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Table 1—Definitions of longleaf pine cone 
crop quality used in this study

Crop quality Cones per tree

Bumper crop ≥100
Fair-to-good crop 25 to 99
Poor-to-failed crop <25
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A COMPUTER PROGRAM TO PREDICT THE QUALITY 
OF LONGLEAF PINE SEED CROPS

Daniel J. Leduc and Shi-Jean S. Sung

Abstract—Longleaf pine (Pinus palustris Mill.) has good seed years at irregular intervals. Although previous 
researchers found significant relationships between weather variables and size of the cone crop for a given year, 
they have stopped short of developing a predictive model. In this study, seed crops were classified as bumper, 
good to fair, and poor to failed. A canonical discriminant analysis based on weather data was performed to 
develop a classification function. We then developed a computer program that implemented the results of this 
canonical discriminant analysis to predict the class of cone crop for a given year. This prediction can be made 
as early as 18 months prior to seed maturity. This model should greatly help in planning site preparation or seed 
harvesting activities.

INTRODUCTION
Longleaf pine (Pinus palustris Mill.) has long been known 
to produce irregular cone crops. As far back as 1922, 
a Forest Service, U.S. Department of Agriculture report 
stated that longleaf pine bears seed in good quantities 
only once every 5 to 7 years (Mattoon 1922). This 
irregularity complicates management efforts in natural 
regeneration and even potential seed harvests for 
artificial regeneration. 

Given this variation, it would be useful to predict what 
the quality of the cone crop might be for a given year. 
Many authors have noticed a correlation between 
weather and longleaf pine cone crops (Chen and 
others 2016, Leduc and others 2016, Pederson 1999, 
Shoulders 1967). Leduc and others (2016) found many 
weak but sometimes significant correlations between 
the current year cone crop and weather variables for 
the preceding three years. Furthermore, they used the 
results of a canonical discriminant analysis to show 
that even the nonsignificant variables contributed to an 
observable difference in classification between bumper, 
fair-to-good, and poor-to-failed seed crops. We sought 
to make it easy to use the many weather variables to 
generate actual concrete predictions for longleaf pine 
cone crop quality.

METHODS
Data
Longleaf pine cones have been counted during the 
spring of each year since 1958 at the Escambia 
Experimental Forest in Alabama, and this count 

was expanded to nine other locations across the 
South in subsequent years. This dataset ranges from 
Louisiana to North Carolina (Leduc and others 2016) 
and is maintained by the Southern Research Station at 
Auburn, AL. We obtained monthly values for average 
temperature, high temperature, low temperature, 
cooling-degree days, heating-degree days, precipitation, 
and Palmer drought severity index (PDSI) for each 
location and year since 1958 (NOAA 2014). Using these 
variables together resulted in 390 observations from 
which a model was developed.

Model Development
We wanted to find an empirical predictive model that 
would allow us to utilize many input variables to classify 
cone crops into bumper, good-to-fair, and poor-to-
failed classes (see table 1 for class definitions). Several 
methodologies were tested. Among the modeling 
methods tested were genetic algorithms (System 
Dynamics International 1997) and neural networks 
(NeuralWare 1991). However, these methods proved 
unsatisfactory. We then used more traditional statistics 
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Table 2—Successful crop quality predictions using various models

Model Overall Bumper Good to fair Poor to failed

correct prediction percentage
March  of seed year (27-month) 90 95 82 92

December  of pollination year (24-month) 87 95 78 90
September of pollination year (21-month) 85 90 79 87
June of pollination year (18-month) 82 95 76 85

including canonical discriminant analysis (SAS 2004). 
The initial model was built to predict cone crop quality 
with data up to March of the crop (that is, seed maturity) 
year; subsequent models were built to use data only up 
to December of the previous year (that is, the pollination 
year), September of the pollination year, and June of the 
pollination year. The intention was that the best model 
would use the latest data available, but models with less 
data could be used when a longer planning horizon for 
natural regeneration and/or cone harvest was desired at 
the cost of some loss of accuracy.

RESULTS
The Model
Two canonical vectors were required to classify the 
seed crop into the three crop quality classes defined 
in table 1. We checked model quality by predicting the 
crops for all of the data used to create the model. While 
this is not ideal, it allowed us to use all of our limited 
data to develop the model. The percent of successful 
predictions is shown in table 2. Figure 1 shows the 
canonical scores for each of the observations in the 
dataset when the full 27 months of data is used in the 
model. The three classes are distinctly different for 
the most part, but there is some overlap that results in 
uncertainty for the predictions.

