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CHAPTER 3. 
Large-Scale Patterns of 
Forest Fire Occurrence in 
the Conterminous United 
States, Alaska, and 
Hawai‘i, 2014

Kevin M. Potter

INTRODUCTION

F
 ree-burning wildland fire has been a frequent 
ecological phenomenon on the American 
landscape, and its expression has changed 

as new peoples and land uses have become 
predominant (Pyne 2010). As a pervasive 
disturbance agent operating at many spatial and 
temporal scales, wildland fire is a key abiotic 
factor affecting forest health both positively and 
negatively. In some ecosystems, wildland fires 
have been essential for regulating processes 
that maintain forest health (Lundquist and 
others 2011). Wildland fire, for example, is an 
important ecological mechanism that shapes the 
distributions of species, maintains the structure 
and function of fire-prone communities, and 
acts as a significant evolutionary force (Bond 
and Keeley 2005). 

At the same time, wildland fires have created 
forest health problems in some ecosystems 
(Edmonds and others 2011). Specifically, fire 
outside the historic range of frequency and 
intensity can impose extensive ecological 
and socioeconomic impacts. Current fire 
regimes on more than half of the forested 
area in the conterminous United States have 
been moderately or significantly altered 
from historical regimes, potentially altering 
key ecosystem components such as species 
composition, structural stage, stand age, canopy 
closure, and fuel loadings (Schmidt and others 
2002). Understanding existing fire regimes is 
essential to properly assessing the impact of fire 
on forest health because changes to historical 

fire regimes can alter forest developmental 
patterns, including the establishment, 
growth, and mortality of trees (Lundquist 
and others 2011). 

As a result of intense suppression efforts 
during most of the 20th century, the forest area 
burned annually decreased from approximately 
16 million to 20 million ha (40–50 million 
acres) in the early 1930s to about 2 million 
ha (5 million acres) in the 1970s (Vinton 
2004). In some regions, plant communities 
have experienced or are undergoing rapid 
compositional and structural changes as a result 
of fire suppression (Nowacki and Abrams 2008). 
At the same time, fires in some regions and 
ecosystems have become larger, more intense, 
and more damaging because of the accumulation 
of fuels as a result of prolonged fire suppression 
(Pyne 2010). Such large wildland fires also 
can have long lasting social and economic 
consequences, which include the loss of human 
life and property, smoke-related human health 
impacts, and the economic cost and dangers of 
fighting the fires themselves (Gill and others 
2013, Richardson and others 2012).

Fire regimes have been dramatically altered, 
in particular, by fire suppression (Barbour 
and others 1999) and by the introduction 
of nonnative invasive plants, which can 
change fuel properties and in turn both 
affect fire behavior and alter fire regime 
characteristics such as frequency, intensity, 
type, and seasonality (Brooks and others 
2004). Additionally, changes in fire intensity 
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and recurrence could result in decreased forest 
resilience and persistence (Lundquist and 
others 2011), and fire regimes altered by global 
climate change could cause large-scale shifts 
in vegetation spatial patterns (McKenzie and 
others 1996). 

This chapter presents analyses of fire 
occurrence data, collected nationally each 
day by satellite, that map and quantify where 
fire occurrences have been concentrated 
spatially across the conterminous United 
States, Alaska, and Hawai‘i in 2014. It also, 
within a geographic context, compares 2014 
fire occurrences to all the recent years for 
which such data are available. Quantifying and 
monitoring such medium-scale patterns of fire 
occurrence across the United States can help 
improve the understanding of the ecological 
and economic impacts of fire as well as the 
appropriate management and prescribed use of 
fire. Specifically, large-scale assessments of fire 
occurrence can help identify areas where specific 
management activities may be needed, or where 
research into the ecological and socioeconomic 
impacts of fires may be required.

