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MODELING INDIVIDUAL TREE SURVIVAL

Quang V. Cao1

Abstract—Information provided by growth and yield models is the basis for forest managers to make 
decisions on how to manage their forests. Among different types of growth models, whole-stand models offer 
predictions at stand level, whereas individual-tree models give detailed information at tree level. The well-
known logistic regression is commonly used to predict tree survival probability. In addition to the maximum 
likelihood approach, a new approach called CDF regression was introduced here to estimate parameters of the 
tree survival equation.

Each of the two above approaches was evaluated as follows: (1) unadjusted, (2) disaggregated from the whole-
stand model, and (3) disaggregated from the combined estimator. Results from this study showed that the tree 
survival model, when adjusted from the combined estimator, produced the best-ranked two alternatives. The 
new method, CDF Regression, coupled with the combined estimator, was better than the Maximum Likelihood 
method in estimating parameters of the logistic regression equation.

INTRODUCTION
Among many different types of growth and yield 
models, individual-tree simulation models provide the 
most flexible outputs because growth of an individual 
tree is the basis for this type of models. Predicting 
tree survival is an important component of tree-level 
models. The probability that a tree survives a growing 
period has been modeled by use of logistic regressions 
(Hamilton 1974, Hamilton and Edwards 1976, Monserud 
1976, Buchman 1979, 1983, Zhang and others 1997, 
Monserud and Sterba 1999) or other methods (Glover 
and Hool 1979, Amateis and others 1989, Guan and 
Gertner 1991a, 1991b).

Maximum likelihood estimation is the most common 
method for estimating the parameters of a logistic 
regression model. An alternative method, called CDF 
Regression, is introduced in this paper.

Stand-level prediction of survival can be predicted 
directly from a stand survival model, or indirectly by 
summing individual tree survival probabilities. The 
predictions could be improved by use of a combined 
estimator (Yue and others 2008, Zhang 2010), which is a 
weighted average of outputs from both types of models.

Disaggregation method is a method that links a tree-
level model and a stand-level model (Ritchie and Hann 
1997). In this method, outputs from the tree-level model 
are adjusted such that the resulting stand summary 
matches prediction from a stand-level model.

The objective of this study was to evaluate two methods 
of estimating parameters of the logistic regression 
model for predicting tree survival probabilities, 
Maximum Likelihood and CDF Regression. The 
evaluation was conducted under the following 
scenarios:
• Unadjusted tree survival model,
• Tree survival model adjusted by disaggregation from 

the stand survival outputs, and
• Tree survival model adjusted by disaggregation from 

the combined estimator.

METHODS
Data
Data used in this study were from 200 plots randomly 
selected from the Southwide Seed Source Study, which 
include 15 loblolly pine (Pinus taeda L.) seed sources 
planted at 13 locations across 10 southern states (Wells 
and Wakeley 1966). Each 0.0164 ha plot consisted 
of 49 trees, planted at a 1.8 m × 1.8 m spacing. Tree 
diameters and survival were recorded at ages 10, 15, 
20, and 25 years, resulting in a total of 600 growth 
periods.

The data were randomly divided into two groups of 
100 plots each (table 1). The leave-one-out evaluation 
scheme was applied in this study. Parameters of the 
tree survival model were estimated from one group, and 
then used to predict for the other group. The predictions 
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from both groups were used to compute evaluation 
statistics for the different methods.

Stand survival equation
The model developed by Cao (2006) was used in  
this study to predict stand-level survival:

(1)

where N ̂ 2i = predicted number of trees per hectare  
for plot i at the end of the 5-year growth period,  
A1i = stand age in years for plot i at the beginning of  
the growth period, N1i  = number of trees per hectare  
at age A1i, H1i = dominant height in meters at age                                                                             

A1i, RS1i               relative spacing at age A1i .

Tree survival equation
The following logistic regression model was employed 
to predict tree survival probability ( p ̂ 1j ) of tree j in plot i 
during the 5-year growth period:

 (2)

where Dq1i = quadratic mean diameter of plot i at age 
A1i , and d1ij

  = dbh of tree j in plot i at age A1i
 .

