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Abstract
This report presents the full simulation results of the work described 
in Roesch (2014), in which multiple levels of simulation were used to 
test the robustness of estimators for the components of forest change. 
In that study, a variety of spatial-temporal populations were created 
based on, but more variable than, an actual forest monitoring dataset, 
and then those populations were sampled under four sets of sampling 
error structure. An estimator modification was shown, to be used when 
extraneously obtained information indicated that a deviation to the 
assumed population model existed. The extraneous information was 
also incorporated into a mixed estimator. The first three approaches, 
without the incorporation of extraneous information, are compatible 
with large monitoring efforts that require intervention-free results. 
The mixed estimation approach accounts for model assumptions that 
sometimes remain latent in other approaches and is amenable to the 
formal incorporation of the extraneously obtained information. All four 
approaches were shown to work well when the sampling error structure 
was unbiased, while some notable differences in performance were 
observed at the temporal extremities of observation, in the presence 
of temporal anomalies, and in the presence of biased sampling error 
structures. Only those results necessary to make the salient points were 
presented in Roesch (2014). Full results are presented here both for full 
disclosure and for the reader interested in a more detailed understanding 
of the effects of realistic sampling errors on temporal estimates.

Keywords: Annual inventories, components of change, forest 
monitoring, sampling error, spatial-temporal sample design.

INTRODUCTION

The robustness of the estimation system for large-scale 
forest inventory and monitoring systems is an extremely 
important consideration. An estimation system is robust 
when it provides significant revelations about the 
conditions being investigated, even in the presence of 
violations of population and sampling error assumptions.  
This report gives the full results of a study that used two 
levels of simulation, the first to create a variety of spatial-
temporal populations based on actual forest monitoring 
data and the second to sample those populations under a 
variety of sampling error structures. The author believes 

that there is an education available to the energetic reader 
through a study of this full set of results that could not 
be conveyed in a single journal article. While reviewing 
the full set of results, the reader should keep in mind the 
differing effects of both overt and latent population trends 
in conjunction with a sometimes unknown sampling 
error structure on the assumptions underlying the various 
estimators. Using the components of change in this 
study facilitates understanding for the simple reason 
that the population trends of the components differ from 
each other for a common population and sampling error 
structure. In real inventories and monitoring efforts, the 
true population trends are never known, as they are in 
these simulations. The results will show how reasonably 
argued trend estimators can produce differing results and 
how those differing results can be used to infer underlying 
latent trends. The results also show a difficult reality in 
trend estimation: often the strength that is garnered from 
temporally adjacent observations will result in overly 
smooth estimates of trend. Additionally, it can often 
be beneficial to use a more sophisticated approach and 
include information from alternative sources.

Initially, I examine the robustness of three estimators for 
annual components of forest change when the temporal 
scale of the population estimand of interest is finer than 
the scale of observation in a temporally rotating panel 
sample design, such as the design used by the U.S. 
Department of Agriculture (USDA) Forest Service’s 
Forest Inventory and Analysis (FIA) Program (Bechtold 
and Patterson 2005). The approaches are similar but 
differ in their underlying trend assumptions, leading to 
differences in how measurement intervals that are not 
centered on a target year inform the estimate for the target 
year. Next, a modification to these approaches shown 
in Roesch (2014), for use when extraneously obtained 
information indicates that a deviation to the assumed 
trend model has occurred, is evaluated. Finally, mixed 
estimation is used to package the extraneous information 
with a compatibility model. I show how conflicting results 
in the estimators can be used in an estimation system 
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to reveal violations of the investigator’s preconceived 
notions of both population trends and relationships and 
the structure of sampling errors.

The two major components of forest change that are of 
interest when monitoring a dynamic landscape are:

(1) 	 Land use change during the period of interest in the 
form of reversion from some other land use to forest, 
and diversion away from forest to some other land 
use, and

(2) 	 Change of trees on land that is forested during the 
entire period of interest.