METHODS

Data

Annual monitoring and reporting of active 
wildland fire events using the Moderate 
Resolution Imaging Spectroradiometer (MODIS) 
Active Fire Detections for the United States 
database (USDA Forest Service 2015) allows 

analysts to spatially display and summarize fire 
occurrences across broad geographic regions 
(Coulston and others 2005; Potter 2012a, 
2012b, 2013a, 2013b, 2014, 2015a, 2015b). A 
fire occurrence is defined as one daily satellite 
detection of wildland fire in a 1-km2 pixel, with 
multiple fire occurrences possible on a pixel 
across multiple days resulting from a single 
wildland fire lasting multiple days. The data 
are derived using the MODIS Rapid Response 
System (Justice and others 2002, 2011) to 
extract fire location and intensity information 
from the thermal infrared bands of imagery 
collected daily by two satellites at a resolution 
of 1 km2, with the center of a pixel recorded as 
a fire occurrence (USDA Forest Service 2015). 
The Terra and Aqua satellites’ MODIS sensors 
identify the presence of a fire at the time of 
image collection, with Terra observations 
collected in the morning and Aqua observations 
collected in the afternoon. The resulting fire 
occurrence data represent only whether a fire 
was active because the MODIS data bands do not 
differentiate between a hot fire in a relatively 
small area (0.01 km2, for example) and a cooler 
fire over a larger area (1 km2, for example). 
The MODIS Active Fire database does well at 
capturing large fires during cloud-free conditions 
but may underrepresent rapidly burning, small, 
and low-intensity fires, as well as fires in areas 
with frequent cloud cover (Hawbaker and 
others 2008). For large-scale assessments, the 
dataset represents a good alternative to the use 
of information on ignition points, which may 
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be preferable but can be difficult to obtain or 
may not exist (Tonini and others 2009). For 
more information about the performance of this 
product, see Justice and others (2011). 

It is important to underscore that estimates of 
burned area and calculations of MODIS-detected 
fire occurrences are two different metrics for 
quantifying fire activity within a given year. 
Most importantly, the MODIS data contain 
both spatial and temporal components because 
persistent fire will be detected repeatedly over 
several days on a given 1-km2 pixel. In other 
words, a location can be counted as having a fire 
occurrence multiple times, once for each day a 
fire is detected at the location. Analyses of the 
MODIS-detected fire occurrences, therefore, 
measure the total number of daily 1-km2 
pixels with fire during a year, as opposed to 
quantifying only the area on which fire occurred 
at some point during the course of the year. 

Analyses

These MODIS products for 2014 were 
processed in ArcMap® (ESRI 2012) to determine 
number of fire occurrences per 100 km2 
(10 000 ha) of forested area for each ecoregion 
section in the conterminous 48 States (Cleland 
and others 2007) and Alaska (Nowacki and 
Brock 1995) and for each of the major islands 
of Hawai‘i. This forest fire occurrence density 
measure was calculated after screening out 
wildland fires on nonforested pixels using a 
forest cover layer derived from MODIS imagery 
by the U.S. Forest Service Remote Sensing 

Applications Center (RSAC) (USDA Forest 
Service 2008). The total numbers of forest fire 
occurrences were also determined separately for 
the conterminous States, Alaska, and Hawai‘i.

The fire occurrence density value for each 
ecoregion in 2014 was then compared with the 
mean fire density values for the first 13 full years 
of MODIS Active Fire data collection (2001–13). 
Specifically, the difference of the 2014 value 
and the previous 13-year mean for an ecoregion 
was divided by the standard deviation across 
the previous 13-year period, assuming normal 
distribution of fire density over time in the 
ecoregion. The result for each ecoregion was a 
standardized z-score, which is a dimensionless 
quantity describing the degree to which the fire 
occurrence density in the ecoregion in 2014 
was higher, lower, or the same relative to all 
the previous years for which data have been 
collected, accounting for the variability in the 
previous years. The z-score is the number of 
standard deviations between the observation 
and the mean of the previous observations. 
Approximately 68 percent of observations would 
be expected within one standard deviation of 
the mean, and 95 percent within two standard 
deviations. Near-normal conditions are classified 
as those within a single standard deviation of the 
mean, although such a threshold is somewhat 
arbitrary. Conditions between about one 
and two standard deviations of the mean are 
moderately different from mean conditions, but 
are not significantly different statistically. Those 
outside about two standard deviations would be 
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considered statistically greater than or less than 
the long-term mean (at p < 0.025 at each tail of 
the distribution).