CDF Regression
Tree diameters in each plot were sorted from smallest 
to largest. Let d1i( j

 ) be the j th order statistic for tree 
dbh at age A1i for plot i, with d1i( j

 ) being the minimum 
dbh in plot i at age A1i. The empirical CDF (cumulative 
distribution function) or tree survival, F1i( j

 ), is defined for 
diameter d1i( j

 ) as follows:

Fi(j) = Fi(j-1) + δi( j) /n2i  
.     (3)

where Fi(0) = 0, δi( j) = 0 if the tree having diameter d1ij
  

is dead and 1 if it survives the 5-year growth period, 
and n2i

 = total number of surviving trees in plot i at the 
end of the growth period. Subscript j varies from 1 to 
n1i, where n1i = total number of trees in plot i at age A1i 

 .

In the CDF Regression method, the parameters of the 
tree survival equation (2) were solved to minimize

(4)

where                                                          = predicted 
tree survival probability for a tree having diameter d1i( j

 
), 

and F  ̂i(0) = 0.

Figure 1 shows observed survival CDF for a sample plot 
and predicted CDF’s from the Maximum Likelihood and 
CDF Regression methods.

Combined estimator
The combined estimator for plot i (N C

i   ) is the weighted 
average of predictions from the stand-level model (N S

i  ) 
and the tree-level model (N T

i  ):

(5)

where w were computed according to the least-squares 
method described by Tang (1992, 1994) and applied by 
Zhang and others (2010).

Disaggregation
The predicted tree survival probability (p̂i j ) of tree j in 
plot i was adjusted as follows so that the resulting stand 
survival matched either the prediction from the stand 
survival model or the combined estimator:

(6)

 
�̂�𝑁2𝑖𝑖 =

𝑁𝑁1𝑖𝑖
1+𝑒𝑒𝑒𝑒𝑒𝑒(𝑏𝑏0+𝑏𝑏1𝑅𝑅𝑅𝑅1𝑖𝑖+𝑏𝑏2𝐻𝐻1𝑖𝑖+𝑏𝑏3𝑁𝑁1𝑖𝑖/𝐴𝐴1𝑖𝑖+𝑏𝑏4/𝐴𝐴1𝑖𝑖)

 , 
 
 

A1i, and 𝑅𝑅𝑅𝑅1𝑖𝑖 = √10000/𝑁𝑁1𝑖𝑖
𝐻𝐻1𝑖𝑖

 = relative spacing at age A1i. 
 
 
�̂�𝑝𝑖𝑖𝑖𝑖 =

1
1+𝑒𝑒𝑒𝑒𝑒𝑒(𝑏𝑏0+𝑏𝑏1𝐻𝐻1𝑖𝑖+𝑏𝑏2𝑅𝑅𝑅𝑅1𝑖𝑖+𝑏𝑏3𝑑𝑑1𝑖𝑖𝑖𝑖/𝐷𝐷𝐷𝐷1𝑖𝑖)

 ,  

 
 
 
𝐹𝐹𝑖𝑖(𝑖𝑖) = 𝐹𝐹𝑖𝑖(𝑖𝑖−1) + 𝛿𝛿𝑖𝑖(𝑖𝑖)/𝑛𝑛2𝑖𝑖.  
 
 
𝑧𝑧 = ∑ ∑ (𝐹𝐹𝑖𝑖(𝑖𝑖) − �̂�𝐹𝑖𝑖(𝑖𝑖))

2
𝑖𝑖𝑖𝑖 , 

  
 
𝑁𝑁𝐶𝐶 = 𝑤𝑤𝑁𝑁𝑇𝑇 + (1 − 𝑤𝑤)𝑁𝑁𝑅𝑅,  
 
 
 
  𝑀𝑀𝑀𝑀 = ∑ (𝑁𝑁2𝑖𝑖 − �̂�𝑁2𝑖𝑖)/𝑚𝑚𝑖𝑖  
  
  𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ |𝑁𝑁2𝑖𝑖 − �̂�𝑁2𝑖𝑖|/𝑚𝑚𝑖𝑖  
  
  𝑅𝑅2 = ∑ (𝑁𝑁2𝑖𝑖 − �̂�𝑁2𝑖𝑖)