In order to use the results of the canonical discriminant 
analysis, the vector of canonical scores is multiplied 
by the vector of standardized weather data to get 
a canonical score of the data. Each of the weather 
variables is standardized by subtracting its mean value 
and dividing by its standard deviation. The result of 
this multiplication is a model canonical score. We have 
two vectors of canonical scores, so we calculated two 
model canonical scores and these can be visualized as 
coordinates on an x-y graph as shown in figure 2. The 
next step is to see how far the calculated score is from 

the mean values for each of the cone crop classes. This 
distance is calculated as a Euclidian distance (ED) as 
shown in equation 1:

                  (1)

where X and Y are the respective distances in the 
horizontal and vertical directions from the calculated 
score to the mean score of a given class.

For example, figure 2 shows the crop would be 
considered bumper since the calculated ED is closest to 
the bumper mean, but one would accept this conclusion 
tentatively since the score is also close to the mean for 
the poor-to-failed class.

The Computer Program
Description—The calculations to predict a cone crop 
class are not difficult, but they are numerous. In the 
27-month model (June of crop year), 185 variables are 
standardized by subtracting their means and dividing 
by their standard deviations, multiplied by the vectors 
for the canonical scores one and two, and the results 
summed. The calculations are not complex but are 
sufficiently tedious to make manual calculation unlikely. 
For this reason, a program was written in Visual BASIC® 
(2012 Microsoft Corporation) to perform the calculations. 
This program is called LongCones, and it is available 
on the Southern Research Station Web site (https://srs.
fs.usda.gov/longleaf/tools/) as a tool of the Restoring 
and Managing Longleaf Pine Ecosystems unit. 

Requirements—This program was written on Windows 
7® and should also run on the more recent versions 
of Windows®. The program was written for a screen 
resolution of 1920x1200, but the windows can be 
scaled.  An internet connection is needed to update the 
weather data. 
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Figure 1—Results of canonical discriminant analysis showing 
that the calculated scores for each of the three classes of cone 
crops are mostly distinct from each other.

Figure 2—Graphical representation of how a new cone crop class 
is determined by the model. A new canonical score is calculated 
by multiplying canonical vectors one and two by the standardized 
input variables. The two numbers obtained are used as coordinates, 
and the distance from these coordinates to each of the class means 
is determined. The closest class is determined to be the new 
predicted class.

User’s guide—Once the program has been installed 
using the longcones-setup.exe program downloaded 
from the Web site, the user can begin to use it by 
double-clicking on the icon. This will bring up a brief 
introductory splash screen followed by a screen that 
looks like figure 3. The largest part of this screen is 
occupied by a map of the areas where this model might 
be applicable. However, only the climate divisions 
highlighted in green actually contain stands used in 
developing this model. (The map shown in figure 3 is 
simply a reference.) The user must select the State, 
climate division, and year of interest using the buttons 
and text boxes below the map. When done, the user 
simply clicks on the “Get Data” button to continue.

This program uses data files from the NOAA website 
(https://www1.ncdc.noaa.gov/pub/data/cirs/climdiv/) 
copied to the user’s computer at C:\ProgramData\
LongCones. NOAA updates these files about once per 
month, and the user can update the local files by clicking 
on the button “Update Weather Data.”

Once the user has clicked on “Get Data,” the screen 
will go blank for a few seconds while the appropriate 
weather data is loaded. This resulting screen (fig. 4) 
shows the user all of the available weather data for the 
climate division and year for which they are trying to 
predict a cone crop. The data is shown for reference 
and can be changed by the user. Users can use 
more specific local data or do a sensitivity analysis 
to determine the effects of individual variables. Only 
available data will be shown, and this can affect the 
predictions that can be made. One oddity is that the 
months of July and August do not show heating degree 
days (HDD); this is because, in all of the historical 
data used, these values were always zero. Since this 
constant value of zero is problematic with the canonical 
discriminant function, HDD values for July and August 
were not used in the model. When the user is satisfied 
with the data shown, a single click on the “Calculate” 
button will do the necessary calculations to show model 
results. The user can also click “Go Back” to select 
different climate data or “Quit” to end the program. 
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Figure 3—Opening screen from the program LongCones. This is the screen where the user will pick the location of interest and the 
prediction year.

