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EFFECTS OF ELEVATED TROPOSPHERIC OZONE AND  
FLUCTUATING MOISTURE SUPPLY ON LOBLOLLY PINE SEEDLINGS 

INOCULATED WITH ROOT INFECTING OPHIOSTOMATOID FUNGI

Jeff Chieppa, Lori Eckhardt, and Art Chappelka1

Abstract—Southern Pine Decline is a cause of premature mortality of Pinus species in the Southeastern 
United States. While the pathogenicity of ophiostomatoid fungi, associated with declining Pinus species, has 
been observed both in the laboratory and the field the driving mechanisms for success of fungal infection, as 
well as the bark-beetle vectors is less understood. The goal of this research is to provide insight into the role 
of future climatic conditions, specifically elevated tropospheric ozone and altered precipitation patterns, in 
the progression of Southern Pine Decline on loblolly pine (Pinus taeda L.). Two key questions were addressed: 
(1) will predicted concentrations of tropospheric ozone affect loblolly pine vigor and increase susceptibility to 
fungi associated with Southern Pine Decline?; and (2) will predicted precipitation patterns affect loblolly pine 
vigor and increase susceptibility to fungi associated with Southern Pine Decline? Our results indicate seedlings 
selected for susceptibility to root infecting ophiostomatoid fungi were more sensitive to elevated ozone than 
tolerant seedlings, however, neither ozone nor fluctuating moisture supply resulted in seedlings to becoming 
more susceptible to root infecting ophiostomatoid fungi.

INTRODUCTION
The physical and chemical climate of the earth has 
changed rapidly over the last 100 years and is predicted 
to continue in the future (Christensen and others 2007, 
IPCC 2013). Global climate is changing and is apparent 
across a wide range of observations of which the 
warming over the past 50 years is primarily as a result 
of human activity (Walsh and others 2014.). It is likely 
that natural disturbances in forest ecosystems will be 
altered by climate change and there is evidence that 
warmer temperatures have already shifted suitable 
habitats and ranges of some forest species (Kirilenko 
and Sedjo 2007). Climate change-induced modifications 
of frequency and intensity of forest wildfires, outbreaks 
of insects and pathogens and extreme events such 
as high winds may be more important than the direct 
impact of higher temperatures and elevated carbon 
dioxide levels (Kirilenko and Sedjo 2007). The direct 
effects of climate change on individual plants and plant 
communities may occur in the absence of pathogens, 
but also may bring about alterations in plant metabolism 
that will affect their interactions with pathogens (Garrett 
and others 2006). 

Pests that vector pathogenic fungi (e.g. ophiostomatoid 
fungi) (Bentz and others 2010, Kirisits 2004) are 
important and of concern in a changing climate. The 
influence of bark beetles, among other pests, is well 

established in the literature and typically, drought 
causes host plants to become stressed leading to 
greater infestations (Jactel and others 2012, Jones and 
others 2008, Klepzig and others 2004, Koricheva and 
others 1998). Host stress is one factor playing a part 
in this interaction, but insect physiology and ecologic 
shifts can also have drastic effects (Clarke and Fraser 
2004, Gillooly and others 2001). 

Water availability and tropospheric ozone are both 
issues of concern to the Southeastern U.S. ecosystems 
(Chameides and Cowling 1995, IPCC 2013, Jones and 
others 2001, Phillips and others 2009, Wear and Greis 
2002). Water availability and ozone levels may alter 
loblolly pine vigor and increase susceptibility to root 
infecting ophiostomatoid fungi. The study addressed 
two scientific questions: (1) will elevated tropospheric 
ozone concentrations decrease loblolly pine vigor and 
increase susceptibility root infecting ophiostomatoid 
fungi? and (2) will fluctuating moisture supply decrease 
loblolly pine vigor and increase susceptibility to root 
infecting ophiostomatoid fungi?

MATERIALS AND METHODS
The first question was addressed in 2013 utilizing 
large open-top chambers, three ozone concentrations 
and stem inoculations of four families of loblolly pine. 
Two of the families used were selected for tolerance 
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(T1 and T2) to root infecting ophiostomatoid fungi 
while the others were more susceptible (S1 and S2) 
(Singh and others 2014). Seedlings were inoculated 
with Leptographium terebrantis Barras and Perry, 
Grosmannia huntii (Rob.-Jeffr.) Zipfel, de Beer and 
Wingfield and three control treatments. 

Seedlings were placed in open-top chambers and 
exposed to three ozone treatments: CF – charcoal-
filtered air (~1/2 non-filtered), NF – non-filtered air 
(ambient ozone), 2× - twice ambient air. Non-filtered 
air is representative of concentrations currently found 
around large urban areas such as either Atlanta, GA or 
Birmingham, AL (Chameides and others 1988). The 2× 
is indicative of potential future ozone scenarios for rural 
Piedmont regions over the next 50 years (Thompson 
1992, Vingarzan 2004).