2
𝑖𝑖 /∑ (𝑁𝑁2𝑖𝑖 − 𝑁𝑁2)2𝑖𝑖  

  
 
 
  𝑀𝑀𝑀𝑀 = ∑ ∑ (𝛿𝛿𝑖𝑖𝑖𝑖 − �̂�𝑝𝑖𝑖𝑖𝑖)𝑖𝑖 / ∑ 𝑛𝑛1𝑖𝑖𝑖𝑖𝑖𝑖  
  
  𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ ∑ |𝛿𝛿𝑖𝑖𝑖𝑖 − �̂�𝑝𝑖𝑖𝑖𝑖|𝑖𝑖 / ∑ 𝑛𝑛1𝑖𝑖𝑖𝑖𝑖𝑖  
  
  −2𝑙𝑙𝑛𝑛𝑙𝑙 = −2[∑ ∑ �̂�𝑝𝑖𝑖𝑖𝑖ln(�̂�𝑝𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖 + ∑ ∑ (1 − �̂�𝑝𝑖𝑖𝑖𝑖)ln(1 − �̂�𝑝𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖 ] 
  
  
 
  𝑅𝑅𝑖𝑖 = 1 + (𝑘𝑘−1)(𝑅𝑅𝑖𝑖−𝑅𝑅𝑚𝑚𝑖𝑖𝑚𝑚)

𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚−𝑅𝑅𝑚𝑚𝑖𝑖𝑚𝑚
  

 
 

 
�̂�𝑁2𝑖𝑖 =

𝑁𝑁1𝑖𝑖
1+𝑒𝑒𝑒𝑒𝑒𝑒(𝑏𝑏0+𝑏𝑏1𝑅𝑅𝑅𝑅1𝑖𝑖+𝑏𝑏2𝐻𝐻1𝑖𝑖+𝑏𝑏3𝑁𝑁1𝑖𝑖/𝐴𝐴1𝑖𝑖+𝑏𝑏4/𝐴𝐴1𝑖𝑖)

 , 
 
 

A1i, and 𝑅𝑅𝑅𝑅1𝑖𝑖 = √10000/𝑁𝑁1𝑖𝑖
𝐻𝐻1𝑖𝑖

 = relative spacing at age A1i. 
 
 
�̂�𝑝𝑖𝑖𝑖𝑖 =

1
1+𝑒𝑒𝑒𝑒𝑒𝑒(𝑏𝑏0+𝑏𝑏1𝐻𝐻1𝑖𝑖+𝑏𝑏2𝑅𝑅𝑅𝑅1𝑖𝑖+𝑏𝑏3𝑑𝑑1𝑖𝑖𝑖𝑖/𝐷𝐷𝐷𝐷1𝑖𝑖)

 ,  

 
 
 
𝐹𝐹𝑖𝑖(𝑖𝑖) = 𝐹𝐹𝑖𝑖(𝑖𝑖−1) + 𝛿𝛿𝑖𝑖(𝑖𝑖)/𝑛𝑛2𝑖𝑖.  
 
 
𝑧𝑧 = ∑ ∑ (𝐹𝐹𝑖𝑖(𝑖𝑖) − �̂�𝐹𝑖𝑖(𝑖𝑖))

2
𝑖𝑖𝑖𝑖 , 

  
 
𝑁𝑁𝐶𝐶 = 𝑤𝑤𝑁𝑁𝑇𝑇 + (1 − 𝑤𝑤)𝑁𝑁𝑅𝑅,  
 
 
 
  𝑀𝑀𝑀𝑀 = ∑ (𝑁𝑁2𝑖𝑖 − �̂�𝑁2𝑖𝑖)/𝑚𝑚𝑖𝑖  
  
  𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ |𝑁𝑁2𝑖𝑖 − �̂�𝑁2𝑖𝑖|/𝑚𝑚𝑖𝑖  
  
  𝑅𝑅2 = ∑ (𝑁𝑁2𝑖𝑖 − �̂�𝑁2𝑖𝑖)