Additionally, we used the Spatial Association 
of Scalable Hexagons (SASH) analytical approach 
to identify forested areas in the conterminous 48 
States with higher-than-expected fire occurrence 
density in 2014. This method identifies locations 
where ecological phenomena occur at greater 
or lower occurrences than expected by random 
chance and is based on a sampling frame 
optimized for spatial neighborhood analysis, 
adjustable to the appropriate spatial resolution, 
and applicable to multiple data types (Potter 
and others 2016). Specifically, it consists of 
dividing an analysis area into scalable equal-
area hexagonal cells within which data are 
aggregated, followed by identifying statistically 
significant geographic clusters of hexagonal cells 
within which mean values are greater or less 
than those expected by chance. To identify these 
clusters, we employed a Getis-Ord (Gi*) hot spot 
analysis (Getis and Ord 1992) in ArcMap® 10.1 
(ESRI 2012). 

The spatial units of analysis were 9,810 
hexagonal cells, each approximately 834 km2 
in area, generated in a lattice across the 
conterminous United States using intensification 
of the Environmental Monitoring and 
Assessment Program (EMAP) North American 
hexagon coordinates (White and others 1992). 
These coordinates are the foundation of a 
sampling frame in which a hexagonal lattice 
was projected onto the conterminous United 

States by centering a large base hexagon over 
the region (Reams and others 2005, White 
and others 1992). This base hexagon can 
be subdivided into many smaller hexagons, 
depending on sampling needs, and serves 
as the basis of the plot sampling frame for 
the FIA program (Reams and others 2005). 
Importantly, the hexagons maintain equal 
areas across the study region regardless of the 
degree of intensification of the EMAP hexagon 
coordinates. In addition, the hexagons are 
compact and uniform in their distance to the 
centroids of neighboring hexagons, meaning 
that a hexagonal lattice has a higher degree of 
isotropy (uniformity in all directions) than does 
a square grid (Shima and others 2010). These 
are convenient and highly useful attributes for 
spatial neighborhood analyses. These scalable 
hexagons also are independent of geopolitical 
and ecological boundaries, avoiding the 
possibility of different sample units (such as 
counties, States, or watersheds) encompassing 
vastly different areas (Potter and others 2016). 
We selected hexagons 834 km2 in area because 
this is a manageable size for making monitoring 
and management decisions in nationwide 
analyses (Potter and others 2016).

Fire occurrence density values for each 
hexagon were quantified as the number of forest 
fire occurrences per 100 km2 of forested area 
within the hexagon. The Getis-Ord Gi* statistic 
was used to identify clusters of hexagonal cells 
with fire occurrence density values higher than 
expected by chance. This statistic allows for the 
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decomposition of a global measure of spatial 
association into its contributing factors, by 
location, and is therefore particularly suitable 
for detecting outlier assemblages of similar 
conditions (i.e., nonstationarities) in a dataset, 
such as when spatial clustering is concentrated 
in one subregion of the data (Anselin 1992).

Briefly, Gi* sums the differences between the 
mean values in a local sample, determined in 
this case by a moving window of each hexagon 
and its 18 first- and second-order neighbors 
(the 6 adjacent hexagons and the 12 additional 
hexagons contiguous to those 6) and the global 
mean of all the forested hexagonal cells in the 
conterminous 48 States. Gi* is standardized 
as a z-score with a mean of 0 and a standard 
deviation of 1, with values > 1.96 representing 
significant local clustering of higher fire 
occurrence densities (p < 0.025) and values 
< -1.96 representing significant clustering of 
lower fire occurrence densities (p < 0.025) 
because 95 percent of the observations under 
a normal distribution should be within 
approximately 2 standard deviations of the mean 
(Laffan 2006). Values between -1.96 and 1.96 
have no statistically significant concentration 
of high or low values; a hexagon and its 18 
neighbors, in other words, have a range of 
both high and low numbers of fire occurrences 
per 100 km2 of forested area. It is worth 
noting that the threshold values are not exact 
because the correlation of spatial data violates 
the assumption of independence required for 

statistical significance (Laffan 2006). The Getis-
Ord approach does not require that the input 
data be normally distributed, because the local 
Gi* values are computed under a randomization 
assumption, with Gi* equating to a standardized 
z-score that asymptotically tends to a normal 
distribution (Anselin 1992). The z-scores are 
reliable, even with skewed data, as long as the 
distance band is large enough to include several 
neighbors for each feature (ESRI 2012).