The second question was addressed in 2014 utilizing 
capped open-top chambers, three irrigation treatments 
and stem inoculations of four families of loblolly 
pine. The same families of loblolly pine were used 
as in the 2013 study. Seedlings were inoculated with 
Leptographium terebrantis, Grosmannia huntii and three 
control treatments. 

Seedlings were exposed to three irrigation treatments: 
3D – irrigation three days.week-1, 4D – irrigation four 
days.week-1 and 7D – irrigation seven days.week-1. Each 
treatment had the same amount of moisture applied; 
only the intensity and frequency was altered to simulate 
flooding/drying periodicity (Westra and others 2014).

RESULTS AND DISCUSSION
Although, neither elevated ozone (question 1) nor 
moisture stress (question 2) resulted in increased 
susceptibility to either L. terebrantis or G. huntii, there 
is evidence to suggest sensitivity to root infecting 
ophiostomatoid fungi is linked to abiotic stresses such 
as moisture stress and ozone. Tropospheric ozone 
induced a host response, even at low concentrations, 
and caused visible foliar injury. Families selected for 
the susceptibility to root infecting ophiostomatoid 
fungi had significantly greater visible ozone injury, 
occurring on a higher percentage of the total plants. 
This indicates that families of loblolly pine that are more 
tolerant to root infecting ophiostomatoid fungi than 
others may withstand short-term exposure to elevated 
ozone concentrations. This relationship has been seen 
observed in a similar study with the pathogen Fusarium 
circinatum Nirenberg and O’Donnell (Carrey and Kelley 
1994). 

The interaction between family susceptibility and 
moisture stress when challenged with the fungi is 
weak. Typically root pathogens and moisture stress 
act independently, as observed by others (Croisé and 
others 2001, Goheen and others 1978, Joseph and 

others 1998, Matusick and others 2008). Seedlings 
exposed to intense and infrequent irrigation events 
began to reduce metabolic functions towards the end 
of the experimental period. This strategy would likely 
cause seedlings to be outcompeted by other more 
tolerant vegetation as well as result in mortality. Family 
affected the response of the seedlings to water stress 
treatments. One of the two susceptible families had 
less growth with infrequent moisture events, while 
both tolerant families had more growth with infrequent 
events. Seiler and Johnson (1988) found that seed 
source affects the response of loblolly pine to water 
stress. Our results agree, however, the response is not 
linked to tolerance to root infecting ophiostomatoid 
fungi.

Tropospheric ozone and drought are considered 
potential threats to forests in the Southeastern U.S. 
(Jones and others 2001). While ozone concentrations 
have been moderated by air pollution legislation,2,3 the 
increasing temperatures and human population could 
increase ozone concentrations in the future (Gonzalez-
Abraham and others 2014, Milesi and others 2003, U.S. 
Bureau of the Census 2009, Wear and Greis 2002). 
Changes in precipitation also have been observed and 
are expected to become more intense in the future 
(IPCC 2013, MacCracken and others 2000, Seager and 
others 2009, Wang and others 2010,). The Southeastern 
U.S. is already experiencing climatic changes which 
have had detrimental effects to both humans and 
natural ecosystems (Wang and others 2010). 

Shifts in climate will change the way species interact 
with each other and individually (Manning and von 
Tiedemann 1995). In the Southeastern U.S., exposure to 
elevated concentrations of ozone over multiple seasons 
is predicted to decrease loblolly pine vigor and increase 
the tree’s susceptibility to root infecting ophiostomatoid 
fungi. Drought and altered precipitation regimes will 
likely have negative impacts as well. Typically, the 
attributors of host-pathogen-environment interactions 
are easily categorized. When examining insect-fungal 
disease complexes, such as Southern Pine Decline, 
there is greater complexity to be considered.

To better understand the relationship between disease 
tolerance and sensitivity to moisture stress, a more 
thorough approach would be recommended. Using 
either soil moisture probes in larger planting pots (as 
described by Matusick and others 2008), or conducting 
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a through-fall exclusion methodology experiment 
could be used. Because our seedlings were potted 
and placed in OTCs on uneven ground, there are 
water runoff issues that can affect the relative humidity 
uniquely during different time periods of the day. The 
OTCs themselves can also have drying effects on 
warm days. This can alter the rate of evaporation from 
seedlings and cause a chamber effect.

Future research should focus on the effects of elevated 
carbon dioxide and warming temperatures with root 
infecting ophiostomatoid fungi. Another component 
missing in the climate-SPD interaction is the role of 
the bark beetles vectoring the ophiostomatoid fungi. 
Current monitoring efforts should focus on changes 
in the chemical and physical climate during insect 
monitoring trials. Elevated carbon dioxide and warming 
will likely alter host vigor and productivity which may 
increase or decrease susceptibility to biotic and abiotic 
agents.
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