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USING MULT-SPECTRAL LANDSAT IMAGERY TO EXAMINE FOREST 
HEALTH TRENDS AT FORT BENNING, GEORGIA

Shawna L. Reid, Joan L. Walker, and Abigail Schaaf1

Assessing vegetation health attributes like canopy 
density or live crown ratio and ecological processes 
such as growth or succession ultimately requires direct 
measures of plant communities. However, on-the-
ground sampling is labor and time intensive, effectively 
limiting the amount of forest that can be evaluated. 
Radiometric data collected with a variety of sensors 
from satellite platforms provide a partial solution to this 
challenge. Because plant function via photosynthesis 
is directly tied to electromagnetic energy, vegetation 
function has been successfully related to radiometric 
data (Lawley and others In press). Various indices have 
been developed to interpret vegetative functions or 
conditions including basal area, species composition, 
moisture stress, and damage from insects or disease 
(Liew and others 2008; Bannari and others 1995). The 
normalized difference vegetation index (NDVI), based on 
reflectance in the red (R) and near infrared (NIR) bands 
of the electromagnetic spectrum (NDVI = (NIR - R) / 
(NIR + R); range:-1 to 1), has been shown to be highly 
correlated with photosynthetic capacity, net primary 
productivity, leaf area index, and evapotranspiration. 
Further, time-series of NDVI have proven useful for 
evaluating such functions as canopy growth rates, and 
phenological events like the onset of spring (Pettorelli 
2013).

Landsat TM data is one of the most useful types of 
radiometric data for interpreting vegetation. It has 
a moderate spatial resolution (30 m), high temporal 
resolution (images acquired every 16 days), and a long-
term data archive from 1982 through present. The NDVI 
is readily calculated from Landsat TM data, adding to 
the desirability of these data for ecological applications. 
Finally, Landsat data are available at no charge, in part, 
ensuring their wide use in research and increasing the 
comparability among studies.

We conducted this study at Fort Benning, Georgia, 
where the upland landscape is managed to create 
an open pine forest that both meets military training 
needs and supports management of sensitive wildlife 
species. Management includes frequent prescribed 

burning to promote herbaceous groundcover and to 
control hardwood mid-story development, and thinning 
to achieve and maintain desired pine basal area. As 
early as 2005 Fort Benning forest managers voiced 
concerns about unexpected mortality in older loblolly 
pines. It was unclear if this phenomenon was novel, 
or if it was typical of historic patterns. To answer that 
question, in part, we proposed to investigate historic 
patterns of forest productivity using Landsat TM data. 
Here, we describe our approach to evaluating trends in 
pine forest productivity on the Fort Benning landscape. 
This project was conducted in partnership with the U.S. 
Forest Service Remote Sensing Applications Center 
(RSAC).

We used NDVI calculated from Landsat TM data as a 
general indicator of forest productivity, assuming that 
“greener” (higher NDVI, more productive) canopies are 
healthier than low productivity forests on similar sites. 
We used the USGS Earth Explorer website archive 
for identifying and downloading suitable scenes. We 
selected Landsat 5 scenes except in 2012 and 2013 
when Landsat 7 scenes were the only ones available. 
With few exceptions we were able to identify scenes 
taken during leaf-off (December-March) and with 
minimal cloud cover. We downloaded Level 1 Product 
Generation System L1T Standard Terrain Correction 
ortho-corrected scenes. These were processed to 
Top-of-Atmosphere (Chandler and others 2009) and 
surface reflectance (Chavez 1988, Zhu and Woodcock 
2012) using scripts developed by RSAC personnel and 
run within the Python and ERDAS Imagine software. 
The conversion from raw digital numbers to surface 
reflectance was done to minimize atmospheric effects 
(Song and others 2001). Two scenes were needed to 
cover the study area; they were joined within ERDAS. 
To calculate NDVI we used an RSAC-developed script 
that rescaled the index to integers between 0 and 200. 
Finally, we used the ARCINFO raster tool to extract 
values from each NDVI image for each of the 88 sample 
plots in which we had assessed pine canopy health 
following U.S. Forest Service Forest Health Monitoring 
protocols. Using these plots for which we have direct 
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canopy health measures allowed us to relate spectral 
data to actual forest health conditions (results not 
reported here).

We examined the general trend in NDVI from 1984 
to 2013 (fig. 1). Based on simple linear regression, 
the mean performance of all plots through time was 
negative (fig. 1).Though the trend in NDVI was negative 
(slope = -0.4241) the relationship was weak (r2= 0.1052).

To better understand the variation among plots, we 
attempted to account for two components of the 
temporal trend: the NDVI level and slope. We first 
standardized NDVI values across all plots within each 
year, thereby assigning a standardized (z-transformed) 
NDVI score for each plot in each year. We calculated an 
average standardized NDVI score for each plot across 
all years. Then we calculated the slope of NDVI through 
time for each plot, and calculated a standardized slope 

score. Using both the mean standardized NDVI and 
standardized slope, we divided the plots into sixteen 
classes (table 1) defined by all combinations of four 
NDVI levels and four slope categories (strongly positive, 
flat, decreasing, and strongly decreasing). Levels were 
determined by natural breaks in the distributions of 
plots across the standardized NDVI and slope values, 
respectively.
 
Most sample plots were declining in greenness through 
time, consistent with the overall NDVI trend (fig. 1). The 
classification identified some plots that were both low 
NDVI but strongly increasing and high NDVI but strongly 
declining, combinations that were not intuitively easy 
to interpret. Based on an examination of a series of 
aerial photos, we determined that the former included 
relatively young fast-growing plantations and the 
latter occurred where management activities (e.g. fire, 
harvest) had reduced canopy cover abruptly.

Table 1—Distribution of 88 sample plots across trend classes defi ned 
by combining the NDVI standardized (z-transformed) within each year 
and averaged across all years with the magnitude of the slope of NDVI 
regressed on year  

Class Strong decline Declining Flat Improving

Very healthy 5 12 0 1

Healthy 13 3 4 1

Unhealthy 5 13 1 1

Very unhealthy 5 15 6 3

Figure 1—Trend analysis graph showing the NDVI values for each plot over the 30 year time series and the trend line (in red) 
which shows the slope of mean plot performance against year (linear regression).
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Our results indicate the complexity of interpreting 
temporal trends in productivity on a managed 
landscape. Though overall trends appeared negative, 
management actions, especially those that cause 
abrupt changes in canopy cover, may influence trends. 
The use of Landsat based NDVI trends to interpret 
changes in forest health are complicated by image 
resolution that may not show isolated small patches of 
dying trees. At the very least, interpretations must be 
corroborated by other data, for example, information 
about stand management or natural disturbance.
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