Due to the cost constraints present in all forest 
monitoring efforts, neither of these components is ever 
fully observed. For a dynamic forest inventory to be 
sufficiently informative, however, it is important to 
acknowledge the distinction between land use change and 
the change that occurs on forest land. Both are important 
factors when evaluating the state of the forests in an area 
or nation, but the full implications of the distinction are 
often lost in aggregations of national forest inventory 
(NFI) data. That is, (1) and (2) above are somewhat 
confounded. The discussion below assumes that there 
exists a method of grouping land into subsets according 
to the temporal period of forest land classification, within 
the temporal period of interest. The methods discussed 
here can then be applied to the subsets individually. Van 
Deusen and Roesch (2009) and Roesch and Van Deusen 
(2012) explored estimation of the change in forest land 
classification, in the context of the NFI in the United 
States. Roesch (2014) and this paper concentrate on 
estimation of the change in the tree population on forest 
land.	

Historically, the definitions of the components of growth 
were sample dependent. The resulting quantities could 
easily be calculated from remeasured samples but were 
not truly estimates of population parameters. Eriksson 
(1995) corrected this deficiency with the presentation 
of a set of definitions for the continuous components of 
change. Roesch (2007b) presented a discrete version of 
the Eriksson definitions, which are used here. 

The population components of change are compatible; 
that is:			 
	

	 	 (1)

where

	 Yt	 = 	the value of interest at time t

	 Lt,t+1	 = 	growth in the value of interest on live 		
			   trees between time t and time t+1

	 Et,t+1	 = 	the value of interest on live trees as they 	
			   enter the population between time t and 
			   time t+1

	 Mt,t+1	 = 	the value of interest on trees as they die 
			   between time t and time t+1

	 Ht,t+1	 = 	the value of interest on trees as they 		
			   are harvested between time t and time 	
			   t+1

Without loss of generality, in this paper, the value of 
interest is cubic meter volume and the entry criterion is 
12.7 cm at 1.37 m above the ground (diameter at breast 
height, or d.b.h.). 

Consider a sample design that consists of g mutually 
exclusive, spatially disjoint temporal panels in which, 
subsequent to a random areal start, one panel per year 
is measured, in turn, for g consecutive years. After each 
cycle, the panel measurement sequence reinitiates. Such 
a design is used by the USDA Forest Service’s FIA 
Program and discussed in Bechtold and Patterson (2005) 
and Roesch (2007b).  Consequently, in a five-panel 
system, the five panels are measured for growth over a 
10-year period. That is, panel 1 is measured in years 1 
and 6, panel 2 is measured in years 2 and 7, etc. Several 
philosophies have emerged as to how data resulting from 
this design should be applied to estimates of growth and 
change because remeasurement of the panels provides 
observations that are spatially disjoint but temporally 
overlapping, and the temporal scale of the population 
of interest is finer than the scale of observation. Roesch 
(2007b) argued that the average annual growth within 
each individual panel is best applied to the center of 
the measurement interval, which is analogous to an 
assumption of linear change between observations. All 
analytical methods proposed to date for this class of 
sample designs for forest monitoring have been predicated 
on this or similar assumptions. This assumption also 
applies to most of the discussion below. However, I do 
explore the effects of a simple nonconforming population 
trend, which can be either latent or overt.

ESTIMATORS FOR THE COMPONENTS 
OF CHANGE

It is often argued that estimators of these components of 
change should be compatible because the components 
themselves are compatible. In this report, I compare
four general approaches for estimating the components 
of forest change. In the first three approaches, each 
component is estimated independently of the others. In 
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the fourth approach, the estimates are constrained to be 
compatible. Assume that the estimands of interest are 
the m3 volume/ha of all live trees in a fixed area in each 
component of change category during each year of a 
multi-decadal period. 

The first estimation approach uses a Centralized 
Difference Estimator (CDE), the second uses the 
Exponentially Weighted Difference (EWD) estimator 
of Roesch (2007a), the third uses the (semi-centralized) 
Moving-Window Mean of Ratios (MWMOR) estimator 
in Roesch and Van Deusen (2013), and the fourth uses 
the mixed estimator variant in Roesch (2007a). Because 
we know that compatibility will have a cost in terms 
of squared error loss for one or more of the estimated 
components, the initial results compare only the first 
three approaches. The fourth approach is discussed in 
a situation in which the first three approaches, lacking 
the benefit of extraneous information, are shown to give 
unfavorable results.