Figure 4—Weather data screen from the program LongCones. This is a presentation of the climate data for the location and timeframe 
from which the user will make model predictions. The data can be edited or the “Calculate” button can be clicked to make predictions.
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Figure 5 shows the final results of the program. There 
are four models, namely: (1) a model that only uses data 
up through June of the pollination year, (2) a model that 
uses data through September of the pollination year, 
(3) a model that uses data up through December of 
the pollination year, and (4) a model that uses data up 
through March of the seed year. In figure 5, only three 
results are shown since the data for March of 2017 was 
not yet available. Results are only presented for those 
models that have sufficient data for the calculation. 

In addition to estimated crop quality class, the weather 
data screen (fig. 5) also presents distances from the 
mean of all classes. These can be used to judge how 
confident the user can be in the results. In the example, 
using data only through June of the pollination year 
resulted in the prediction of a bumper crop, but the 
distances to the means indicated that while the bumper 
class mean was closest, the poor-to-failed class mean 
was also very close. With the additional data added in 
the next two models, through September and through 
December of the pollination year, the distance from the 
bumper mean increases while the distance to the poor-
to-failed mean decreases. Another check on the model is 
to see how many of the four models agree. In validation, 
having four models in agreement increased the reliability 
by 31 percent over having three models in agreement.

DISCUSSION
We envision that this model will be used primarily 
to predict quality of cone crops, which will enhance 

longleaf pine regeneration planning. However, as with all 
models, caution must be taken since there is an element 
of error. At its best in March of the seed year, the model 
is correct 90 percent of the time, but in June of the 
previous year it is only correct 82 percent of the time. 

Aside from the practical predictions that can be made, 
another use for this model is testing effects of variables 
on cone crops. In predicting the 2017 cone crop for 
climate division 5 in Louisiana, the June of the pollination 
year model predicted a bumper crop, but subsequent 
models predicted a poor-to-failed crop. The 1984 crop 
for the same location was actually a bumper crop, and 
all of the models predicted that it would be a bumper 
crop. Using the 1984 data as a guide and a little trial and 
error, it was discovered that simply changing the average 
temperature for November of the pollination year from 
61.8 to 57.7 °F made the December model predict a 
bumper crop. The September model still predicted a 
poor-to-failed crop unless the rainfall of August of the 
pollination year was changed from 12.42 to 5.56 inches. 
Changing both variables resulted in all of the available 
models predicting a bumper crop. Unfortunately, the 
user of this model might have difficulty in reproducing 
the above result. NOAA updates climate data values 
monthly, and these updates do more than just add to 
the data collection. They also adjust values for the most 
recent two calendar years (NOAA 2014). The data files 
current at this writing do not produce the phenomenon 
described above.

Figure 5—Weather data screen from the program LongCones after the “Calculate” button has been clicked. Results for the models with 
sufficient input data are shown.
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The implications of the sensitivity of the model to small 
changes is something that needs to be investigated 
further. By changing the August rainfall from 12.42 
to 5.56 inches, a change from an extreme value to a 
moderate value, the change in distance to a bumper 
crop changed from 3.4 to 1.3. However, by changing 
November temperature from 61.8 to 57.7 °F, a 
moderate change, the ED to the bumper crop mean 
changed from 6.0 to 47.7 and the ED to the poor-to-
failed crop changed from 1.1 to 52.6. Thus, bumper 
class is the closest result, but at that distance it might 
not be totally reliable. The threshold for the distance 
rendering the model meaningless is another area for 
future investigation. 

Finally, the model might be criticized for over 
parameterization since the full model for March of the 
seed year (27-month) has 370 parameters and is based 
on 390 observations. Previous work (Leduc and others 
2016) has shown that all of these variables are necessary 
to get class separation, as shown in figure 1. Thus, the 
model may not be as applicable in a general sense as 
is desired. However, the models that terminate in earlier 
months have fewer parameters and the same number 
of observations. The June of the pollination year model 
(18-month) has only 248 parameters, which gives some 
freedom for generalization. In applying this model, one 
should consider the variation in models depending on 
endpoint to help judge reliability.

CONCLUSION
A model was developed that predicts longleaf pine 
crops and could be a useful tool in planning regeneration 
strategies. The computer program makes the model 
easy to implement. However, the model is only the 
starting point for investigating prediction reliability 
and potentially finding strategies to increase future 
cone crops. 
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