RESULTS AND DISCUSSION

The MODIS Active Fire database recorded 
106,242 wildland forest fire occurrences 
across the conterminous United States in 
2014, the second largest annual number of 
fire occurrences since the first full year of data 
collection in 2001 (fig. 3.1). This number was 
approximately 8 percent greater than in 2013 
(98,682 forest fire occurrences), and about 72 
percent more than the annual mean of 61,784 
forest fire occurrences across the previous 13 
full years of data collection. In contrast, the 
MODIS database captured only 904 forest fire 
occurrences in Alaska in 2014, 89 percent fewer 
than the preceding year (8,110) and about 7.5 
percent of the previous 13-year annual mean of 
12,108. For the first year since the beginning of 
MODIS data collection, Hawai‘i had more forest 
fire occurrences than Alaska, with 1,797. This 
was 706 percent more than the previous annual 
average of 223 forest fire occurrences, and 132 
percent greater than 2013 (773). 
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The increase in the total number of fire 
occurrences across the conterminous United 
States is generally consistent with the official 
wildland fire statistics (National Interagency 
Coordination Center 2015). In 2014, 63,612 
wildfires were reported nationally, compared 
to 47,579 the previous year. The area burned 
nationally in 2014 (1 455 092 ha) was 
53 percent of the 10-year average, with 9 
fires exceeding 16 187 ha (11 fewer than in 
2013) (National Interagency Coordination 
Center 2015). The total area burned nationally 
represented a 17 percent decrease from 
2013 (1 748 058 ha) (National Interagency 
Coordination Center 2014). As noted in 
Methods section, such estimates of burned 

Figure 3.1—Forest fire occurrences detected by Moderate Resolution Imaging 
Spectroradiometer (MODIS) from 2001 to 2014 for the conterminous United 
States, Alaska and Hawai‘i, and for the entire Nation combined. (Data source: 
U.S. Department of Agriculture, Forest Service, Remote Sensing Applications 
Center, in conjunction with the NASA MODIS Rapid Response group)

area are different metrics for quantifying fire 
activity than calculations of MODIS-detected fire 
occurrences, though the two may be correlated. 

In 2014, the highest forest fire occurrence 
densities occurred in northern California, in 
southern Oregon, in northern Washington, 
and across parts of the Southeast (fig. 3.2), 
reflecting the severe to exceptional drought 
conditions that continued from previous 
years and extended from the Pacific Coast to 
the western slope of the Rocky Mountains, 
and also existed across the southern plains 
(National Interagency Coordination Center 
2015). The forested ecoregion with the highest 
wildland forest fire occurrence density in 2014 
(27.7 fire occurrences per 100 km2 of forest) 
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Figure 3.2—The number of forest fire occurrences, per 100 km2 (10 000 ha) of forested area, by ecoregion section within the conterminous 48 
States, for 2014. The gray lines delineate ecoregion sections (Cleland and others 2007). Forest cover is derived from Moderate Resolution Imaging 
Spectroradiometer (MODIS) imagery by the U.S. Forest Service Remote Sensing Applications Center. (Source of fire data: U.S. Department of 
Agriculture, Forest Service, Remote Sensing Applications Center, in conjunction with the NASA MODIS Rapid Response group)
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was section M261A–Klamath Mountains 
(fig. 3.2) in northern California and southern 
Oregon. Immediately to the east is M261D–
Southern Cascades, with a high fire density of 
14.5 per 100 km2 of forest. In these areas, the 
lightning-ignited Happy Camp fire complex 
burned 542.5 km2, and the July complex 
burned 202.5 km2. Fire occurrence density was 
20.7 in M242D–Northern Cascades, location 
of the Carlton complex fire, the largest fire 
in the history of Washington State, burning 
1,036.4 km2. Meanwhile, two ecoregions that 
stretch in an arc from southern Mississippi to 
North Carolina experienced high fire occurrence 
densities: 15.9 fires per 100 km2 of forest in 
232J–Southern Atlantic Coastal Plains and 
Flatwoods, and 14.8 fires in 232B–Gulf Coastal 
Plains and Flatwoods. In central Oklahoma, 
255A–Cross Timbers and Prairie had 15.7 fires 
per 100 km2 of forest.