I first present three estimators that can be expected 
to yield equivalent results until they are differentially 
affected when an underlying assumption becomes 
tenuous. When an anomaly occurs that can be expected 
to affect these estimators under the given sample design, 
I apply a reweighting scheme in order to incorporate 
extraneously obtained information. Subsequently, the 
extraneously obtained weights are incorporated directly 
into a mixed estimator, and all four estimators are tested 
in the anomalous situation.

Centralized Difference Estimator
The Centralized Difference Estimator is a moving average 
estimator applied to a series of equally weighted within-
panel differences (i.e., a series of change component 
values). In the CDE, a panel difference is applied to the 
center interval (or year) and combined with adjoining 
panel differences. Let:

 the annual mean of a remeasured panel 		
	 difference, such as , and

	 ,  where m is odd and is the 		
	 number of remeasured panels used in 

		  the estimator.

Then the CDE for component C in year k is:		

		
	 	

(2)

The CDE provides no estimates for m years on each end 
of the time string. In practice, an ad hoc variation would 
have to be used in order to provide some or all of these 

estimates. Here, five panels are used in the estimator when 
there are differences from at least two panels available 
before and after the central panel. Three panels are 
used in the estimator when there is only one additional 
panel difference available on either side of the central 
panel (e.g., for the second and penultimate estimates). A 
single panel difference is used for the first and the final 
estimates.

Exponentially Weighted Difference Estimator
The Exponentially Weighted Difference estimator of 
Roesch (2007a) is similar in concept to the exponentially 
weighted moving average (EWMA) estimator common 
in the quality control literature (Chandra 2000), and the 
econometrics literature (West and Harrison 1989, p. 55). 
In the EWD estimator, a series of differences (i.e., a series 
of change component values) within panels is calculated. 
The EWD estimator gives larger weights to the interval 
observations closest to the interval of interest, allowing 
more temporally local variation than if equal weights are 
used. The panel difference is applied to the central annual 
interval and combined with the m-1 adjoining interval 
differences. The supporting panels are down-weighted 
exponentially with each step away from the central 
interval. In addition to the notation above for the CDE, 
let: 
	

	

The EWD estimator for component C in year y is:

	

Cy =
1( )

1+ 2 r+1( )
i dy+r+i,y r+i  

i= r

r
�E�W�D

	
	

		
(3)

As with the CDE, the EWD estimator also does not 
provide estimates for m years on each end of the time 
string, and I use the same solution for these extraneous 
years. That is, three panels are used in the estimator 
when there are differences from at least one panel 
available before and after the central panel. A single 
panel difference is used otherwise, rendering the EWD 
estimator equal to the CDE when there is only one panel 
difference available.

Moving-Window Mean of Ratios Estimator

Roesch and Van Deusen (2013) proposed an estimator 
that arose from a different perspective from the two 
estimators above that I apply to the current objective, as 
fully explained in Roesch (2014). The idea was simple: 
one stacks the observations on a temporal scale (or a 
function of the temporal scale), and then slices through 
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the stack (say to create annual segments) to determine 
how much of each observation contributes to the estimate 
for each year. For this problem, as in Roesch and Van 
Deusen (2013), time is rescaled relative to the proportion 
of the growing season elapsed within each year. The 
change components are modeled between observations 
to allocate the components to the years in which the 
change is assumed to have occurred. A simple time-
adjusted estimator for annual volume growth (within the 
live growth component) is the MWMOR estimator for 
component C in year y: 

	
 	 (4)

where

	 ny 	 = the number of plots observing growth in year y

	 Pi,y 	 = 	the product of portion of year y growing 		
			   season observed by plot i and the portion of 	
			   plot i area within the area of interest 

	 ci,y 	 = 	the value of component C observed on plot i, 	
			   assignable to year y.

Incorporating Outside Information
Situations arise within the scope of national-scale forest 
monitoring efforts for which the data obtained from 
the sample design are inadequate. Many approaches to 
incorporating extraneous information in forest inventories 
have been proposed and proven useful for particular 
applications. A weighting method given in Roesch (2014) 
can be used in conjunction with each of the estimators 
above, and with the mixed estimator below to incorporate 
extraneous information. 