2
𝑖𝑖 /∑ (𝑁𝑁2𝑖𝑖 − 𝑁𝑁2)2𝑖𝑖  

  
 
 
  𝑀𝑀𝑀𝑀 = ∑ ∑ (𝛿𝛿𝑖𝑖𝑖𝑖 − �̂�𝑝𝑖𝑖𝑖𝑖)𝑖𝑖 / ∑ 𝑛𝑛1𝑖𝑖𝑖𝑖𝑖𝑖  
  
  𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ ∑ |𝛿𝛿𝑖𝑖𝑖𝑖 − �̂�𝑝𝑖𝑖𝑖𝑖|𝑖𝑖 / ∑ 𝑛𝑛1𝑖𝑖𝑖𝑖𝑖𝑖  
  
  −2𝑙𝑙𝑛𝑛𝑙𝑙 = −2[∑ ∑ �̂�𝑝𝑖𝑖𝑖𝑖ln(�̂�𝑝𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖 + ∑ ∑ (1 − �̂�𝑝𝑖𝑖𝑖𝑖)ln(1 − �̂�𝑝𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖 ] 
  
  
 
  𝑅𝑅𝑖𝑖 = 1 + (𝑘𝑘−1)(𝑅𝑅𝑖𝑖−𝑅𝑅𝑚𝑚𝑖𝑖𝑚𝑚)

𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚−𝑅𝑅𝑚𝑚𝑖𝑖𝑚𝑚
  

 
 

 
�̂�𝑁2𝑖𝑖 =

𝑁𝑁1𝑖𝑖
1+𝑒𝑒𝑒𝑒𝑒𝑒(𝑏𝑏0+𝑏𝑏1𝑅𝑅𝑅𝑅1𝑖𝑖+𝑏𝑏2𝐻𝐻1𝑖𝑖+𝑏𝑏3𝑁𝑁1𝑖𝑖/𝐴𝐴1𝑖𝑖+𝑏𝑏4/𝐴𝐴1𝑖𝑖)

 , 
 
 

A1i, and 𝑅𝑅𝑅𝑅1𝑖𝑖 = √10000/𝑁𝑁1𝑖𝑖
𝐻𝐻1𝑖𝑖

 = relative spacing at age A1i. 
 
 
�̂�𝑝𝑖𝑖𝑖𝑖 =

1
1+𝑒𝑒𝑒𝑒𝑒𝑒(𝑏𝑏0+𝑏𝑏1𝐻𝐻1𝑖𝑖+𝑏𝑏2𝑅𝑅𝑅𝑅1𝑖𝑖+𝑏𝑏3𝑑𝑑1𝑖𝑖𝑖𝑖/𝐷𝐷𝐷𝐷1𝑖𝑖)

 ,  

 
 
 
𝐹𝐹𝑖𝑖(𝑖𝑖) = 𝐹𝐹𝑖𝑖(𝑖𝑖−1) + 𝛿𝛿𝑖𝑖(𝑖𝑖)/𝑛𝑛2𝑖𝑖.  
 
 
𝑧𝑧 = ∑ ∑ (𝐹𝐹𝑖𝑖(𝑖𝑖) − �̂�𝐹𝑖𝑖(𝑖𝑖))

2
𝑖𝑖𝑖𝑖 , 

  
 
𝑁𝑁𝐶𝐶 = 𝑤𝑤𝑁𝑁𝑇𝑇 + (1 − 𝑤𝑤)𝑁𝑁𝑅𝑅,  
 
 
 
  𝑀𝑀𝑀𝑀 = ∑ (𝑁𝑁2𝑖𝑖 − �̂�𝑁2𝑖𝑖)/𝑚𝑚𝑖𝑖  
  
  𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ |𝑁𝑁2𝑖𝑖 − �̂�𝑁2𝑖𝑖|/𝑚𝑚𝑖𝑖  
  
  𝑅𝑅2 = ∑ (𝑁𝑁2𝑖𝑖 − �̂�𝑁2𝑖𝑖)