Additionally, several ecoregions that 
contain relatively small amounts of forest 
(and therefore do not stand out as easily on 
fig. 3.2) also had high fire occurrence densities 
in 2014, including 342I–Columbia Basin in 
central Washington (41.3 fire occurrences per 
100 km2 of forest), 251F–Flint Hills in eastern 
Kansas (26.4 fire occurrences), and 342H–Blue 
Mountain Foothills in eastern Oregon (12.1 
fire occurrences).

Several ecoregions of the Southeastern 
United States experienced relatively high fire 
occurrence densities in 2014 (fig. 3.2). These 

encompassed all of the ecoregions of peninsular 
Florida: 232D–Florida Coastal Lowlands-Gulf, 
11.9 fire occurrences per 100 km2 of forest; 
232G–Florida Coastal Lowlands-Atlantic, 11.6 
fire occurrences; 232K–Florida Coastal Plains 
Central Highlands, 10.7 fire occurrences; 411A–
Everglades, 10.1 fire occurrences; 232L–Gulf 
Coast Lowlands, 8.2 fire occurrences. Other 
Southeastern ecoregions with relatively high fire 
occurrence included the following:

• 232C–Atlantic Coastal Flatwoods 
(northeastern Florida, eastern Georgia, 
eastern South Carolina, and southeastern 
North Carolina), 9.4 fire occurrences; 

• 232F–Coastal Plains and Flatwoods-Western 
Gulf (west-central Louisiana and east-central 
Texas), 8.0 fire occurrences; 

• 231B–Coastal Plains-Middle (central Alabama, 
northeastern Mississippi, and southwestern 
Tennessee), 7.8 fire occurrences; 

• 231A–Southern Appalachian Piedmont 
(east-central Alabama, northern Georgia, 
and northern South Carolina), 7.4 fire 
occurrences;

• 231G–Arkansas Valley (west-central Arkansas 
and east-central Oklahoma), 7.6 fire 
occurrences; and 

• M231A–Ouchita Mountains (west-central 
Arkansas and southeastern Oklahoma), 7.5 
fire occurrences.

In the Pacific Coast States, ecoregions 
stretching from the Washington border with 
Canada (M333A–Okanogan Highland, 7.8 fire 
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occurrences per 100 km2 of forest) to the Sierra 
Nevada range of central California (M261E–
Sierra Nevada) experienced moderate fire 
occurrence densities. Farther east, M341A–East 
Great Basin and Mountains in eastern Nevada 
(7.2 fire occurrences) and 313D–Painted Desert 
and M313A–White Mountains-San Francisco 
Peaks-Mogollon Rim in eastern Arizona (9.1 
and 6.1 fire occurrences, respectively) had 
similarly moderate fire occurrence densities. 
Fire occurrence densities, meanwhile, were 
generally low in the Northeastern, Mid-Atlantic, 
Midwestern, and central Rocky Mountain States 
(fig. 3.2).

Alaska had warm, dry, and windy conditions 
in the spring and summer months of 2014, 
which led to fuels becoming rapidly snow free 
across the southern two-thirds of the State 
(National Interagency Coordination Center 
2015). Still, Alaska saw a relatively small 
number of fires, and all but one ecoregion in the 
State had low fire occurrence densities (fig. 3.3). 
The exception was 213B–Cook Inlet Lowlands, 
with 3.5 fire occurrences per 100 km2 of forest, 
stemming from the human-ignited Funny River 
fire on the Kenai Peninsula, which burned 
79 260 ha in late May and early June and cost 
$11.4 million to control (National Interagency 
Coordination Center 2015).

The first half of 2014 was abnormally dry 
in Hawai‘i (National Interagency Coordination 
Center 2015), but most forest fire occurrences 
were associated with the months-long eruption 

of Pu‘u ‘Ō‘ō, a vent on the flank of the Kilauea 
volcano, which sent a slow moving flow of lava 
through dense forest near the eastern edge of 
the Big Island (Miner 2014). As a result, fire 
occurrence density on the Big Island was 44.1 
per 100 km2 of forest (fig. 3.4). Densities on 
the other islands were all less than one fire per 
100 km2 of forest.