Assume that there exists strong external information that 
the expected value of X at time t, E(Xt), differs from the 
expected value of a previous estimate of �X�, , at 
time t by a factor kw. For the estimators above, this 
information suggests a reweighting of previous estimates 
for all estimates that had relied on the previous estimate 
for time t. Let:

	 kv = kw + nt – 1 	
		  (5)

where

	 nt 	 = 	 the number of years used for each annual 	
			   estimate, and let

	 kt- = nt /kv 	 (6)
and 

	 kt = (nt*kw)/kv	 (7)

Then weight the previous estimates at times other than 
time t that used the previous time t estimate by kt-, and 
weight previous estimates at time t by kt to form the 
reweighted estimates.

Mixed Estimation 
The mixed estimator (Theil 1963) can be used to draw 
strength from overlapping panels and easily incorporate 
extraneous information into forest monitoring efforts. 
Mixed estimation was first proposed for use in forestry 
when Korhonen (1993) used the method for calibrating 
tree volume functions. Van Deusen (1996, 1999, 2000) 
developed mixed estimators for annual forest inventory 
designs, and Roesch (2007a) used it for components of 
change estimation. In Roesch (2014), mixed estimation 
is used as a convenient way to incorporate both (1) a 
belief in how the individual growth components should 
be related and transition from year to year, and (2) 
extraneous information that suggests that a modification to 
those beliefs is appropriate. To achieve these goals, start 
with the three transition models below, and then adapt 
those models to incorporate the extraneous information. 
The three base models all assume compatibility of the 
total annual change with the components of change; that 
is, for each year t:
	
	  	 (8)

Initially, Model 1 assumes that for each component 
C = L, E, M, or H, at each time t:
	
	  	 (9)

Model 2 assumes that for each component, at each 
time t: 	

	 	 (10)

while Model 3 assumes that for each component, at each 
time t:
				  
	  	 (11)

Formulation of the constraints under each of these models 
is straightforward.

Next, let:

Y 	=	 an (nc*nt) row x ns column response matrix

where 

nc 	= 	5, which is the number of growth components 
		  plus 1
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nt 	 = 	the number of years in the estimation interval 

ns 	= 	the sample size for all np panels. 

The columns of Y are arranged in nt successive ordered 
5-tuples of (1) the MWMOR estimate of annual change, 
(2) observed annual live growth, (3) entry, (4) mortality, 
and (5) harvest, for each year in the observation interval 
for a plot and zeroes otherwise.

A user’s level of belief in the underlying model can 
be incorporated into the mixed estimator in several 
ways. Here, as explained in Roesch (2014), I choose 
to preprocess Y by first reweighting according to the 
extraneous information, adapting the constraint matrix, 
and then strictly applying the constraints to ensure growth 
component compatibility. To accomplish this weighting 
for estimates at times other than time t that use estimates 
for time t, weight the time t estimate by kw-1 before 
combining with the non-time t estimates. For estimates 
at time t, weight the non-time t estimates by kw before 
combining with the time t estimate. Indicate the outside 
information-weighted response matrix as YOI . Then let:

 	 = 	 an (nc*nt) row x (nc*nt) column variance/
		  co-variance matrix of YOI 

 R  	 = 	 an (nR) row x (nc*nt) column constraint 		
		  matrix, appropriate for a given model

where

nR 	 = 	 the number of constraint rows

 	 = 	 an (nc*nt) row x 1 column predictive 		
		  coefficient vector for strict constraints:

	
	 (12)

Let M be an (nc*nt) row x ns column matrix, with each 
column consisting of nt repetitions of the vector 
(ns

-1, ns
-1np, ns

-1np, ns
-1np, ns

-1np). Then:

	 =  	 (13)

SIMULATIONS

The exact details of the simulations used to both create 
the populations and obtain the error-included samples are 
given in Roesch (2014). Here I emphasize the philosophy 
behind the simulations and contend that the approach used 
is unique in the forestry literature in its completeness of 

consideration of errors in forest monitoring efforts. That 
is not to say that a more varied set of error structures for 
both the population creation and sampling simulations 
would not be appropriate, but it is to say that each of 
these steps is usually incomplete. Usually when the focus 
is on comparing either sampling methods or estimators, 
construction of realistic and diverse populations is given 
inadequate consideration. In addition, painstaking efforts 
are usually made to take design-unbiased samples in 
the sampling simulations, whereas in actual monitoring 
efforts a plethora of errors occurs, rendering the sample 
design a mere model of the realized sample. Unless the 
level of effort in each of these simulation steps is at 
least as high as it is in this study, the robustness of an 
estimation system cannot be fully evaluated.