2
𝑖𝑖 /∑ (𝑁𝑁2𝑖𝑖 − 𝑁𝑁2)2𝑖𝑖  

  
 
 
  𝑀𝑀𝑀𝑀 = ∑ ∑ (𝛿𝛿𝑖𝑖𝑖𝑖 − �̂�𝑝𝑖𝑖𝑖𝑖)𝑖𝑖 / ∑ 𝑛𝑛1𝑖𝑖𝑖𝑖𝑖𝑖  
  
  𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ ∑ |𝛿𝛿𝑖𝑖𝑖𝑖 − �̂�𝑝𝑖𝑖𝑖𝑖|𝑖𝑖 / ∑ 𝑛𝑛1𝑖𝑖𝑖𝑖𝑖𝑖  
  
  −2𝑙𝑙𝑛𝑛𝑙𝑙 = −2[∑ ∑ �̂�𝑝𝑖𝑖𝑖𝑖ln(�̂�𝑝𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖 + ∑ ∑ (1 − �̂�𝑝𝑖𝑖𝑖𝑖)ln(1 − �̂�𝑝𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖 ] 
  
  
 
  𝑅𝑅𝑖𝑖 = 1 + (𝑘𝑘−1)(𝑅𝑅𝑖𝑖−𝑅𝑅𝑚𝑚𝑖𝑖𝑚𝑚)

𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚−𝑅𝑅𝑚𝑚𝑖𝑖𝑚𝑚
  

 
 

 
�̂�𝑁2𝑖𝑖 =

𝑁𝑁1𝑖𝑖
1+𝑒𝑒𝑒𝑒𝑒𝑒(𝑏𝑏0+𝑏𝑏1𝑅𝑅𝑅𝑅1𝑖𝑖+𝑏𝑏2𝐻𝐻1𝑖𝑖+𝑏𝑏3𝑁𝑁1𝑖𝑖/𝐴𝐴1𝑖𝑖+𝑏𝑏4/𝐴𝐴1𝑖𝑖)

 , 
 
 

A1i, and 𝑅𝑅𝑅𝑅1𝑖𝑖 = √10000/𝑁𝑁1𝑖𝑖
𝐻𝐻1𝑖𝑖

 = relative spacing at age A1i. 
 
 
�̂�𝑝𝑖𝑖𝑖𝑖 =

1
1+𝑒𝑒𝑒𝑒𝑒𝑒(𝑏𝑏0+𝑏𝑏1𝐻𝐻1𝑖𝑖+𝑏𝑏2𝑅𝑅𝑅𝑅1𝑖𝑖+𝑏𝑏3𝑑𝑑1𝑖𝑖𝑖𝑖/𝐷𝐷𝐷𝐷1𝑖𝑖)

 ,  

 
 
 
𝐹𝐹𝑖𝑖(𝑖𝑖) = 𝐹𝐹𝑖𝑖(𝑖𝑖−1) + 𝛿𝛿𝑖𝑖(𝑖𝑖)/𝑛𝑛2𝑖𝑖.  
 
 
𝑧𝑧 = ∑ ∑ (𝐹𝐹𝑖𝑖(𝑖𝑖) − �̂�𝐹𝑖𝑖(𝑖𝑖))

2
𝑖𝑖𝑖𝑖 , 

  
 
𝑁𝑁𝐶𝐶 = 𝑤𝑤𝑁𝑁𝑇𝑇 + (1 − 𝑤𝑤)𝑁𝑁𝑅𝑅,  
 
 
 
  𝑀𝑀𝑀𝑀 = ∑ (𝑁𝑁2𝑖𝑖 − �̂�𝑁2𝑖𝑖)/𝑚𝑚𝑖𝑖  
  
  𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ |𝑁𝑁2𝑖𝑖 − �̂�𝑁2𝑖𝑖|/𝑚𝑚𝑖𝑖  
  
  𝑅𝑅2 = ∑ (𝑁𝑁2𝑖𝑖 − �̂�𝑁2𝑖𝑖)