Comparison to Longer Term Trends

Contrasting short-term (1-year) wildland 
forest fire occurrence densities with longer term 
trends is possible by comparing these results for 
each ecoregion section to the first 13 full years 
of MODIS Active Fire data collection (2001–
2013). In general, most ecoregions within the 
Northeastern, Midwestern, Mid-Atlantic, and 
Appalachian regions experienced less than 1 
fire per 100 km2 of forest during the multiyear 
period, with means higher in the Northern 
Rocky Mountain, California, Southwestern, and 
Southeastern regions (fig. 3.5A). The forested 
ecoregion that experienced the most fires on 
average was M332A–Idaho Batholith in central 
Idaho (mean annual fire occurrence density 
of 13.9). Other ecoregions with mean fire 
occurrence densities of 6.1–12.0 were located 
in coastal and central California, in central 
Arizona and New Mexico, and in north-central 
Texas. Ecoregions with the greatest variation 
in fire occurrence densities from 2001 to 2013 
were also located in central Idaho and near the 
California coast, with more moderate variation 
in northern and central California, southwestern 
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Figure 3.3—The number of forest fire occurrences, per 100 km2 (10 000 ha) of forested area, by ecoregion section within Alaska, for 
2014. The gray lines delineate ecoregion sections (Nowacki and Brock 1995). Forest cover is derived from Moderate Resolution Imaging 
Spectroradiometer (MODIS) imagery by the U.S. Forest Service Remote Sensing Applications Center. (Source of fire data: U.S. Department 
of Agriculture, Forest Service, Remote Sensing Applications Center, in conjunction with the NASA MODIS Rapid Response group)
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Figure 3.4—The number of forest fire occurrences, per 100 km2 (10 000 ha) of forested area, by island in 
Hawai‘i, for 2014. Forest cover is derived from MODIS imagery by the U.S. Forest Service Remote Sensing 
Applications Center. (Source of fire data: U.S. Department of Agriculture, Forest Service, Remote Sensing 
Applications Center, in conjunction with the NASA MODIS Rapid Response group)
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Oregon, north-central Washington, western 
Montana, western Utah, northeastern Nevada, 
central and southeastern Arizona, southwestern 
New Mexico, and eastern North Carolina 
(fig. 3.5B). Less variation occurred throughout 
the Southeast, coastal and eastern Oregon 
and Washington, the Rocky Mountain States, 
and northern Minnesota. The lowest levels of 
variation were apparent throughout most of the 
Midwest and Northeast.

In 2014, ecoregions in the Pacific Northwest, 
in the Great Basin, in the Southwest, and across 
much of the Eastern United States experienced 
greater fire occurrence densities than normal, 
compared to the previous 13-year mean 
and accounting for variability over time, as 
determined by the calculation of standardized 
fire occurrence z-scores (fig. 3.5C). These 
included ecoregions in the Midwest, Mid-
Atlantic, and New England States, which had 
high z-scores despite a relatively low density 
of fire occurrences in 2014 (fig. 3.2) because 
these were slightly higher than normal in areas 
that typically have very little variation over 
time in fire occurrence density. On the other 
hand, several of the western and southeastern 
ecoregions with high z-scores also had very 
high fire occurrence densities in 2014 (fig. 3.2), 
including M261A–Klamath Mountains in 
northwestern California and southwestern 
Oregon, M242D–Northern Cascades in north-
central Washington, 232B–Gulf Coastal Plains 
and Flatwoods in southern Mississippi and 
Alabama and northwestern Florida, and 232J–
Southern Atlantic Coastal Plains and Flatwoods 
in central Georgia, central South Carolina, and 

south-central North Carolina (fig. 3.2). No 
ecoregions had lower fire occurrence densities in 
2014 compared to the longer term.

In Alaska, meanwhile, the highest mean 
annual fire occurrence density between 2001 
and 2013 occurred in the east-central and 
central parts of the State (fig. 3.6A) in the 139A–
Yukon Flats ecoregion, with moderate mean 
fire occurrence density in neighboring areas. As 
expected, many of those same areas experienced 
the greatest degree of variability over the 
13-year period (fig. 3.6B). In 2014, only one 
ecoregion was outside the range of near-normal 
fire occurrence density, compared to the mean 
of the previous 13 years and accounting for 
variability (fig. 3.6C). This was 213B–Cook Inlet 
Lowlands, an area with typically very low mean 
fire occurrence density (fig. 3.6A) and variability 
(fig. 3.6B) that was the location of the Funny 
River fire, the third largest wildfire nationally 
in 2014.