Population Simulations

In this application, I use FIA data collected in South 
Carolina from 1998 through 2011 to construct five 
simulated populations. Although all of the populations 
are plausible, the intention was for the first population 
(Population 0) to be a seed population using the simplest 
possible model for deriving annual values from multiyear 
observations. The seed population allows the simulation 
of a series of populations, some of which we might 
assume to be like the one from which the sample data 
were drawn, and others that might arise from a wider 
diversity of conditions. 

I created the five simulated populations by first selecting 
all remeasured forested plots spanning the 14-year period 
from the South Carolina data. Most of the resulting 
2,430 forested plots had three measurement times (i.e., 
two observed growth intervals for each component). As 
explained more fully in Roesch (2014), the observations 
were converted to annual values for each year in the 
14-year period to create Set 1, and the construction of 
Population 0 was then obtained from 600 variance-
interjected copies of Set 1, resulting in a population of 
1,458,000 ha. Specifically, the variance was interjected 
at two steps. In step 1, to keep the existing trend and 
add variance to the seed, variance was interjected by 
multiplying all values for each component on each ha by 
a random variate, unique for that ha, drawn from an N(1, 
0.025) distribution. In step 2, variance was introduced 
temporally by multiplying the result of step 1, for each 
annual value for each component on each ha, by a unique 
random variate drawn from an N(1, 0.0025) distribution. 
Because the sampling simulation “observes” 5-year 
intervals, rather than the annual values, the manner of 
population construction should not unduly influence the 
results. However, to reduce further any potential linear 
effect, a mild (latent) nonlinear trend was introduced into 
each of the components in Population 1. 



6	  FRANCIS A. ROESCH

For Population 2, a mild nonlinear trend was introduced 
into the components of live growth, entry, and mortality, 
and a stronger nonlinear trend was introduced into 
the harvest component in order to simulate increasing 
harvesting pressure. For Population 3, a mild nonlinear 
trend was introduced into the components of live growth, 
entry, and harvest, and a catastrophic high mortality event 
(of four times the mortality rate of Population 1) was 
introduced for the year 2004. Population 4 was initially as 
in Population 1 and then postulated climate change effects 
were simulated by increasing mortality and decreasing 
growth and recruitment, with harvest levels remaining the 
same. Each of the five populations consists of 1,458,000 
forested “hectares” or “elements” with measurable cubic 
meter volume at some time in the 14-year period.  The 
five populations were constructed to examine estimator 
performance and robustness in the presence of plausible 
suboptimal population characteristics, for the given 
sample design and sampling error structure. 

Sampling Simulations

Usually, the overriding criterion for selection of an 
estimator in forest inventories is the minimum mean 
squared error for the candidate unbiased estimators. 
Rarely considered is the effect of sampling error in 
the form of bias on the robustness of theoretically 
unbiased estimators. Some notable exceptions have 
been Gertner (1987), Thomas and Roesch (1990), 
Eastaugh and Hasenauer (2013), and Roesch (2014).  In 
this investigation, estimator robustness was tested in 
a simulation by sampling each population under four 
different assumptions of total sampling error structure. 
The models are intended to represent all error that would 
not be addressed by the use of an unbiased sampling 
simulation. The unbiased simulation might be the closest 
one can come to the pure sampling error inherent in a 
perfectly observed and measured sample, while in a 
realized sample there could also be “item observation” 
errors, frame errors, and measurement errors to say 
the least. That is, the error structure models used here 
are intended to represent all of the ways that a realized 
sample might differ from its perfectly observed theoretical 
counterpart.

A complete description of the construction of the error 
structures is given in Roesch (2014). In brief, for Error 
Structure 1, sampling error was assumed to consist 
exclusively of a small variance, effected by multiplying 
a unique random normal deviate of mean 1 and standard 
deviation 0.025 by each sampled observation of each 
component. For Error Structure 2, I assumed that 
sampling error consisted of a small variance and a 
positive bias on all change components. I effected Error 
Structure 2 by multiplying a unique random normal 

deviate of mean 1.05 and standard deviation of 0.025 by 
each observation of each component. 

