streamflow for each month of the year over the 20-
year period and resulted in 12 average monthly streamflow 
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values for each site. We calculated a suite of ERFMs from 
these monthly averages targeting flow metrics that account 
for the magnitude and seasonality (timing) of streamflow 
(Poff and others 1997) in an effort to capture flow signals 
important to fish life history. This included minimum 
monthly streamflow in m3 s-1 (low flow; MinCMS); 
maximum monthly streamflow (high flow; MaxCMS); 
average monthly streamflow (average flow; AveCMS); 
average streamflow for April, May, and June (spring flow; 
AMJCMS); average streamflow for August (summer flow; 
AugCMS); and a measure of the coefficient of monthly 
streamflow variability (FloVar). FloVar was computed by 
dividing the standard deviation of the decreased monthly 
flow values by the original monthly mean streamflow. 
This measure of streamflow variability is equivalent to 
“MA39,” a common measure of monthly streamflow 
variability presented in Olden and Poff (2003) and 
Henriksen and others (2006). Additionally, the proportion 
of surface flow coming from impervious surfaces 
(QFRAC_IMP) was estimated for each catchment. All 
statistics were estimated for contributing catchments to 
each NCDWR sample site, as well as all HUC-12s in the 
North Carolina Piedmont. The monthly time step allows us 
to evaluate the ability of large-scale, easily parameterized 
models to provide flow information that is useful for 
determining changes in ecosystem integrity.

We validated the WaSSI model flow predictions by 
computing classical hydrologic model fit statistics as 

well as the prediction of ERFMs at seven USGS gauges 
located in the study area (table 5.1, fig. 5.1B). Gauges 
identified as reference sites in the USGS Gages II database 
(Falcone 2011, Falcone and others 2010) were selected 
for validation procedures and were either co-located 
with a fish training site or had one or more fish training 
sites anywhere within the gauged basin. Classical fit 
statistics evaluated included bias in mean streamflow, 
the Nash-Sutcliffe Efficiency (NSE) statistic (Nash and 
Sutcliffe 1970), the root mean squared error (RMSE), 
and the coefficient of determination (R2). Ecologically 
relevant flow metrics evaluated included MaxCMS and 
FloVar that were used in the four-variable flow-ecology 
model (described below). Bias in mean streamflow within 
±25, ±15, and ±10 percent was considered indicative 
of satisfactory, good, and very good hydrologic model 
performance, respectively (Moriasi and others 2007). 
Similarly, NSE values that are >0.50, >0.65, and >0.75 
for prediction of monthly streamflow were considered to 
be indicative of satisfactory, good, and very good model 
performance, respectively (Moriasi and others 2007). The 
NSE can range from negative infinity to 1.0; the closer 
NSE is to 1.0, the better the model fit. Negative values 
of NSE indicate that using the mean of the observations 
provides a better fit than the model. A hydrologic 
uncertainty of ±30 percent was used to aid in placing 
model prediction bias of ERFMs into context with inherent 
variability in streamflow and flow measurement (Murphy 
and others 2013). 

Table 5.1—Summary of classical hydrological model fit statistics and bias in prediction of the ecologically 
relevant flow metricsa (ERFMs) used in the four-variable boosted regression tree (BRT) model across the seven 
USGS gauges used for WaSSI model validation 

Classical model fit statistics ERFMs

Site Gauge Description

Drainage 
area 

(km2 )

Bias in 
mean 

streamflow 
(%) NSE

RMSE 
(m3 s-1 
[cms]) R2

Bias in 
MaxCMS 

(%)

Bias in 
FloVar 
(%)

1 02077200 Hyco Creek Near Leasburg, NC 121.7 16 0.60 0.85 0.63 -12 -26
2 02081500 Tar River near Tar River, NC 428.4 16 0.74 2.05 0.76 -17 -34
3 02082950 Little Fishing Creek near White Oak, NC 460.9 10 0.78 2.01 0.79 -17 -44
4 02112360 Mitchell River near State Road, NC 205.3 -10 0.50 1.17 0.70 2.4 73
5 02118500 Hunting Creek near Harmony, NC 400.5 13 0.60 2.30 0.69 3.4 3.7
6 02125000 Big Bear Creek near Richfield, NC 144.5 6.9 0.81 0.76 0.81 -11 -18
7 02128000 Little River near Star, NC 273.5 -8.3 0.71 1.45 0.72 -16 0.8
Mean 
(standard deviation)

290.7 
(140.0)

6.2  
(11.0)

0.68 
(0.11)

1.51 
(0.62)

0.73 
(0.06)

-9.5 
 (8.9)

-6.4 
(39.1)

a Bias in mean streamflow within ±25, ±15, and ±10 percent is considered indicative of satisfactory, good, and very good hydrological model performance, 
respectively, while Nash-Sutcliffe efficiency (NSE) values that are >0.50, >0.65, and >0.75 for prediction of monthly streamflow are considered to be 
indicative of satisfactory, good, and very good model performance, respectively. A hydrologic uncertainty of ±30 percent was used to aid in placing model 
prediction bias of ERFMs into context with inherent variability in streamflow and flow measurement (Murphy and others 2013). 

FloVar = coefficient of monthly streamflow variability; MaxCMS = maximum monthly streamflow in m3 s-1 (cms); NSE = Nash-Sutcliffe Efficiency; R2 = 
coefficient of determination; RMSE = root mean squared error.
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Flow-Ecology Model Development
We developed a FSR BRT model using observed 
biological data and WaSSI streamflow predictions for 
all 385 NCDWR sample sites in the training dataset. 
Boosted regression tree models are only briefly described 
here as their use and technical details (e.g., Breiman 
and others 1984, De’ath and Fabricius 2000, Prasad and 
others 2006) as well as application (Aertsen and others 
2010; Brown and others 2012; Clapcott and others 2011; 
Elith and others 2008; Leclere and others 2011; Waite 
and others 2010, 2012) have been widely presented in 
the literature. Boosted regression trees are part of the 
classification and regression tree (CART) or decision tree 
family, a family of techniques used to advance single 
classification or regression trees by averaging the results 
for each binary split from numerous trees or forests. The 
objective of BRT models is to reduce the predictive error 
and improve overall performance (De’ath 2007, Elith 
and others 2008). In BRT, after the initial tree has been 
developed, successive trees are grown on reweighted 
versions of the data, giving more weight to cases that 
are incorrectly classified than those that are correctly 
classified within each growth sequence (Waite and others 
2012). As more and more trees are grown in BRT, the 
large number of trees increases the chance that cases that 
are difficult to classify initially are correctly classified, 
thus representing an improvement to the basic averaging 
algorithm used in random forest (De’ath 2007). Boosted 
trees and random forest models retain the positive aspects 
of single trees seen in CART models, yet have improved 
predictive performance, can easily assess nonlinearities 
and interactions, and can provide an ordered list of the 
importance of the explanatory variables (De’ath 2007, 
Leclere and others 2011). 

Although BRT offers improved modeling performance 
over CART, the simple single tree obtained from CART 
is lost, making visualization of the results more difficult. 
Partial dependency plots (PDPs) provide a way to visualize 
the effect of a specific explanatory variable on the response 
variable after accounting for the average effects of all 
other explanatory variables (De’ath 2007, Elith and others 
2008); PDPs for selected variables important in models 
appear as examples in the results. Boosted regression tree 
models were run using the gbm library in R and specific 
code from Elith and others (2008). 