In Hawai‘i, both the mean annual fire 
occurrence density (fig. 3.7A) and variability 
(fig. 3.7B) were highest on the Big Island 
during the 2001–2013 period. The annual 
mean was less than 1 fire per 100 km2 of forest 
for all islands except the Big Island (8.1) and 
Kahoʻolawe (1.9). The annual fire occurrence 
standard deviation exceeded 1 for only the Big 
Island (11.9), Kahoʻolawe (5.4), and Lānaʻi 
(1.3). In 2014, the Big Island was well outside 
the range of near-normal fire occurrence 
density, controlling for variability over the 
previous 13 years (fig. 3.7C), with many more 
fires than expected. 



53

0–1

1.1–3

3.1–6

6.1–12

Fire occurrence density 
annual mean, 2001–13

> 12

Ecoregion section 
 State 

< -2 (significantly fewer)
-2 to -1.5 (moderately fewer)
-1.5 to -1 (slightly fewer)
-1 to 1 (near normal)
1 to 1.5 (slightly more)

2014 fire occurrence 
density z-score 

> 2 (significantly more)
1.5 to 2 (moderately more)

Ecoregion section 
State

0–1

1.1–3

3.1–6

6.1–12

Fire occurrence density 
annual mean, 2001–13

> 12

Ecoregion section 
 State 

0–1

1.1–5

5.1–10

10.1–20

Annual fire occurrence density 
standard deviation, 2001–13

> 20

Ecoregion section 
 State 
 

0–1

1.1–5

5.1–10

10.1–20

Annual fire occurrence density 
standard deviation, 2001–13

> 20

Ecoregion section 
 State 
 

Figure 3.5—(A) Mean number and 
(B) standard deviation of forest fire 
occurrences per 100 km2 (10 000 ha) 
of forested area from 2001 through 
2013, by ecoregion section within the 
conterminous 48 States. (C) Degree 
of 2014 fire occurrence density excess 
or deficiency by ecoregion relative to 
2001–13 and accounting for variation 
over that time period. The dark lines 
delineate ecoregion sections (Cleland 
and others 2007). Forest cover is derived 
from Moderate Resolution Imaging 
Spectroradiometer (MODIS) imagery by 
the U.S. Forest Service Remote Sensing 
Applications Center. (Source of fire data: 
U.S. Department of Agriculture, Forest 
Service, Remote Sensing Applications 
Center, in conjunction with the NASA 
MODIS Rapid Response group)

(A)
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(A)

(C)

(B)

Figure 3.6—(A) Mean number and 
(B) standard deviation of forest fire 
occurrences per 100 km2 (10 000 ha) 
of forested area from 2001 through 
2013, by ecoregion section in Alaska. 
(C) Degree of 2014 fire occurrence 
density excess or deficiency by ecoregion 
relative to 2001–13 and accounting for 
variation over that time period. The 
dark lines delineate ecoregion sections 
(Nowacki and Brock 1995). Forest cover 
is derived from Moderate Resolution 
Imaging Spectroradiometer (MODIS) 
imagery by the U.S. Forest Service 
Remote Sensing Applications Center. 
(Source of fire data: U.S. Department 
of Agriculture, Forest Service, Remote 
Sensing Applications Center, in 
conjunction with the NASA MODIS 
Rapid Response group)
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(A)

(C)

(B)

Figure 3.7—(A) Mean number 
and (B) standard deviation of 
forest fire occurrences per 100 km2 
(10 000 ha) of forested area from 
2001 through 2013, by island 
in Hawai‘i. (C) Degree of 2014 
fire occurrence density excess or 
deficiency by ecoregion relative 
to 2001–13 and accounting for 
variation over that time period. 
Forest cover is derived from 
Moderate Resolution Imaging 
Spectroradiometer (MODIS) 
imagery by the U.S. Forest Service 
Remote Sensing Applications 
Center. (Source of fire data: 
U.S. Department of Agriculture, 
Forest Service, Remote Sensing 
Applications Center, in conjunction 
with the NASA MODIS Rapid 
Response group)
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Geographical Hot Spots of Fire  
Occurrence Density