I assumed that sampling error consisted of variance and 
positive bias on volume, live growth, and entry, and a 
negative bias on harvest and mortality for Error Structure 
3. I effected Error Structure 3 thus: each observation of 
live growth and entry was multiplied by a unique random 
normal deviate of mean 1.05 and standard deviation of 
0.025. Each observation of mortality and harvest was 
multiplied by a unique random normal deviate of mean 
0.90 and standard deviation of 0.025. Although the 
level of simulated error is somewhat arbitrary, errors of 
approximately these magnitudes seem reasonable based 
on the work in Thomas and Roesch (1990) and the results 
in Eastaugh and Hasenauer (2013).

Error Structure 4 was similar to Error Structure 3, but 
I assumed that sampling error consisted of a higher 
variance and greater bias, as follows. Each observation of 
live growth and entry was multiplied by a unique random 
normal deviate of mean 1.1 and standard deviation of 
0.05. Each observation of mortality and harvest was 
multiplied by a unique random normal deviate of mean 
0.80 and standard deviation of 0.05.

For Population 3, I also simulated the availability of 
extraneously obtained information that mortality during 
2004 was about four times higher than in surrounding 
years by drawing a random variate from a Normal 
distribution of mean 4, and standard deviation of 0.05, and 
setting it equal to kw for each observation. Then estimates 
for each estimator—the CDE, the EWD estimator, and 
the MWMOR estimator—were reweighted to obtain the 
CDE-OI, the EWD-OI estimator, and the MWMOR-OI 
estimator. The -OI suffix for each estimator indicates the 
inclusion of outside information, as described in Roesch 
(2014). The input values and constraints for the mixed 
estimator models were reweighted analogously.

Each simulation consisted of 1,000 iterations of 1,000 
plots each (without replacement) from each population, 
under each of the four sampling error structures. For 
each year, I calculated the Empirical Bias (EB) and the 
Empirical Mean Squared Error (EMSE) over the 1,000 
iterations, between each estimator and the true population 
values under each of the four error structures. 

That is:

	
  	 (14)

where

ˆPESix  is the sample estimate of X in population P for 
estimator E, under error structure S for iterate i. Likewise:
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  	 (15)

Usually, the overriding criterion for selection of an 
estimator in forest inventories is the minimum mean 
squared error for the candidate unbiased estimators. 
This priority might suggest that the presentation of these 
results should focus on EMSE. Because the four error 
structures were devised to examine estimator performance 
over these populations in the presence of plausible 
differentially biased sampling error, the reader should 
pay special attention to the EB in the results. On the 
other hand, the reader should not be overly influenced by 
an extremely low EB result because it can occur when 
sampling bias is being counteracted by estimation bias.

RESULTS

Tables 0 through 4 give the distribution statistics for 
1999-2011, for Populations 0 through 4, respectively. 
When examining the results of Populations 0 and 1, the 
reader should recall that Population 0 was constructed 
from 600 variance-interjected copies of Set 1, in a manner 
that should reduce the artificial linearity introduced by 
constructing the annual populations from multiyear 
observations. That is, Population 0 could be viewed as the 
result of the minimal prima facie effort to build a realistic 
annual population from the data arising from panelized 
multiyear observation intervals. To reduce further any 
potential linear effect in the annual time-series, a mild 
(latent) nonlinear trend was introduced into each of the 
components in Population 1. For Population 2, a mild 
nonlinear trend was introduced into the components of 
live growth, entry, and mortality, and a stronger nonlinear 
trend was introduced into the harvest component, in 
order to simulate increasing harvesting pressure. For 
Population 3, a mild nonlinear trend was introduced 
into the components of live growth, entry, and harvest, 
and a catastrophic high mortality event (of four times 
the mortality rate of Population 1) was introduced for 
the year 2004. Postulated climate change effects were 
simulated in Population 4 by increasing mortality and 
decreasing growth and recruitment, relative to Population 
1, with harvest levels remaining the same. The five tables 
of statistics for the populations can give the reader a 
fuller understanding of the breadth of trend effects and 
anomalies that existed to challenge the robustness of the 
estimators. 