Boosted regression tree models were developed using 
FSR as the response variable and ERFMs and river basin 
as explanatory variables. We developed the BRT models 
using the training dataset (fig. 5.1B) with a bag fraction 
of 0.5, a learning rate of 0.004, and a tree complexity 
of 3. A bag fraction of 0.5 indicates that each tree is 
developed using a random selection of 50 percent of the 

data. The learning rate influences the total number of trees 
evaluated for a model, while tree complexity controls 
whether interactions are fitted, with a value of 3 allowing 
the assessment of up to 3-way interactions. Variable 
relative importance (VRI) was calculated using formulae 
developed by Friedman (2001) and implemented in the R 
gbm library to estimate the relative importance of predictor 
variables (Waite and others 2012). Calculations of VRI 
are based on the number of times a variable is selected 
for splitting, weighted by the squared improvement to the 
models as a result of each split, averaged over all trees. 
The relative importance of each variable is scaled so that 
the sum adds to 100, with higher numbers indicating 
stronger influence on the modeled response. Due to the 
size of the training dataset, we implemented a k-fold cross-
validation technique using the R function gbm.step. The 
k-fold cross-validation splits the dataset into k partitions, 
keeping one partition for testing and the remaining 
partitions for fitting the model (Hastie and others 2009). 
This technique generally has low bias, and the predictive 
performance of a k-fold cross-validation and validation 
using an independent dataset is highly similar (Elith and 
others 2008). Additionally, k-fold cross-validation is 
known to provide a computational advantage over leave-
one-out techniques and provides a more accurate estimate 
of the test error rate (James and others 2013). Goodness of 
fit was measured using the equivalent R2, estimated as: 

(TD - RD) / TD

where 

  TD = total deviance 

  RD = residual deviance 

Initially we developed an eight-variable BRT model 
using the primary subset of ERFMs outlined above. 
Boosted regression tree approaches have been shown 
to overfit models (Aertsen and others 2010, Elith and 
others 2008). Therefore, we developed a reduced-variable 
model using only those variables identified as having a 
relative importance >10 percent (fig. 5.3). The final model 
variables were selected after evaluating a Spearman rank 
correlation matrix of explanatory variables (table 5.2) 
and the effects on model fit (i.e., equivalent R2), and by 
examining the PDPs of all eight explanatory variables (not 
shown). This secondary evaluation allowed us to reduce 
the number of explanatory variables from eight to four 
without a loss of variability accounted for by the BRT 
response model. The final reduced four-variable model 
identified those variables most critical for assessing the 
effects of climate, streamflow, and land use changes on 
FSR and insured a high level of parsimony for use in 
future management scenarios. We used the final reduced 
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Figure 5.3—Summary of the relative importance of the predictor variables included in (A) the full eight-variable (equivalent R2 = 
0.47) and (B) four-variable (equivalent R2 = 0.50) boosted regression tree models. [MinCMS = minimum monthly streamflow in m3 s-1; 
MaxCMS = maximum monthly streamflow; AveCMS = average monthly streamflow; AMJCMS = average streamflow for April, May, 
and June (spring flow); AugCMS = average streamflow for August (summer flow); FloVar = measure of the coefficient of monthly 
streamflow variability; QFRAC_IMP = proportion of surface flow coming from impervious surfaces; Basin = the specific river basin in 
which the training site is located.]

Table 5.2—Spearman correlations and p-values (in parentheses)a of predictor variables for the boosted 
regression tree (BRT) models across the 385 North Carolina Division of Water Resources (NCDWR) 
sample sites 

Variable Basin AveCMS MinCMS MaxCMS AMJCMS AugCMS FloVar QFRAC_IMP FSR

Basin 0.07 
(0.1802)

0.01 
(0.8556)

0.11 
(0.0258)

0.04 
(0.4061)

0.02 
(0.6536)

0.11 
(0.0310)

-0.15 
(0.0025)

0.1    
(0.0508)

AveCMS 0.96 
(<0.0001)

0.99 
(<0.0001)

0.99 
(<0.0001)

0.94 
(<0.0001)

-0.22 
(<0.0001)

0.05  
(0.2893)

0.2 
(<0.0001)

MinCMS 0.9 
(<0.0001)

0.96 
(<0.0001)

0.99 
(<0.0001)

-0.42 
(<0.0001)

0.11  
(0.0359)

0.13 
(0.0092)

MaxCMS 0.96 
(<0.0001)

0.88 
(<0.0001)

-0.09 
(0.0869)

0.01  
(0.8612)

0.22 
(<0.0001)

AMJCMS 0.94 
(<0.0001)

-0.29 
(<0.0001)

0.03  
(0.6049)

0.18 
(0.0004)

AugCMS -0.42 
(<0.0001)

0.13  
(0.0128)

0.12 
(0.0147)

FloVar -0.21 
(<0.0001) 

0.2 
(<0.0001)

QFRAC_IMP -0.21 
(<0.0001)

FSR

a Bolded p-values are significant (α <0.05). Bolded variables represent those retained in the four-variable BRT model. 

AveCMS = average monthly streamflow; MinCMS = minimum monthly streamflow; MaxCMS = maximum monthly streamflow; AMJCMS = average 
streamflow for April, May, and June (spring flow); AugCMS = average streamflow for August (summer flow); FloVar = measure of the coefficient of 
monthly streamflow variability; QFRAC_IMP = proportion of surface flow coming from impervious surfaces; FSR = fish species richness; QFRAC_
IMP = the proportion of surface flow coming from impervious surfaces.
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four-variable BRT model to predict FSR for all 385 
NCDWR sample sites and regressed observed FSR against 
predicted FSR with a 95-percent confidence interval 
(Piñeiro and others 2008).

Scenarios
The final reduced four-variable model developed for 
the training data was then used to predict FSR in each 
HUC-12 in the North Carolina Piedmont under current 
conditions as well as three future scenarios. These 
scenarios included (1) projected average climate for 
the years 2041–2060, (2) impervious cover projections 
for the year 2060, and (3) plausible water withdrawals 
from each HUC-12. For climate projections, statistically 
downscaled 1/8- x 1/8-degree (~12 x 12 km) 1961–2099 
monthly PPT and TEMP predicted by the National 
Oceanic and Atmospheric Administration’s Geophysical 
Fluid Dynamics Laboratory coupled climate model CM2.0 
for the A2 growth and emission scenario was obtained 
from the World Climate Research Programme Coupled 
Model Intercomparison Project Phase 3 (CMIP3) dataset 
(Meehl and others 2007). The Intergovernmental Panel 
on Climate Change (IPCC) Special Report on Emissions 
Scenarios (SRES) (Nakicenovic and others 2000) 
characterized the A2 storyline as a very heterogeneous 
world with continuously increasing global population and 
regionally oriented economic growth with relatively slow 
technological change. The A2 (High) SRES scenario was 
selected because it represents potentially the most likely 
emission scenario as post-2000 global carbon emissions 
estimates indicate that current emissions are tracking the 
higher of the SRES emission projections (Raupach and 
others 2007). The CM2.0 climate model was selected 
because it represents a “mid-range” scenario among the 16 
climate models evaluated in CMIP3 for the United States 
(Treasure and others 2014). Average monthly PPT and 
TEMP predictions were estimated for each HUC-12 using 
area-weighted means. Predicted FSR for the 2041 to 2060 
time period was compared to the 1991 to 2010 time period 
to evaluate potential climate change effects.

Impervious surface projections for the year 2060 
were derived from the U.S. Environmental Protection 
Agency’s Integrated Climate and Land-Use Scenarios 
(ICLUS) project for the A2 growth and emission scenario 
(Bierwagen and others 2010, USEPA 2009) to match the 
climate change scenario. The ICLUS project develops 
future impervious surface scenarios that are “broadly 
consistent with global-scale, peer-reviewed storylines of 
population growth and economic development” (USEPA 
2009). Projections are based on regression models that 
relate the 2001 NLCD impervious surface database with 
housing density estimates (a derivative of demographic 
projections), which enables forecasting likely changes 
under SRES growth scenarios (scenario A2 was used for 

this project) (USEPA 2009). Impervious cover effects 
were assessed by comparing FSR under projected 2060 
impervious cover to that of 2006 using the baseline climate 
data from 1991 to 2010.

The North Carolina Ecological Flow Science Advisory 
Board (NCEFSAB) recommended a “flow-by” criteria 
where ecological flows should be 80–90 percent of the 
instantaneous modeled baseline flow (NCEFSAB 2013). 
Consistent with this recommendation, we modeled 
the effect of reduced flows on FSR by systematically 
decreasing the amount of total streamflow predicted for 
each HUC-12 in the North Carolina Piedmont from 5–25 
percent at 5-percent intervals (i.e., a 95- to 75-percent 
flow-by), thereby bracketing the range recommended 
by the NCEFSAB. We then used these decreased flow 
values as explanatory variables in our BRT prediction 
models. Welch’s t-tests (Welch 1947) were performed 
using the R function t.test to test for differences between 
mean expected values for current conditions and values 
predicted under future scenarios (water withdrawals, 
impervious surface projections, and climate change). A 
t-test tests the hypothesis that predictions for future and 
withdrawal scenarios are equal to each other. The Welch’s 
modification adjusts the degrees of freedom for predictions 
whose variances are not equal (Welch 1947). Significant 
(α <0.05) p-values indicate that predictions are not equal.