2
𝑖𝑖 /∑ (𝑁𝑁2𝑖𝑖 − 𝑁𝑁2)2𝑖𝑖  

  
 
 
  𝑀𝑀𝑀𝑀 = ∑ ∑ (𝛿𝛿𝑖𝑖𝑖𝑖 − �̂�𝑝𝑖𝑖𝑖𝑖)𝑖𝑖 / ∑ 𝑛𝑛1𝑖𝑖𝑖𝑖𝑖𝑖  
  
  𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ ∑ |𝛿𝛿𝑖𝑖𝑖𝑖 − �̂�𝑝𝑖𝑖𝑖𝑖|𝑖𝑖 / ∑ 𝑛𝑛1𝑖𝑖𝑖𝑖𝑖𝑖  
  
  −2𝑙𝑙𝑛𝑛𝑙𝑙 = −2[∑ ∑ �̂�𝑝𝑖𝑖𝑖𝑖ln(�̂�𝑝𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖 + ∑ ∑ (1 − �̂�𝑝𝑖𝑖𝑖𝑖)ln(1 − �̂�𝑝𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖 ] 
  
  
 
  𝑅𝑅𝑖𝑖 = 1 + (𝑘𝑘−1)(𝑅𝑅𝑖𝑖−𝑅𝑅𝑚𝑚𝑖𝑖𝑚𝑚)

𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚−𝑅𝑅𝑚𝑚𝑖𝑖𝑚𝑚
  

 
 

𝑝𝑝𝑖𝑖𝑖𝑖 = �̂�𝑝𝑖𝑖𝑖𝑖
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�̂�𝐹𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐹𝐹̂𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑖 + 𝑝𝑝�̂�𝑖𝑖𝑖𝑖𝑖/𝑛𝑛2𝑖𝑖

Table 1— Stand and tree attributes for the 200 plots used in this study, by group

Group Age
Stand attributes Tree attribute

# obs. Hd TPH BA/ac # obs. Avg. DBH

1 10 100 9.0 1987 21.52 3257 11.4

15 100 13.2 1750 31.63 2868 14.7

20 100 16.4 1303 33.63 2135 17.6

2 10 100 9.2 1977 22.08 3237 11.6

15 100 13.4 1702 32.03 2788 15.0

20 100 16.7 1243 33.22 2037 17.9
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where p ̃ij = adjusted tree survival probability, and  
ai = coefficient for plot i to adjust probabilities.

Evaluation Criteria
The performance of the different methods was 
evaluated at the stand level based on the following 
statistics.

Mean difference: (7)

Mean absolute difference:  (8)

Fit index:  (9)

where N2i  and N ̂ 2i = observed and predicted number 
of trees per hectare in plot i at the end of the growth 
period, N–2 = the average number of trees per hectare at 
the end of the growth period, and m = total number of 
plots.

The stand-level evaluation included the whole-stand 
model, the individual-tree model (with two parameter 
estimation methods), and the combines estimator (also 
with two parameter estimation methods).

The tree-level evaluation statistics were:

Mean difference:  (10)

where δij = 0 if tree j in plot i was dead and 1 if it was  
alive, and ni = number of trees in plot i.

Mean absolute difference:  

  (11)

Log-likelihood:
  

  (12)

  
AUC: area under the ROC (Receiving Operating 
Characteristic) curve. The range for AUC is between 
0.5 and 1. The higher the AUC value, the better the fit.

The tree-level evaluation involved six methods. Each 
of the two parameter estimation methods included 
three alternatives: the unconstrained model, the 
Disaggregation method in which outputs from the 
tree-level model was adjusted from the stand-level 
predictions, and the Combination method that adjusted 
the tree-level outputs to match the combined estimator.

The relative rank, developed by Poudel and Cao (2013), 
was used in this study to display the relative position of 
each method. The relative rank of method i is defined as

 (13)

where Ri = the relative rank of method i (i = 1, 2, ..., k),  
k = number of methods evaluated, S

i
 = the goodness-of-

fit statistic produced by method i, Smin = the minimum 
value of Si, and Smax = the maximum value of Si.