Although summarizing fire occurrence data at 
the ecoregion scale allows for the quantification 
of fire occurrence density across the country, a 
geographical hot spot analysis can offer insights 
into where, statistically, fire occurrences are 
more concentrated than expected by chance. In 
2014, the two geographical hot spots with the 
highest fire occurrence densities were located in 
northwestern California/southwestern Oregon 
and in north-central Washington (fig. 3.8). 
The larger of these was detected in M261A–
Klamath Mountains, the area with the highest 
wildland forest fire occurrence density in 2014. 
This hot spot extended, at lower levels of fire 
occurrence density, into M261D–Southern 
Cascades and M221G–Modoc Plateau. The other 
hot spot of very high fire occurrence density 
was in M242D–Northern Cascades, extending 
with lower fire occurrence density into the 
neighboring M333A–Okanogan Highland.

Several hot spots of moderate to high fire 
density were scattered elsewhere across the 
Western United States (fig. 3.8), including in the 
following regions:

• Central Oregon (M332G–Blue Mountains, 
M242C–Eastern Cascades, and M242B–
Western Cascades),

• West-central Idaho and northeastern Oregon 
(M332A–Idaho Batholith and M332G–
Blue Mountains),

• East-central Nevada (M341A–East Great 
Basin and Mountains),

• East-central Arizona (M313A–White 
Mountains-San Francisco Peaks-Mogollon 
Rim and 313C–Tonto Transition),

• Southern California (261B–Southern 
California Coast and M262B–Southern 
California Mountain and Valley), and

• Central California (M261E–Sierra Nevada and 
M261F–Sierra Nevada Foothills).

The geographic clustering analysis detected 
a large hot spot in the Southeast, extending 
across four States and having its high fire density 
core in ecoregion 232B–Gulf Coast Plains and 
Flatwoods in southwestern Georgia and north-
central Florida (fig. 3.8). Within the East, other 
hot spots of high fire occurrence density were 
located in southern Florida (232D–Florida 
Coastal Lowlands-Gulf and 411A–Everglades), 
southern Louisiana (234C–Atchafalaya and 
Red River Alluvial Plains), and southeastern 
Kansas and northeastern Oklahoma (255A–
Cross Timbers and Prairie). The Southeastern 
United States was the region with the greatest 
area burned in 2014 (National Interagency 
Coordination Center 2015), but these were 
mostly small, short-duration fires occurring in 
the spring or autumn.

CONCLUSION

The results of these geographic analyses 
are intended to offer insights into where fire 
occurrences have been concentrated spatially in 
a given year and compared to previous years, 
but are not intended to quantify the severity of 
a given fire season. Given the limits of MODIS 
active fire detection using 1-km2 resolution 
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2.01–6 (Clustered, moderate density)
6.01–12 (Clustered, high density)
12.01–24 (Clustered, very high density)

Clustering and degree 
of fire occurrence density  

≤ 2 (Not clustered)
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Figure 3.8— Hot spots of fire occurrence across the conterminous United States for 2014. Values are Getis-Ord Gi* scores, with values > 2 
representing significant clustering of high fire occurrence densities. (No areas of significant clustering of low fire occurrence densities, < -2, were 
detected). The gray lines delineate ecoregion sections (Cleland and others 2007). Background forest cover is derived from Moderate Resolution 
Imaging Spectroradiometer (MODIS) imagery by the U.S. Forest Service Remote Sensing Applications Center. (Source of fire data: U.S. Department 
of Agriculture, Forest Service, Remote Sensing Applications Center, in conjunction with the NASA MODIS Rapid Response group)
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data, these products also may underrepresent 
the number of fire occurrences in some 
ecosystems where small and low-intensity 
fires are common. These products can also 
have commission errors. However, these high 
temporal fidelity products currently offer the 
best means for daily monitoring of wildfire 
impacts. Ecological and forest health impacts 
relating to fire and other abiotic disturbances 
are scale-dependent properties, which in 
turn are affected by management objectives 
(Lundquist and others 2011). Information 
about the concentration of fire occurrences 
may help pinpoint areas of concern for aiding 
management activities and for investigations 
into the ecological and socioeconomic impacts of 
wildland forest fire potentially outside the range 
of historic frequency.
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