RESULTS
The WaSSI model reasonably captured the magnitude 
and variability in observed flows at the seven validation 
sites within the study region (fig. 5.4, table 5.1). Model 
performance was satisfactory or better at all sites evaluated 
for classical model fit statistics. Absolute bias in mean flow 
was satisfactory (within ±25 percent) at two sites, good 
(within ±15 percent) at three sites, and very good (within 
±10 percent) at two sites. The NSE was near-satisfactory 
at one site (0.50), satisfactory (>0.50) at two sites, good 
(>0.65) at two sites, and very good (>0.75) at two sites. 
The mean bias in mean flow across all sites was +6.2 
percent (mean absolute bias 11.5 percent), while the mean 
NSE was 0.68; both statistics reflected good performance 
overall. Similarly, bias in the MaxCMS and FloVar 
ERFMs used in the four-variable flow-ecology model 
was generally within the range of hydrologic uncertainty 
(within ±30 percent). Bias for four of the seven sites 
was within ±30 percent for FloVar and was within ±30 
percent at all sites for MaxCMS. Sites 2, 3, and 4 FloVar 
bias was not within ±30 percent; however, site 2 was only 
marginally outside the range of hydrologic uncertainty 
at -34 percent. FloVar bias was greatest for site 4 at 73 
percent. Comments on flow modification in the USGS 
Gages II database indicate that there are small reservoirs in 
the headwaters of this catchment (Falcone 2011, Falcone 
and others 2010), possibly supplementing flows during 
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Figure 5.4—Observed (circles) and predicted (lines) mean monthly streamflow hydrographs for the seven USGS reference 
gauges used for WaSSI model validation.
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dry periods and reducing FloVar in the observed time 
series relative to natural conditions simulated by WaSSI 
(fig. 5.4). Indeed, FloVar was lowest at site 4 among all 
sites, and thus small absolute differences in FloVar result 
in large relative differences. Overall, the validation results 
indicate that our hydrologic modeling approach provides 
reasonable approximations of ERFMs for flow-ecology 
modeling that fall within commonly applied bounds of 
uncertainty and bias.

Observed FSR values in the North Carolina Piedmont 
ranged from 5.0 to 28.5 across the 385 sites (fig. 5.1B, 
table 5.3), with an average of 16.4. Among river basins, 
the TAR, ROA, and NEU had the highest average FSR 
values, whereas the BRD, YAD, CPF, and CTB had 
slightly lower averages (table 5.3). By comparison, the 
highest MaxCMS values were found in the TAR, BRD, 
and NEU, while the CTB, ROA, YAD, and CPF were 
slightly lower (table 5.3). In addition to having the lowest 
MaxCMS values, the CPF had the highest QFRAC_IMP 
values along with the NEU, followed by the CTB, YAD, 
BRD, TAR, and ROA (table 5.3). 

The explanatory variables in the reduced four-variable 
model (all variables with relative importance <10 percent 
removed) consisted of Basin, QFRAC_IMP, MaxCMS, 
and FloVar, with an estimated equivalent R2 = 0.50 
(table 5.4). Basin, a categorical variable, was the most 
influential variable in the model (31.3-percent relative 
importance), followed by MaxCMS (23.7 percent), 
QFRAC_IMP (23.1 percent), and FloVar (21.9 percent) 
(fig. 5.3B). All flow variables show distinct relations 
with the fitted values (fig. 5.5). Basin accounts for basin-
specific factors such as geology, topography, habitat, 
and latitude, so it is not surprising that Basin had a 
significant influence on the model outcome. Although each 
variable exhibits some variability, the overall response 

pattern indicates a negative response between FSR and 
QFRAC_IMP and a positive response between FSR and 
both MaxCMS and FloVar, although this response may 
not be linear (fig. 5.5). Further, the PDP for QFRAC_IMP 
shows a fairly rapid linear decline in FSR at relatively low 
levels of surface flow coming from impervious surfaces 
(fig. 5.5). Conversely, there is a strong increase in FSR 
between 3 and 7 m3 s-1 in the PDP for MaxCMS. The 
interactions between MaxCMS, QFRAC_IMP, and FloVar 
indicate that FSR is highest when MaxCMS and FloVar 
are high, but QFRAC_IMP is low (fig. 5.6). Across the 
ranges of MaxCMS and FloVar values, FSR remains quite 
low when QFRAC_IMP is high (fig. 5.6). The slope of the 
regression for observed FSR values versus those predicted 
by the BRT model was 0.41 (predicted FSR = 9.73 + 
0.41 × observed FSR) with an adjusted R2 value of 0.48, 
indicating a relatively good predictive fit with only slight 
bias across the range of values. 

The northeastern part of the Piedmont including the 
ROA, TAR, and NEU river basins had higher FSR 
values than the rest of the region under the baseline 
scenario as illustrated in figures 5.5 and 5.7A. Projected 
climate change by 2041–2060 increased FSR by 0.35 
species (table 5.4) on average (p = 0.0042), ranging from 
a decrease of 2.19 to an increase of 3.10 (fig. 5.7B). 
Projected changes in impervious cover resulted in an 
insignificant decrease (p = 0.1817) in FSR of 0.16 species 
across the region on average (table 5.4). Fish species 
richness decreased significantly across the region with 
increasing water withdrawals (table 5.4; figs. 5.7D 
and 5.8). Under the water withdrawal scenarios, a 
significant loss in FSR of 0.49 species was predicted 
with a 15-percent reduction in flow (p = 0.0001), while a 
reduction in flow of 25 percent was predicted to have an 
average loss of one species (p <0.0001) (table 5.4).  

Table 5.3—Predicted mean (standard deviation, in parentheses) 
ecologically relevant flow metrics (ERFMs) and fish species richness 
(FSR) across the 385 North Carolina Division of Water Resources sample 
sites for the Broad (BRD), Cape Fear (CPF), Catawba (CTB), Neuse (NEU), 
Roanoke (ROA), Tar-Pamlico (TAR), and Yadkin (YAD) River Basins

  BRD CPF CTB NEU ROA TAR YAD
All 

basins

FSR 15.63 
(2.8)

15.48 
(4.36)

13.59 
(3.63)

18.95 
(3.82)

19.36 
(3.37)

19.91 
(3.65)

15.56 
(3.95)

16.35 
(4.32)

MaxCMS 2.8 
(3.89)

1.43 
(1.68)

1.76 
(1.15)

2.46 
(2.06)

1.79 
(1.39)

3.07 
(3.68)

1.75 
(1.17)

1.95 
(2.05)

QFRAC_IMP 0.08 
(0.07)

0.21 
(0.18)

0.2 
(0.17)

0.21 
(0.14)

0.05 
(0.04)

0.06 
(0.05)

0.12 
(0.12)

0.14 
(0.15)

FloVar 0.75 
(0.04)

0.81 
(0.12)

0.74 
(0.09)

0.78 
(0.08)

0.8 
(0.1)

0.85 
(0.06)

0.83 
(0.16)

0.8 
(0.12)

MaxCMS = maximum monthly streamflow; QFRAC_IMP = the proportion of surface flow coming 
from impervious surfaces; FloVar = measure of the coefficient of monthly streamflow variability.
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Table 5.4—Boosted regression tree predictions for the four-variable model across the 
North Carolina Piedmont ecoregion 

Climate 
change

Impervious 
cover

Change in flow (water withdrawal)c

Four-variable model 
(equivalent R2 = 0.50) 2041–2060b 2041–2060b -5% -10% -15% -20% -25%

t-test p-valuea 0.0042 0.1817 0.7909 0.1047 0.0001 <0.0001 <0.0001

Mean expected 18.04 18.04 18.04 18.04 18.04 18.04 18.04

Mean predicted 18.39 17.88 18.012 17.84 17.55 17.23 17.05

Mean change 
(predicted - expected)

0.35 -0.16 -0.03 -0.20 -0.49 -0.81 -0.99

a Welch’s t-tests were performed to test for differences between mean expected values for current conditions and values 
predicted under future scenarios (water withdrawals, impervious surface projections, and climate change). Bolded values 
represent a significant difference (p <0.05) between current conditions and predicted values. 
b 2041–2060 represents the time period for the climate change and impervious surface scenarios. 
c Percentage values from -5 to -25 represent water withdrawal scenarios. 

R2  = coefficient of determination.