The sampling simulation results are given in three figures 
for each combination of population and sampling error 
structure. The twenty combinations of population and 
sampling error structure are therefore given in sixty 

figures, labeled as figure peM, peB, and peE for the 
mean, bias, and mean squared error, respectively, for 
population p and Error Structure e. Each graph plots the 
corresponding statistics for the CDE, the EWD estimator, 
and the MWMOR estimator, by growth component for 
estimation years 2000 through 2009. These are the years 
that are the center of at least one observation window 
(or panel), for a sample drawn under this design from a 
population spanning 1998-2001. 

Population 0

Figures 0eM, 0eB, and 0eE, with e = 1, 2, 3, or 4, give 
the empirical mean, bias, and mean squared error, 
respectively, over 1,000 iterations of 1,000 samples each 
from Population 0 under Sampling Error Structure e. As 
proposed above, Population 0 could be viewed as the 
result of the minimal prima facie effort to build a realistic 
annual population from the data arising from panelized 
multiyear observation intervals.

Error Structure 1—Recall that, for Error Structure 
1, sampling error was assumed to consist exclusively 
of a small variance, resulting in an unbiased sampling 
simulation, representing the pure sampling error inherent 
in a perfectly observed and measured sample. Therefore, 
figures 01M, 01B, and 01E give the results that would be 
achieved through the usual assumptions made in estimator 
comparisons.

All three estimators, in conjunction with the design, 
are shown to be general smoothers. That is, the design 
observes 5-year windows, thereby providing an average 
annual change or “smoothing” the actual annual change. 
The estimators, while drawing strength from overlapping 
panels, provide further smoothing. In figure 01M, this 
effect can be clearly seen in all four components, under 
this simplest sampling error structure. It is also seen in all 
of the simulation mean graphs of these results.

Five panels of data are used for all of the estimators for 
estimates of the central estimation years 2002 through 
2007. As expected, owing to the nonlinear latent trends, 
the EWD is sometimes slightly closer to the population 
value than the other estimators are in these central years. 

By definition, the CDE and the EWD estimator use the 
observations from a single panel’s remeasurement for 
years 2000 and 2009 while the noncentralized MWMOR 
estimator uses the observations from three panels. The 
CDE and the EWD estimator use the observations from 
the remeasurement of three panels for years 2001 and 
2008 while the semi-centralized MWMOR estimator uses 
the observations from four panels for these years. In the 
temporal extremes, the results for the MWMOR estimator 
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are mixed, with the expected bias due to the use of the 
off-center panels sometimes (such as in live growth and 
mortality for 2009), but not always, being overridden by 
the lower variance from the larger sample. This outcome 
can be verified by comparing the harvest and mortality 
results in figures 01B and 01E. 

Confounded with this variance-bias tradeoff effect is an 
off-center effect in the MWMOR. Drawing the reader’s 
attention to the mortality estimates for the years 2000 and 
2001 in figures 01M, 01B, and 01E, and noting that the 
true population mean shown in figure 01M is unknown 
in an actual inventory, we can discuss how the use of 
multiple estimators can reveal underlying population 
phenomena. During these particular years, the MWMOR 
results appear superior by all measures and that is the 
conclusion that would be drawn by the usual methods 
of estimator comparison. In figure 01M the MWMOR 
estimates for 2000 and 2001 are much closer to the 
population mean than are the other two estimators. More 
important, however, is the relative association of the 
various estimators. The MWMOR estimates for 2000 
and 2001 are lower than and have a lower slope than the 
corresponding estimates for the other two estimators.
Additionally, the MWMOR estimate for 2000 is very 
close to the CDE and EWD estimates for 2001. This is 
because the three estimates use the same information in 
different ways. If all of the assumptions underlying any 
arguments for optimality for these three estimators were 
strictly true, this particular set of facts would not be in 
evidence. That is, the centralized three-panel estimates 
for 2001 for the CDE and EWD would be closer to the 
population mean for 2001, than the off-center three-panel 
MWMOR estimate for 2000 is to the population mean for 
2000. The relative positioning of the estimates, as they 
exist, would tell us, in lieu of a plotted population mean 
line, that the slope of the mortality trend is increasing to 
the left (or decreasing as time progresses.). Therefore, 
the pattern or relative positioning of the estimates from 
the different estimators is revealing something about 
the underlying population that we would not necessarily 
know if we had favored and used a single estimator. As 
the reader progresses through the results for the various 
populations and sampling error structures, she or he 
should note that different combinations of population 
and error structure will result in different rankings of the 
estimators, but regular patterns between the estimators 
always indicate the same thing about the underlying trend. 

