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QUANTIFYING AND MAPPING SPATIAL VARIABILITY  
IN SIMULATED FOREST PLOTS

Gavin R. Corral and Harold E. Burkhart1

Abstract—We used computer simulations to test the efficacy of multivariate statistical methods to detect, 
quantify, and map spatial variability of forest stands. Simulated stands were developed of regularly-spaced 
plantations of loblolly pine (Pinus taeda L.). We assumed no affects of competition or mortality, but random 
variability was added to individual tree characteristics. The purpose of simulating stands without these 
complex interactions was to provide a controlled situation to measure the efficacy of our methods. We 
examined redundancy analysis, partial redundancy analysis, and spatially constrained cluster analysis for 
detecting spatial patterns and found that redundancy analysis and partial redundancy analysis were reliable 
methods to quantify and test spatial dependence, respectively. Spatially constrained cluster analysis had 
moderate success in mapping variability, but its application to more complex situations may be limited.

INTRODUCTION
Information is lacking on reliable methods to detect, 
quantify, and map spatial heterogeneity in small-scale 
forest plots. This study focused on individual plots 
of even-aged, regularly-spaced plantation stands. 
Increased efforts to improve stand uniformity have lead 
to questions as to why spatial patterns of tree growth 
emerge. Spatially recognizable growth patterns of trees 
may be caused by many factors, in particular the effects 
of genotype and microsite variation are thought to 
greatly influence tree characteristics within a plot.  Tree 
growth within a stands of different genetic stocks is an 
important topic (Buford and Burkhart 1987, Magnusson 
and Kremer 1993, Tang and others. 2001). Moreover, 
Oliver and Larson (1996) noted that polymorphism 
is likely to occur due to variations in microsite 
productivity. Both conceptually and mathematically, 
there exist, to some extent, a confounding of genetic 
and microsite effects on tree growth. A logical first step 
in understanding the underlying causes of structural 
dissimilarities in tree growth is to better understand 
how spatial patterns emerge and to quantify those 
effects. In order to investigate spatial effects on tree 
growth we first simulated then tested the efficacy of 
statistical methods to detect, quantify and map spatial 
heterogeneity.

METHODS
The study material was made up of five simulated plots 
of planted loblolly pine (Pinus taeda L.) (fig. 1). Plots 
consisted of 25 rows and 25 columns of even-aged 
loblolly pine. Each plot was assigned 1 of 5 microsite 
patterns. Microsite patterns are distinct formations of 

high or low areas of productivity within each stand. 
The patterns of microsites were chosen to represent a 
range of possible site conditions and, most importantly, 
to induce spatial dependence of tree structure. By 
creating areas of high and low productivity, we make the 
characteristics (DBH and height) of trees dependent on 
their location in space. Microsite patterns consisted of 1 
to 5 microsites per plot: a control (uniform productivity), 
biplot (2 microsites, triplot (3 microsites), quad plot (4 
microsites), and the free plot (5 microsites). All five site 
patterns were established without the complexities of 
competition and mortality for an initial assessment of 
sensitivity analysis of statistical methods for assessing 
patterns before progressing to increasingly more 
complex situations. 

Site index (SI) and diameter at breast height (DBH) 
values were drawn from normal distributions. Site index 
and DBH distributions were unique to microsites within 
plots. Microsites with higher SI values have higher DBH 
values. Height and diameter relationship equations 
from loblolly pines were used to allocate heights. Lastly 
we used grid coordinates to assign spatial variables to 
each tree. Our model with covariates was then:

Y625x2= X625x1+ W625x2 →[DBH, Height]=
[SI]+[Xcoordinate, Ycoordinate ]

Redundancy analysis which is synonymous with 
explained variance (Legendre & Legendre 2012) was 
implemented using R software’s “VEGAN” package. 
The first step to RDA is to center all variables. The 
variables mentioned hereafter are considered centered. 
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This symmetric form of analysis utilizes a response 
matrix Y625x2 (hereafter Y) with explanatory vector X625x1 
(hereafter X) and covariables W625x2 (hereafter W). Three 
different simple RDA’s were performed to estimate the 
pure spatial, pure environmental, spatially structured 
environmental, and residual variability. The pure spatial 
variability could be isolated and tested for significance 
by partial redundancy analysis (pRDA). 

Partial redundancy analysis was done using R 
software’s “VEGAN” package, is the partial canonical 
redundancy analysis of our response matrix Y on matrix 
X while controlling for the linear effect of matrix W of 
covariables. For our specific objectives, we tracked the 
significance testing of Y~W|X. This is the hypothesis of 
spatial dependence and tests the significance of a pure 
spatial component, representing a hypothesis of spatial 
dependence.

The clustering algorithms we used come from the 
R software package “const.clust”. This clustering 
algorithm is an agglomerative approach with a 
constraint of spatial contiguity. The spatial contiguity 
constraint allows only trees that are neighbors to 
each other in space to be grouped together. There are 

two important steps that must be performed in order 
to execute this algorithm. The first is to determine a 
dissimilarity metric and build a dissimilarity matrix; the 
second is to pick a connection method and build a 
contiguity matrix. We used Euclidean distance to build 
our dissimilarity matrix and Delaunay triangulation to 
define neighbors. 
 