Figure 5.5—Partial dependency plots for variables in the final four-variable boosted regression tree model for FSR. 
Boosted regression tree partial dependency plots show the response form of FSR (y-axis = fitted function of FSR) based 
on the effect of individual explanatory variables with the response of all other variables removed. [FloVar = measure of 
the coefficient of monthly streamflow variability; MaxCMS = maximum monthly streamflow; QFRAC_IMP = the proportion 
of surface flow coming from impervious surfaces.]
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Figure 5.6—Interaction plots of QFRAC_IMP, MaxCMS, and FloVar, the three continuous variables in the four-variable model. The 
y-axis fitted value represents the effect of the interaction on the response variable FSR. [FloVar = measure of the coefficient of 
monthly streamflow variability; MaxCMS = maximum monthly streamflow; QFRAC_IMP = the proportion of surface flow coming from 
impervious surfaces.]

Under each future scenario, some HUC-12s were more 
likely to experience changes in FSR than the average 
HUC-12 (figs. 5.7 and 5.8). These results indicated that 
some HUC-12s will lose species more quickly than 
the region average. The hot spots shown in figure 5.8 
(HUC-12s that could potentially lose more than one fish 
species under the 5-, 10-, 15-, and 20-percent withdrawal 
scenarios) identify the catchments that are most vulnerable 
to a loss in FSR and provide managers with a mechanism 
for prioritizing catchments that are most susceptible to 
changing water availability. The percentage of HUC-12s 
predicted to experience a decrease in FSR varied across 
river basins, with FSR in some basins (CPF, CTB, TAR, 
and YAD) appearing to be particularly sensitive to changes 
in ERFMs (table 5.5). Predicted FSR decreased in the 
majority of HUC-12s under all flow reduction scenarios 
(table 5.5). Even under the climate change scenario, 
where average FSR across all HUC-12s was predicted 
to increase, a large percentage (33 percent) of HUC-12s 
were predicted to decrease in FSR (table 5.5). Further, the 
climate change scenario showed a large increase in mean 
MaxCMS (3.32–15.28 m3 s-1) across all major river basins 
(table 5.6), resulting in a mean increase in FSR. MaxCMS 
increased in some catchments under the impervious cover 
scenario; however, QFRAC_IMP also increased (table 5.6) 
resulting in a net decrease in FSR (table 5.4).

DISCUSSION
In this study we evaluated whether relatively simple 
regional-scale hydrologic models can be used in 
conjunction with ecological data to develop empirical 
flow-ecology response models that predict the effect of 
changes in water availability on FSR at a spatial scale 
relevant to management. We also sought to use the 

empirical flow-ecology models to identify “hot spots” 
of FSR change under plausible scenarios representing 
changes in water withdrawals (e.g., 5–25 percent), land 
use (derived from known build-out scenarios), and 
climate (the A2 high emission scenario) at the HUC-
12 level. We postulated that a decline in predicted FSR 
would be attributable to changes in climate and increases 
in impervious surfaces and water withdrawals. Our 
findings indicate that changes in streamflow associated 
with plausible future water withdrawals may result in a 
significant loss in FSR, and for the withdrawal scenarios 
across the region as a whole, losses appear to be directly 
linked to the quantity of water withdrawn. Although the 
future impervious cover scenario was not found to be 
significant across the region as a whole, decreases in FSR 
of one or more species were predicted in many HUC-12s 
proximal to the highly urban regions of North Carolina 
including Charlotte, Greensboro, Raleigh-Durham, and 
Fayetteville (fig. 5.7C). Under the climate change scenario, 
FSR was actually predicted to increase significantly across 
all HUC-12s. While this was contrary to our hypothesis, 
there were many individual HUC-12s where FSR was 
predicted to decrease (table 5.5). 

The key variable driving the average increase in FSR 
for the climate change scenario appears to be MaxCMS 
(maximum monthly streamflow for the 20-year period 
of record). Under this scenario, MaxCMS was the only 
variable from the four-variable BRT model to change 
substantially from the 1991–2010 average. MaxCMS was 
highly correlated with FSR in the training data, so these 
results should not be surprising. However, these findings 
could indicate a link between predicted changes in climate, 
maximum monthly or seasonal flows in river systems, 
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Figure 5.7—Predicted 1991–2010 baseline FSR values across the study area (A), and change in FSR under climate projections by 
2060 (B), 2060 impervious projections (C), and 20-percent withdrawals (D) using the four-variable BRT model.

and increasing FSR. In contrast to the climate scenario, 
the flow variables for the impervious cover scenario 
changed very little from the 1991–2010 average over the 
entire study area (table 5.6), which may help explain why 
there were no significant changes in average FSR across 
all HUC-12s for that scenario. Increases in impervious 
surfaces are predicted to occur in and around urban areas 
(USEPA 2007) and likely would not impact all HUC-12s 
within a region the way that climate change could. For 
example, even though increases in MaxCMS are positively 
correlated with FSR, when QFRAC_IMP is high, FSR 
tends to be low (fig. 5.6). Conversely, when QFRAC_
IMP is low, FSR tends to be high, especially in larger 
streams with higher MaxCMS. Some level of interaction 
is expected among flow attributes that summarize 

information across broad spatial scales; however, such 
findings are essential for supporting decision makers by 
giving them the tools and information needed to manage 
water resources when faced with multiple sources of 
change. For example, limiting water withdrawals in an 
undeveloped catchment to maintain or enhance FSR 
may not result in the desired endpoint if land use change 
results in increases in impervious cover and thus increases 
in QFRAC_IMP. Therefore, focusing on a management 
action that addresses only one streamflow component 
or that does not take into consideration non-stationarity 
principles (Milly and others 2008) could cause an over-
estimation of water availability and result in a significant 
over-allocation of the resource. 
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Figure 5.8—HUC-12s in the North Carolina Piedmont predicted to lose more than one fish species based on the 5-percent (A), 
10-percent (B), 15-percent (C), and 20-percent (D) withdrawal scenarios.

The value of a strong hydrologic foundation cannot be 
understated for supporting a broader understanding of 
the connection between changes in water availability and 
sustaining the long-term viability of fish assemblages. 
The modeling approach presented in this paper was vital 
for systematically assessing regional-scale effects and 
identifying areas of concern (i.e., “hot spots”) where the 
combined effects of land cover change, climate change, 
and/or streamflow alteration may threaten water resources. 
Once hot spots are identified, fine-scale, physically based 
models of higher temporal resolution could potentially 
be applied to those areas of concern to provide more 
quantitative estimates of changes in water availability 
and support sub-monthly ERFMs using more site-
specific inputs.  

Response of Fish Species Richness to 
Hydrologic Change 
Maintenance of hydrologic variability is critical to 
protecting biodiversity and maintaining the integrity 
of aquatic, riparian, and wetland ecosystems, and is 
the foundation of the Natural Flow Regime Paradigm 
(NFRP) presented by Poff and others (1997). Decades of 
observation of the effects of human alteration of natural 
flow regimes have established that streamflow variability 
is critical for maintaining the ecological integrity of river 
systems because many aquatic species have developed 
life-history strategies in response to these flow attributes 
(Hill and others 1991; Lytle and Poff 2004; Mims and 
Olden 2012, 2013; Poff and Ward 1989; Postel and Richter 
2012; Richter and others 1997; Stalnaker 1990). The 
coefficient of monthly streamflow variability (FloVar) was 
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Table 5.5—Number (percentage, in parentheses) of 12-digit Hydrologic Unit Code (HUCs), by river basin, with a 
predicted decrease in fish species richness under each scenario

Climate 
change

Impervious 
cover

Change in flow (water withdrawal)c

Basin
Number of 

HUCs in basin 2041–2060b 2041–2060b -5% -10% -15% -20% -25%

BRD 49 3 (6%) 15 (31%) 13 (27%) 13 (27%) 29 (59%) 49 (100%) 48 (98%)

CPF 215 87 (40%) 128 (60%) 148 (69%) 151 (70%) 177 (82%) 207 (96%) 211 (98%)

CTB 100 45 (45%) 50 (50%) 48 (48%) 66 (66%) 87 (87%) 98 (98%) 98 (98%)

NEU 134 39 (29%) 62 (46%) 50 (37%) 53 (40%) 54 (40%) 81 (60%) 109 (81%)

ROA 97 25 (26%) 36 (37%) 45 (46%) 31 (32%) 40 (41%) 61 (63%) 61 (63%)

TAR 85 33 (39%) 23 (27%) 57 (67%) 48 (56%) 43 (51%) 44 (52%) 59 (69%)

YAD 206 62 (30%) 95 (46%) 98 (48%) 123 (60%) 148 (72%) 189 (92%) 191 (93%)

All basinsa 886 294 (33%) 409 (46%) 459 (52%) 485 (55%) 578 (65%) 729 (82%) 777 (88%)

a Bolded values represent a significant difference (p <0.05) between current conditions and predicted values (note that significance was tested for the 
region as a whole, not per basin). 
b 2041–2060 represents the time period for the climate change and impervious surface scenarios. 
c Percentage values from -5 to -25 represent water withdrawal scenarios. 