RESULTS AND DISCUSSION
The individual-tree survival model, with parameters 
estimated by either the Maximum Likelihood or CDF 
Regression method, produced stand-level outputs 
that were inferior to the whole-stand survival model 
(table 2). This was expected because stand-level 
outputs from individual-tree models typically suffer 
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  −2𝑙𝑙𝑛𝑛𝑙𝑙 = −2[∑ ∑ �̂�𝑝𝑖𝑖𝑖𝑖ln(�̂�𝑝𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖 + ∑ ∑ (1 − �̂�𝑝𝑖𝑖𝑖𝑖)ln(1 − �̂�𝑝𝑖𝑖𝑖𝑖)𝑖𝑖𝑖𝑖 ] 
  
  
 
  𝑅𝑅𝑖𝑖 = 1 + (𝑘𝑘−1)(𝑅𝑅𝑖𝑖−𝑅𝑅𝑚𝑚𝑖𝑖𝑚𝑚)

𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚−𝑅𝑅𝑚𝑚𝑖𝑖𝑚𝑚
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from accumulation of errors (Qin and Cao 2006). On the 
other hand, the combined estimators did outperform 
the whole-stand model based on all three evaluation 
statistics (Table 2). The combined estimator from the 
CDF Regression method was slightly better than the 
one from the Maximum Likelihood method.

Table 3 shows the tree-level evaluation statistics for the 
six methods. The relative ranks for these methods are 
presented in Table 4. 

Unconstrained models
For the unadjusted model, the Maximum Likelihood 
method clearly outperformed the CDF Regression 
method in predicting tree survival. It produced better 
statistics for all evaluation criteria.

Disaggregation
Based on the sum of the relative ranks, disaggregation 
was better for the CDF Regression than for the 
Maximum Likelihood method. This was true when 
disaggregation was either from the whole-stand model 
or from the combined estimator. The CDF Regression 
method was a compromise between optimizing for 

tree-level and stand-level survival prediction. As such, 
it made sense that this method performed well in 
conjunction with the combined estimator.

Radar plot
The radar plot based on the relative ranks of four criteria 
from all methods is shown in figure 2. The method 
resulting in the smallest area inside the box represents 
the best method. Figure 3 presents the relative ranks 
for the best three methods. The CDF Regression 
method, coupled with the combined estimator, overall 
ranked best in predicting tree survival, followed by 
the Maximum Likelihood method, unconstrained and 
disaggregated by the Combination method.

CONCLUSIONS
Results from this study showed that the Combination 
approach, in which outputs from the tree survival model 
were adjusted to match the combined estimator, was 
the best approach to predict both tree- and stand-
level survival. The new method, CDF Regression, when 
disaggregated from the combined estimator, was better 
than the Maximum Likelihood method in estimating 
parameters of the logistic regression equation.

Table 2— Stand-level evaluation statistics for diff erent types of models. Underlined, italic numbers 
denote the best statistic among the methods

Type Parameter estimation MD MAD R2

Whole-stand model -21.77 160.37 0.8295

Individual-tree model Maximum Likelihood -0.05 176.28 0.7963

CDF Regression 55.77 180.36 0.7866

Combined estimator Maximum Likelihood -17.11 159.86 0.8322

CDF Regression -3.91 159.40 0.8337

Table 3—Tree-level evaluation statistics for diff erent parameter estimation methods. Underlined, 
italic numbers denote the best statistic among the methods

Parameter estimation Method MD MAD -2lnL AUC

Maximum Likelihood Unconstrained 0.0001 0.2276 0.7384 0.7929

Disaggregation -0.0134 0.2141 0.7631 0.7821

Combination -0.0106 0.2166 0.7391 0.7932

CDF Regression Unconstrained 0.0337 0.2315 0.7659 0.7907

Disaggregation -0.0134 0.2057 0.7788 0.7901

Combination -0.0026 0.2109 0.7480 0.7997
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