For each of our spatial patterns we imposed a range of 
scenarios (table 1). Each scenario specifies a difference 
in mean diameter at breast height (DBH) values among 
microsites and the value of coefficient of variation used 
to draw diameter values from normal distributions for 
individual trees. 

RESULTS
Using RDA we performed a variation partitioning and 
estimate of the pure spatial variability. Table 2 contains 
the estimated partial R2 value associated with the 
pure spatial component. As discussed earlier, there 
are 15 scenarios per spatial pattern. The scenarios 
are a combination of difference in mean DBH and a 
specified coefficient of variation (CV). Table 1 contains 
all possible combinations of CV and difference in mean 
DBH. Notably, the partial R2 values for the control plot 

Figure 1—Illustrates the 5 spatial patterns used in this 
study Microsites are distinguished by color. For left to 
right: Control, biplot, triplot, quadplot, and freeplot.
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of 0 percent reflected the lack of spatial dependence. 
The largest R2 values are in the biplot where spatial 
dependency was more pronounced in the data.

Partial redundancy analysis was used to detect spatial 
dependence. The results we report are the probability 
of detecting spatial dependence for all combinations 
of spatial patterns and scenarios. Table 3 contains 
the results from our pRDA simulations. The highest 
probabilities for detection are for the biplot and with 
larger differences in DBH among microsites. The 
probability for detecting spatial dependence in the 
control plot is consistently at about 5 percent. This 
reflects the type 1 error rate of ɑ=0.05, which is the 
probability of rejecting the null hypothesis when the null 
hypothesis is true. 

Cluster analysis was performed to examine the efficacy 
in detecting the number of microsites in simulated 
plots and to correctly allocate each tree to the correct 
microsite. Table 4 illustrates the probability of detecting 
the correct number of microsites for all combinations 
of spatial pattern and scenario. The control spatial 
pattern is excluded because it is homogeneous and 

the clustering algorithm does not test for k=1 groups in 
the data.  Homogeneous stands are tested with spatial 
dependency tests such at the pRDA method described 
earlier. Much like the other methods, cluster analysis 
worked best in the biplot and where DBH differences 
were greatest. 

Table 4 displays the probabilities for detecting the 
correct number of microsites. We used a threshold for 
reliability is 80 percent success. Therefore, in all cells of 
table 4 where the probability is greater than or equal to 
80 percent we ran misclassification simulations. Table 5 
shows the probability of misclassifying any given tree 
when using constrained cluster analysis. Values are 
generally low, but range from approximately 0 percent 
to 32 percent.

DISCUSSION
The variation partitioning and quantification of spatial 
variability performed as expected. Referring to table 2, 
we see that there is a general decrease in the amount 
of spatial variation captured as complexity of spatial 
pattern increases. This confirms that spatial pattern 
complexity and perhaps the shape of microsites 

Table 1—Illustrates 15 possible scenarios for each spatial pattern with k>1 microsites. 
Each scenario will be simulated for each spatial pattern. The control plot will be 
simulated with all 5 levels of CV

Table 2—Estimated partial R2 for each spatial pattern and all scenarios
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Table 4—Illustrates the probability of correctly identifying the number of microsites 
in all combinations of spatial patterns and scenarios

Table 3—Illustrates the results from pRDA. The values represent the probability of detecting 
spatial dependence
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can influence the efficacy of RDA to capture spatial 
variability. The results from this portion of the 
experiment were very promising. The values from 
table 2 are partial R2 values range to a high of 56 
percent. The largest portions of variation explained by 
the spatial component were found in the scenarios with 
the greatest difference in mean DBH.

In pRDA we measured the probability of successfully 
detecting spatial dependency with permutation F-tests 
which looked at the significance of the  “pure spatial” 
component. Generally, the results are promising with 
many scenarios > 80 percent success. Not surprising, 
an increase in spatial pattern complexity decreases 
the probability of successful detection; however, the 
decreases tend to be small. More influential than 
pattern complexity is difference in mean DBH.

The success of our clustering algorithm depends on 
how distinct each microsite is and how similar each 
tree is to others within a single microsite. For example, 
when we simulate the biplot we are looking at trees from 
two different distributions. The greater the difference in 
means and the smaller the CV, the more similar trees 
are within a microsite and the more dissimilar they are 
to trees from other microsites. As the mean difference 
in DBH decreases and/or CV increases the more 
overlap there is in the distributions of the microsites. 
This overlap can create false groups and the clustering 
algorithm may identify these overlapped trees as unique 

groups (given they are also neighbors) and affect the 
accuracy of estimates.

Misclassification simulations were done for scenarios 
where the probability of successful detection was 
greater than 80 percent. For scenarios where probability 
of successful detection was greater than 80 percent, 
the misclassifications of trees ranged from about 0 
percent-32 percent. This indicates that when cluster 
analysis works with high reliability the probability 
of misclassification is low. The cluster analysis was 
moderately successful. Sharp decreases in probability 
of success leave some lack of confidence in the 
ability of these methods to detect microsites patterns 
accurately. 
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Table 5—Illustrates the probability of misclassifying trees for 
all combinations of spatial patterns and scenarios where the 
probability of correctly identifying the correct number of microsites 
(Table 4) was above 80 percent. (*) indicates a combination where 
the probability from table 4 was less than 80 percent