BRD = Broad; CPF = Cape Fear; CTB = Catawba; NEU = Neuse; ROA = Roanoke; TAR = Tar-Pamlico; YAD = Yadkin.

Table 5.6—Average differencea between scenarios and 2010 predictions (scenario - 2010) for 
changes in climate and imperviousness in major river basins across the North Carolina Piedmont 

Scenario Variable BRD CPF CTB NEU ROA TAR YAD All basins

Climate MaxCMS 3.32 6.51 7.82 5.98 15.28 5.18 7.88 7.55

QFRAC_IMP -0.01 0.00 -0.01 0.00 0.00 0.00 0.00 0.00

FloVar -0.07 0.00 -0.07 -0.03 -0.02 -0.09 -0.05 -0.04

Imperviousness MaxCMS 0.01 0.24 0.21 0.51 0.04 0.03 0.18 0.21

QFRAC_IMP 0.00 0.03 0.03 0.05 0.00 0.00 0.03 0.03

FloVar 0.00 -0.01 -0.01 -0.02 0.00 0.00 -0.01 -0.01

a Positive values represent a predicted increase under scenarios. 

BRD = Broad; CPF = Cape Fear; CTB = Catawba; NEU = Neuse; ROA = Roanoke; TAR = Tar-Pamlico; YAD = Yadkin.

MaxCMS = maximum monthly streamflow; QFRAC_IMP = the proportion of surface flow coming from impervious surfaces; 
FloVar = measure of the coefficient of monthly streamflow variability. 

one of the important predictors in our model. The PDP plot 
(fig. 5.5), before it flattens out, generally indicates a strong 
positive response between FSR and increasing streamflow 
variability which is in keeping with the principles of the 
NFRP. Therefore, the strength of the response for FloVar 
in the model underscores the importance of maintaining 
streamflow variability in support of a thriving fish 
assemblage (Bunn and Arthington 2002, Carlisle and 
others 2010, Poff and Zimmerman 2010).  

Although the goal of restoring streamflow to its “natural” 
condition may be unachievable in moderately to highly 
degraded urban systems with high human demand for 

water or in systems with numerous reservoirs designed for 
water-supply purposes, it still may be possible to offset 
future alterations in water availability resulting from 
climate or land use change by implementing proactive 
strategies that maintain variable passing flows or flow-
by standards that are consistent with NFRP principles. 
For example, the NCEFSAB, which was tasked with 
developing a scientifically defensible approach to 
establishing flows that protect the ecological integrity of 
streams and rivers in North Carolina as required under 
Session Law 2010-143, suggested an 80–90-percent flow-
by (i.e., 80–90 percent of ambient modeled flow remains 
in the stream; NCEFSAB 2013) in combination with a 
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critical low-flow component. Results of our plausible 
withdrawal scenarios are highly consistent with the 
NCEFSAB’s recommendations. 

Modeling Limitations 
Ecologically relevant flow metrics predicted by the WaSSI 
model were subject to similar uncertainties associated 
with other hydrologic models (Caldwell and others 2015), 
including uncertainty in climate, land cover, soil, and LAI 
input data, as well as uncertainty in the representation of 
the physical processes that govern streamflow magnitude 
and timing. Unlike calibrated models, the WaSSI model 
will be less sensitive to errors associated with expanding 
the model domain to catchments not included in the model 
calibration process and using the model to assess the effect 
of climate or land cover scenarios outside of the conditions 
for which it was calibrated. The overall accuracy of 
the model was considered satisfactory given the many 
uncertainties in model inputs, model representation of 
the physical system, and observed streamflow data (see 
Caldwell and others 2015). We acknowledge that there is 
considerable uncertainty in the prediction of future climate 
and land cover; however, the projections we used provided 
a reasonable scenario of how they may change, and this 
was supported by our model validation results (table 5.1). 

We were not able to capture some of the more specific 
sub-monthly streamflow attributes that may be important 
for fish migration and reproduction (e.g., annual daily 
minimum and maximum streamflow, daily streamflow 
exceedances and recession rates; see Kennen and others 
2007, Konrad and others 2008, Olden and Poff 2003) 
because the WaSSI model functions at a monthly time 
step. However, even with this limitation, we were able to 
develop a significant four-variable BRT model that had 
good predictive power and helped to better understand the 
potential effects of increasing water withdrawal on FSR in 
the North Carolina Piedmont region. Hydrologic models 
vary in their levels of complexity, temporal and spatial 
resolution, and required level of calibration. Detailed 
and highly parameterized fine-resolution models such as 
distributed physically based watershed and rainfall-runoff 
models are well suited for smaller domains but can be 
computationally expensive and difficult to parameterize at 
larger scales. In contrast, easily parameterized regional-
scale models such as monthly water balance models 
(e.g., WaSSI, the USGS Monthly Water Balance Model; 
Hay and McCabe 2002) are useful for assessing broad 
implications of streamflow alteration at a large scale and 
identifying potential water-limited areas but may have 
difficulty resolving unique sub-watershed-scale physical 
and ecological processes and associated anthropogenic 
effects. Leveraging the benefits of both large-scale models 

with high-resolution models has the potential to allow 
more robust evaluations of the effects of water withdrawal 
on aquatic ecosystems. WaSSI, as demonstrated in this 
paper, can be used in conjunction with biological data 
to develop flow-ecology models that assess broad-scale 
regional impacts and identify specific catchments of 
concern (“hot spots”) where the combined effects of land 
cover change, climate change, and/or flow alteration may 
threaten water resources. 

There are also some limitations implicit in flow-ecology 
models constructed using machine learning techniques 
such as the BRT model presented in this paper. The 
strength of BRT models is that they improve on the 
basic averaging algorithm used in random forest (De’ath 
2007); however, the improvements in prediction accuracy 
may come at the expense of some loss of interpretation. 
For example, many of the advanced machine learning 
techniques, such as BRT, have a tendency to overfit the 
data (Aertsen and others 2010). Goodness of fit measures 
and k-fold cross-validation techniques, as applied in 
this study, have been implemented to help practitioners 
understand and offset this limitation (Elith and others 
2008). However, care should be taken to make sure 
results are not influenced by spatial sorting bias or spatial 
autocorrelation (Hijmans 2012, Randin and others 2006). 
A general weakness of BRT models is that they are not as 
familiar to scientists and managers as modeling methods 
such as multiple linear regression. Thus, explaining how 
BRT models work and how to interpret the results in a 
manner that supports management decisions can be a 
challenge. The general robustness and greater predictive 
power of machine learning techniques greatly outweigh 
their limitations and, as their application becomes more 
commonplace in ecology, especially for modeling non-
linear relationships, their level of acceptance in the 
management arena will also increase.

Improvements/Future Work
The use of FSR as the primary measure of fish assemblage 
integrity as part of this study provides a level of simplicity 
and parsimony that supports scientific reproducibility and 
management application at the State and regional level. 
However, richness is only one measure of assemblage 
integrity, and alone it may limit broader interpretation of 
the hydrologic effects on fish reproduction, life-history 
processes, and species of special concern. Moreover, there 
is a need to better understand underlying mechanisms 
(Poff 2018) that explain local abundance and regional 
distributions of fish species. Examining fish species 
traits is one such method that has been shown to be a 
powerful tool in ecology for identifying trends within 
and among species assemblages (Statzner and others 
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2001) and for representing measurable characteristics 
based on morphological, physiological, or life-history 
attributes (Violle and others 2007). Additionally, there is 
a need to more broadly implement trait-based research 
in fish ecology, which to date has largely been focused 
on terrestrial plants and aquatic invertebrates (Verberk 
and others 2013). Therefore, results of this study could 
be enhanced through the applications of functional 
traits as a means to better understand the effects of 
hydrologic alteration on fish assemblages and support the 
conservation of fish species of special concern in the North 
Carolina Piedmont. 

CONCLUSIONS
In this study, streamflow indices including the maximum 
monthly streamflow and the coefficient of streamflow 
variability were shown, in part, to be particularly important 
for supporting the richness of fish assemblages in the 
North Carolina Piedmont. The results strongly support 
other studies that have shown that as the magnitude of 
high flows and natural variability in annual streamflow 

is altered, the richness of species with life-history and 
behavioral constraints that rely on annual high-flow 
patterns or fluctuations in flow for reproduction may be 
reduced. Implementing water management measures 
that meet the constraints of the NFRP has been a major 
challenge for management agencies. Developing practical 
flow-protection standards that limit groundwater and 
surface water withdrawals and interbasin transfers, or 
the implementation of designed flow releases that protect 
essential streamflow variability, have been difficult 
to achieve or have been met with strong resistance or 
legal actions. Therefore, it is essential that management 
strategies developed in collaboration with stakeholders 
that minimize flow alteration strive to conserve FSR. 
Improved water management incentives need to be 
established within the constraints of existing water law 
and government statutes that support designated uses, 
meet existing regulatory requirements, and promote a 
balance between water supply to support human needs and 
conservation of biological integrity.
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CHAPTER 6 
Synthesis

SUMMARY
Hydrologic models are commonly used to develop 
streamflow hydrographs for ecological flow studies 
because they can simulate streamflow under baseline 
conditions and an infinite number of scenarios of 
streamflow alteration. Hydrologic models vary in their 
levels of complexity. For example, detailed and highly 
parameterized fine-resolution models are well suited for 
smaller domains but can be computationally expensive and 
difficult to parameterize at larger scales. In contrast, easily 
parameterized large-scale models are useful for assessing 
broad implications of streamflow alteration at a greater 
spatial scale and identifying potentially water-limited areas 
(i.e., “hot spots”) but may have difficulty resolving unique 
sub-watershed-scale physical processes and associated 
anthropogenic effects altering streamflow. The primary 
objective of this study was to provide resource managers 
and environmental flow practitioners with some insight 
into the relative error in streamflow predictions among 
a subset of hydrologic models commonly used for water 
supply assessment, environmental flow studies, and 
climate change predictions in the Southeastern United 
States (SEUS) and Puerto Rico (PR). This effort was 
designed to evaluate, quantify, and compare the magnitude 
and investigate the potential causes of error associated 
with predicted streamflows from seven hydrologic models 
of varying complexity and calibration strategy. In addition, 
we postulated that leveraging the benefits of both large-
scale models and high-resolution models will allow more 
robust evaluations of the effects of changes in water 
availability on aquatic ecosystems. Such an approach 
provides water managers with information necessary to 
better balance water resources needed to support aquatic 
assemblages while conserving water for long-term human 
uses across broad regions. 

We began by creating an inventory of existing hydrologic 
modeling efforts in the SEUS and PR. We contacted 95 
individuals from 64 unique organizations throughout 
the region, and 20 agreed to be interviewed. Details on 
their modeling efforts including the model developer, 
intended purpose, model framework, spatial extent, spatial 
and temporal resolution, time period simulated, model 
inputs, model outputs, and elements of environmental 
change represented. Validation procedure, criteria, and 
results were collected. Of the 64 organizations solicited, 

19 represented Federal agencies, 11 represented State 
agencies, 32 represented universities, and 2 represented 
private sector organizations. The 20 individuals 
interviewed were developing and using hydrologic models 
across the SEUS and PR to answer broad questions 
regarding the impacts of environmental change on water 
resources. With the rapid pace of computing technology 
and growth of modeling approaches, as well as changing 
threats to watersheds across the landscape, it is expected 
that this inventory of hydrologic modeling efforts will 
continue to evolve, and therefore the findings presented 
in this report represent a snapshot of approaches and 
knowledge gaps in hydrologic modeling for flow-ecology 
science and environmental change impacts.

We then quantified and compared the magnitude and 
investigated the potential causes of error associated with 
predicting streamflows for 195 U.S. Geological Survey 
(USGS) continuous record gauging stations using seven 
hydrologic models of varying complexity and calibration 
strategy. Models included the Hydrological Simulation 
Program-Fortran (HSPF) model; the Monthly Water 
Balance Model (MWBM); two parameterizations of the 
Precipitation-Runoff Modeling System (PRMS) model; 
three parameterizations of the WATER model, based 
on TOPMODEL (a physically based, semi-distributed 
topographical watershed model); the Soil and Water 
Assessment Tool (SWAT) model; the Generalized 
Watershed Loading Function (GWLF)-based WaterFALL® 
model; and the Water Supply Stress Index (WaSSI) model. 
After model simulations were performed and statistical 
measures of model performance were computed, a 
model comparison workshop was convened in which 14 
model developers and users representing eight different 
governmental, academic, and consultant organizations 
came together to discuss the advantages and disadvantages 
of different modeling approaches, sources of input data, 
and model calibration techniques. Findings from this study 
indicated that no specific hydrologic model is superior 
to the others evaluated for all sites and for all measures 
of model performance. Differences among model 
predictions were as likely to be related to differences 
in model calibration strategy as they were related to 
differences in model structure as increasing calibration 
intensity generally improved model fit. In addition, results 
indicated that some large-scale flow routing models 
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(e.g., WaSSI, MWBM) have comparable performance 
to the more complex, fine-scale models at a monthly 
time step, and large-scale models and fine-scale models 
have similar sensitivity to changes in precipitation and 
air temperature at the annual scale while sensitivity to 
changes in precipitation and temperature are different at 
the monthly scale. We do not provide recommendations 
for the use of any particular model that was included in 
this study. Instead, we stress that it is incumbent upon 
resource managers, environmental flow practitioners, and 
policymakers to consider the expertise of the modeler, the 
applicability of a model to a particular resource problem, 
the context to which the model is being applied, the 
timeframe being evaluated, the scale of interest, and the 
important components of the flow regime that may be used 
for model calibration to minimize error across the targeted 
range of flows and thus improve flow-ecology relations.

Lastly, we conducted a demonstration study for regional-
scale flow-ecology response modeling for environmental 
change impact assessment on fish species richness (FSR) 
in the North Carolina Piedmont by evaluating plausible 
scenarios of changes in water withdrawals, climate, and 
impervious surfaces. Fish species richness and streamflow 
predictions were then used to build a boosted regression 
tree (BRT) flow-ecology model which was used to predict 
the relationship between FSR and a subset of ecologically 
relevant flow metrics (ERFMs) in all 12-digit Hydrological 
Unit Code catchments (HUC-12s) in the North Carolina 
Piedmont. The results of the model were then used to 
predict FSR under three plausible scenarios of future water 
withdrawals, climate change, and increases in impervious 
surfaces (see fig. 5.7). Finally, a “hot spot” analysis was 
used to identify individual HUC-12s that were most likely 
to be affected by changes in water availability. Using 
this approach, the BRT flow-ecology model was able to 
explain 50 percent of the variability in observed FSR 
using river basin, mean annual maximum monthly flow, 
flow variability, and the proportion of flow originating on 
impervious surfaces as explanatory variables. Fish species 
richness decreased with increasing withdrawals, and a 
reduction in flow of 25 percent was predicted to result in 
a significant average loss of one species across the region. 
Similarly, FSR was predicted to decrease with projected 
increases in impervious cover through mid-century but 
only in areas proximal to growing urban centers such as 
Charlotte, Greensboro, Raleigh-Durham, and Fayetteville. 
Projected climate change by mid-century increased FSR 
by 0.35 species on average across the region but ranged 
from a decrease of 2.19 species in some watersheds to 
an increase of 3.10 species in others. This pilot project 
demonstrated that the use of a large-scale hydrologic 
model coupled with flow-ecology models can be useful for 

systematically assessing regional-scale changes in water 
availability and identifying areas of concern (i.e., “hot 
spots”) where the combined effects of land cover change, 
climate change, and/or streamflow alteration may threaten 
water resources. The study also indicates that fine-scale, 
physically based models of higher temporal resolution 
could potentially be applied to those areas of concern to 
provide higher resolution quantitative estimates of changes 
in water availability and support sub-monthly ERFMs 
using more site-specific inputs. 

LIMITATIONS
While this report likely represents what may be the most 
rigorous evaluation of the use of hydrologic models for 
flow-ecology science compiled for the SEUS and PR, 
we acknowledge that it only provides an overview of the 
many tools and techniques available to environmental 
flow practitioners and water resource managers. Below we 
highlight some of the potential limitations of this study.

1.	 Only a subset of the available hydrologic models were 
considered in this study.

2.	 The models evaluated were not developed using 
the same calibration objective functions and input 
datasets, making it difficult to separate differences 
in model performance that may be related to the 
model framework (e.g., HSPF or PRMS) from 
differences associated with the choice of model inputs 
and calibration.

3.	 New methods are being developed all the time. The 
findings in this report are not stationary and should be 
reevaluated from time to time.

4.	 The capacity to fully understand non-stationary 
conditions associated with climate change requires 
rigorous calibration of models and careful attention to 
model inputs and representation of physical processes 
that may assume stationarity. For example, adjusting 
precipitation and other climate variables may improve 
model fit for historical flow observations, but these 
adjustments may not be appropriate when using the 
model to make projections using other sources of 
climate input (e.g., future climate change scenarios). 
Incorporating dynamic parameterization schemes into 
existing hydrologic models may provide a pathway 
forward for dealing with non-stationarity.

5.	 Models evaluated were applied to several basins in 
the SEUS region. The relative model performance 
may be different in other hydroclimatic settings 
(e.g., snowmelt-dominated streams and streams in 
arid climates).  
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6.	 There are tradeoffs between regional- and fine-scale 
models. Regional-scale models are often easier to 
parameterize but are often of a coarser resolution 
in space and time. Fine-scale models are often 
more difficult to parameterize but can have finer 
resolution and smaller time steps. Resource managers 
should consider the desired resolution of streamflow 
predictions when selecting a model for a particular 
resource problem and balance the need for that 
resolution with the expense in input data requirements, 
computational limitations, and the acceptance of a 
desired level of uncertainty. 

7.	 We demonstrated that similar levels of model 
performance may be obtained at the monthly time step 
using regional- and fine-scale hydrologic models. We 
have also shown that regional-scale and some fine-scale 
hydrologic models predict similar changes in runoff for 
a given change in climate inputs. However, these results 
only provide a demonstration of the potential of multi-
scale modeling approaches to evaluate environmental 
change effects on streamflow and ecological response. 
Due to differences in land cover input data, we were 
not able to determine whether there would be similar 
streamflow response to land cover change among 
the models evaluated. Additional study is required to 
determine the best way to use regional- and fine-scale 
models to identify hot spots or change and to develop 
flow-ecology relations, respectively. Models should 
be developed using the same inputs and calibration 
objective functions and then used to evaluate the same 
scenarios of climate and land cover change.  

8.	 There are tradeoffs between calibrating models to best 
match observed high-flow or low-flow portions of the 
hydrograph that may affect flow-ecology modeling. 
Model calibration is generally intended to capture the 
variability and the central tendency of streamflow. It is 
nearly impossible to calibrate models to fit the entire 
range of observed streamflows because adjusting model 
parameters to fit a portion of the flow regime has an 
effect on how well the model fits observed streamflows 
outside of that range. 

9.	 Many of the advanced machine learning techniques 
used in flow-ecology modeling, such as BRT, have a 
tendency to overfit the data. Goodness of fit measures 
and cross-validation techniques, as applied in the pilot 
study, have been implemented to help practitioners 
understand and offset this limitation. However, care 
should be taken to make sure results are not influenced 
by spatial sorting bias or spatial autocorrelation.  

10.	 A general weakness of BRT models is that they 
are not as familiar to scientists and managers as 
modeling methods such as multiple linear regression. 
Thus, explaining how BRT models work and how 
to interpret the results in a manner that supports 
management decisions can be a challenge.

11.	 This study focused primarily on water quantity. While 
understanding the effects of water withdrawals on 
streams and other freshwater bodies in support of 
water availability and human consumptive use is 
germane to this report, the effects of changes in water 
quality should not be overlooked. Anthropogenic 
factors can be cumulative, and it is not just the 
quantity but also the quality of water available to 
ecosystems that may exacerbate conditions and affect 
the long-term health and vitality of aquatic systems.

12.	 The monthly time step of the WaSSI model may have 
limited our interpretation of FSR response to flow 
changes because we were not able to include some of 
the more specific sub-monthly streamflow attributes 
that may be important to fish migration, survival, and 
reproduction (e.g., August low flows or spring high 
flows). Further studies using daily flow attributes in 
combination with fish species traits (e.g., life history, 
habitat preference, and reproductive strategy) or other 
metrics that better encapsulate mechanistic response 
to changes in flow may improve our understanding of 
fish-flow relationships.

Despite these limitations, it is our hope that this report will 
provide environmental flow practitioners, water resource 
managers, and stakeholders in the SEUS with an informed 
pathway for developing the capacity to link streamflow 
and ecological response and understand some of the 
limitations associated with hydrologic and flow-ecology 
modeling efforts.    

FUTURE DIRECTIONS
This study highlighted several areas that require additional 
research regarding the prediction of streamflow for 
flow-ecology science in the SEUS and PR. Our model 
inventory indicated that while some areas in the region 
were well studied (e.g., the Apalachicola-Chattahoochee-
Flint Basin in Georgia, Alabama, and Florida), other 
areas were not (e.g., Gulf Coast States and PR). Future 
work should strive to build modeling capacity in these 
under-represented regions (see also table 2.3). In 
addition to incomplete spatial extent across the region, 
our study indicated that hydrologic models in general 
have difficulty in predicting extremely high and low 
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flows. These findings may have implications for the 
development of flow-ecology response models because 
it is often the low flows (baseflows), annual-flow pulses, 
and seasonality of high flows that provide the conditions 
necessary to support natural-assemblage complexity 
(Matthews 2005, Poff and Ward 1989, Poff and others 
1997, Richter and others 1997, Stanford and others 1996). 
While improved calibration of model parameters could 
partially overcome limitations of modeling assumptions 
and simplifications of hydrologic processes, there is a 
clear need to understand the sources of uncertainty in 
prediction at the low and high end of the flow regime (e.g., 
potentially unrepresentative model input data including 
precipitation, land cover, and soil properties vs. techniques 
used to model specific hydrologic processes). Watersheds 
simulated in this model comparison study had minimal 
hydrologic alteration due to withdrawals, interbasin 
transfers, or dams so that we could assess the performance 
of participating models in predicting the natural flow 
regime. However, unaltered watersheds in the SEUS may 
be the exception rather than the norm. Unfortunately, 
comprehensive georeferenced regional databases that 
describe the locations and management protocols of dams, 
locations and volumes of withdrawals, locations and 
volumes of wastewater outfalls and interbasin transfers, 
and stormwater flow routing are incomplete or lacking, 
but the ongoing congressionally mandated USGS National 
Water Census (https://water.usgs.gov/watercensus/) is 
helping to meet this need by providing broader access 
to hydrologic and water budget data across the United 
States. Future research should continue to assemble these 
data using a consistent methodology so that the effects 
of flow alteration across regions can be assessed. In 
addition to flow alterations by dams and surface water 
withdrawals, the effects of groundwater pumping on 
streamflow at the regional scale is not well understood. 
More than 50 percent of the population in the SEUS 
relies on groundwater wells for drinking water (USEPA 
2012), and 76 percent of all agricultural withdrawals in 
the SEUS originate from groundwater (Maupin and others 
2014), but these groundwater withdrawals are largely 
unregulated and undocumented across the region. In total, 
groundwater withdrawals account for 25 percent of all 
withdrawals in the SEUS and as much as 69 percent of all 
withdrawals at the State level (Maupin and others 2014). 
Additional study will be required to better understand 
surface and groundwater interactions and the effects of 
groundwater pumping on surface water flow regimes, 
particularly in the Atlantic Coastal Plain where surface and 
shallow groundwater are more tightly coupled than other 
ecoregions of the SEUS. 

The development of hydrographic information at 
ungauged locations and the aggregation of fish assemblage 
data for the Piedmont region of North Carolina provide 
two important components of the Ecological Limits 
of Hydrologic Alteration framework (Poff and others 
2010) that can be used to support future flow-ecology 
modeling efforts that address non-stationarity principles 
(Milly and others 2008) and incorporate more temporal 
and quantitative elements of ecological assemblages, 
such as species rates. Rather than a static measure that 
represents a snapshot of a condition (i.e., a state) derived 
from a single measurement in time (such as FSR used 
in this study), ecological responses in a rates approach 
reflect temporal change (i.e., a rate) and are thus reliant 
on repeated measurements made over time (Wheeler and 
others 2018). The concept of non-stationarity presents a 
management challenge because the definition of natural, 
baseline, or reference flow conditions is dependent not 
only on human and natural influences on the landscape 
but also on our continually changing perspective of what 
a baseline condition represents. Hydrologic baselines are 
shifting and therefore reliance on restoration to a reference 
condition for either hydrologic or ecological systems is 
unsustainable. To meet this challenge, it will be important 
to implement ecological flows using flexible and adaptive 
management approaches that will support the long-term 
resiliency of valued ecosystems (Poff 2018). While the use 
of FSR as a measure of fish assemblage integrity provides 
a level of simplicity and parsimony that supports scientific 
reproducibility and management application at the State 
and regional level, it may limit broader interpretation of 
the hydrologic effects on fish reproduction, life-history 
processes, and species of special concern. Moreover, there 
is a need to better understand underlying mechanisms 
(Poff 2018) that explain local abundance and regional 
distributions of fish species. Examining fish species traits 
is one such method that has been shown to be a powerful 
tool in ecology for identifying trends within and among 
species assemblages and for characterizing morphological, 
physiological, or life-history attributes. We envision 
that the results of this study could be enhanced through 
the application of a rates approach and the inclusion of 
functional traits as a means to gain a better understanding 
of the underlying mechanistic relationship between 
hydrologic alteration and fish assemblage response. Such 
an understanding would better support the conservation 
of fish species of special concern in the North Carolina 
Piedmont and is essential to water resource management.
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List of Acronyms and Abbreviations

ACF		  Apalachicola-Chattahoochee-Flint
AGWRC	 Groundwater recession rate
AMJCMS	 Average streamflow for April, May, and June (spring flow) in m3 s-1

AugCMS	 Average streamflow for August (summer flow) in m3 s-1

AveCMS	 Average monthly streamflow in m3 s-1

AWC		  Available water capacity
BASETP	 Evapotranspiration by riparian vegetation
BAU		  Biological Assessment Unit
BRT		  Boosted regression tree
CANMAX	 Maximum canopy storage
CART		  Classification and regression tree
CFS		  Cubic feet per second
CFSM		  Cubic feet per second per square mile
CRAM		  A proprietary network flow model used to simulate water resources systems
DAYMET	 Daily Meteorological Data
ELOHA		 Ecological Limits of Hydrologic Alteration
ERFM		  Ecologically relevant flow metrics
ET		  Evapotranspiration
FloVar		  Measure of the coefficient of monthly streamflow variability
FSR		  Fish species richness
GCM 		  General Circulation Model
GIRAS		  Geographic Information Retrieval and Analysis System
GIS		  Geographic Information System
GR4		  A lumped bucket-type daily rainfall-runoff model
GW_DELAY	 Groundwater delay time
GWLF		  Generalized Watershed Loading Function
GWQMN	 Threshold depth of water in the shallow aquifer required for return flow to occur
HRU		  Hydrologic Response Unit
HSG		  Hydrologic soil group
HSPF		  Hydrological Simulation Program-Fortran
HUC		  Hydrologic Unit Code
IDW		  Inverse Distance Weighted
INFILT		  Index to mean soil infiltration rate
IPCC		  Intergovernmental Panel on Climate Change
LAI		  Leaf area index
LCC		  Landscape Conservation Cooperative
LZSN		  Lower zone nominal soil moisture storage
MaxCMS	 Maximum monthly streamflow in m3 s-1

MinCMS	 Minimum monthly streamflow in m3 s-1

MODIS		  Moderate Resolution Imaging Spectroradiometer
MWBM		 Monthly Water Balance Model
NATHAT	 National Hydrologic Assessment Tool
NCDWR	 North Carolina Division of Water Resources
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List of Acronyms and Abbreviations continued

NCEFSAB	 North Carolina Ecological Flows Scientific Advisory Board
NEXRAD	 Next-Generation Radar
NFRP		  Natural Flow Regime Paradigm
NHD		  National Hydrography Dataset
NLCD		  National Land Cover Database
NRCS	  	 Natural Resources Conservation Service, U.S. Department of Agriculture
NSE		  Nash-Sutcliffe Efficiency
Pbias		  Monthly precipitation bias
PDP		  Partial dependency plot
PEST		  Parameter Estimation Tool
PET 		  Potential evapotranspiration
PETfac		  A potential evapotranspiration correction factor
PPT		  Precipitation
PRISM		  Parameter-elevation Regressions on Independent Slopes Model
PRMS		  Precipitation-Runoff Modeling System
QFRAC_IMP	 Proportion of surface flow coming from impervious surfaces
RCoeff		  Recession coefficient providing the rate of release from the saturated zone to the stream channel
RevapMN	 Threshold depth of water in the shallow aquifer required for “revap” or percolation to the deep aquifer 	
		     to occur
ROfac		  Percentage of the total surplus water that becomes runoff
RRAWFLOW	 Rainfall-Response Aquifer and Watershed Flow Model
RMSE		  Root mean squared error
RTI		  Research Triangle Institute
SAC-SMA	 Sacramento Soil Moisture Accounting Model
SALCC		  South Atlantic Landscape Conservation Cooperative
SARP		  Southeast Aquatic Resources Partnership
SECO		  Soil evaporation compensation factor
SCASC		  Southeast Climate Adaptation Science Center, U.S. Department of the Interior
SEEP		  Seepage coefficient representing infiltration losses to deep aquifer storage 
SERAP		  Southeast Regional Assessment Project
SEUS		  Southeastern United States
Sol_AWC	 Available water capacity of the soil layer
SRES		  Special Report on Emissions Scenarios
SSURGO	 Soil Survey Geographic database
STATSGO	 State Soil Geographic database
SURLAG	 Surface runoff lag coefficient
SWAT		  Soil and Water Assessment Tool
TEMP		  Temperature
TOPMODEL	 Physically based, semi-distributed topographical watershed model
USDA		  U.S. Department of Agriculture
USEPA		  U.S. Environmental Protection Agency
USFS		  Forest Service, U.S. Department of Agriculture
USGS		  U.S. Geological Survey, U.S. Department of the Interior
WaSSI		  Water Supply Stress Index model
WATER		 Water Availability Tool for Environmental Resources
WATERFALL®	 Watershed Flow and Allocation Modeling System
WHC		  Water holding capacity
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An understanding of the applicability and utility of hydrologic models is critical to support the effective 
management of water resources throughout the Southeastern United States (SEUS) and Puerto Rico (PR). 
Hydrologic models have the capacity to provide an estimate of the quantity of available water at ungauged 
locations (i.e., areas of the country where a U.S. Geological Survey [USGS] continuous record gauge 
is not installed) and provide the baseline flow information necessary to develop the linkages between 
water availability and characteristics of streamflow that support ecological communities (i.e., support the 
development of flow-ecology response models). This report inventories and then directly examines and 
compares a subset of hydrologic models used to estimate streamflow at a number of gauged basins across 
the SEUS and PR. This effort was designed to evaluate, quantify, and compare the magnitude of error and to 
investigate the potential causes of error associated with predicted streamflows from seven hydrologic models 
of varying complexity and calibration strategy. This was accomplished by computing and then comparing 
classical hydrologic model fit statistics (e.g., mean bias, coefficient of determination [R2], root mean squared 
error [RMSE], Nash-Sutcliffe Efficiency [NSE]) and understanding the bias in the prediction in these and 
a subset of ecologically relevant flow metrics (ERFMs). Additionally, streamflow predictions from a larger 
regional-scale hydrologic model were compared to those of several fine-scale hydrologic models under a 
range of hypothetical climate change scenarios to determine the range of predicted streamflow responses to 
fixed climate perturbations. A pilot study was conducted using predicted streamflow and boosted regression 
trees to develop a set of predictive flow-ecology response models to assess the potential change in fish 
species richness in the North Carolina Piedmont under several scenarios of water availability change. 
This report is intended to provide a general assessment of all the tools and techniques available to support 
hydrologic modeling for flow-ecology science in the SEUS and PR. It is our hope that the approach used 
herein to understand differences in streamflow predictions among a subset of hydrologic models that 
have been applied in the SEUS for developing flow-ecology response models will provide water resource 
managers and stakeholders with an informed pathway for developing the capacity to link streamflow 
and ecological response and an understanding of some of the limitations associated with these type of 
modeling efforts. 

Keywords: Ecological flows, fish species richness, flow alteration, flow-ecology models, hydrologic models, 
water supply, water withdrawals.
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