Error Structure 2—Recall that in Error Structure 2, a 
positive sampling bias was interjected into all change 
components. The results can be seen by comparing the 
figures for Error Structure 2 with those for Error Structure 
1. For instance all of the estimates in figure 02M are 

higher than the corresponding estimates in figure 01M, 
but the trends for the individual estimators are virtually 
identical between the two figures. What may not be 
intuitively obvious is that sampling bias does not always 
result in estimates of higher bias. A comparison of figures 
01B and 02B shows that for some components in certain 
years the bias created by the smoothing effect of the 
estimators is counteracted by the sampling bias. This 
offsetting effect is also reflected in lower empirical mean 
squared error values for the year 2000 entry estimates 
in figure 02E, for instance, relative to the corresponding 
values in figure 01E.

Error Structure 3—Sampling error consisted of variance 
and positive bias on volume, live growth, and entry, and a 
negative bias on harvest and mortality for Error Structure 
3. The results for live growth and entry are therefore 
virtually identical for those components in figures 03M, 
03B, and 03E to the the corresponding graphs in figures 
02M, 02B, and 02E. Our interest lies in comparing the 
mortality and harvest results in figures 03M, 03B, and 
03E, to the corresponding results in figures 01M, 01B, 
and 01E. The mortality and harvest results vary starkly 
due mostly to the different curvilinear population trends. 
Surprisingly, the overall estimates for mortality are 
slightly better under the negatively biased Error Structure 
3 than they were for the unbiased Error Structure 1. 
The same cannot be said for the harvest estimates. The 
mortality estimates are somewhat better under negative 
bias due to the concave upward shape of the population 
curve. The harvest estimates, on the other hand, are 
worse under a negatively biased error structure due to the 
concave downward shape of that population curve. 

Error Structure 4—Error structure 4 had higher variance 
and greater bias than Error Structure 3, with bias of the 
same sign for each component as Error Structure 3. The 
strong sampling bias effect of Error Structure 4 is easily 
observable by comparing the simulation mean graphs of 
figure 04M with those of figure 01M. However, note also 
in those comparisons that the trends for live growth, entry, 
and mortality would appear almost identical in those two 
figures if the population mean lines were not present, as 
they would not be in an actual inventory, and the y-axes 
were not labeled. That is, under both error structures, the 
conclusions that one would draw about trend would be 
the same, and those estimators appear robust for trend in 
those mildly curvilinear cases. Again, the same conclusion 
could not be drawn for harvest. The strong concave-
downward curve resulted in most of the estimates having 
negative bias under unbiased sampling error structure, 
while the effect was greatly exacerbated under the strong 
negatively biased error structure.
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Population 1

Figures 1eM, 1eB, and 1eE, with e = 1, 2, 3, or 4, give 
the empirical mean, bias, and mean squared error, 
respectively, over 1,000 iterations of 1,000 samples each 
from Population 1 under Sampling Error Structure e, by 
growth component for estimation years 2000 through 
2009.

Population 1 was constructed similarly to Population 
0 except that a mild (latent) nonlinear trend was 
introduced into each of the components to reduce further 
any potential linear effect resulting from the method 
of construction. By examining the results figures for 
Population 1, the reader can verify that the results for 
Population 1 are almost identical to the corresponding 
results for Population 0.

As with the same case in Population 0, the three figures 
for Error Structure 4 in general reflect the bias and 
greater variance of Error Structure 4 over Error Structure 
1 for Population 1. The estimators do not appear to be 
differentially affected by the bias in Error Structure 4. I do 
note that occasionally the bias in the temporal extremities 
shown in figure 11B for the MWMOR estimator is offset 
in figure 14B by the counteracting bias in the sampling 
error structure, resulting in lower empirical mean squared 
error in figure 14E relative to figure 11E. This reinforces 
a point made in Eastaugh and Hasenauer (2013): often the 
implementation of theoretically unbiased sample designs 
will result in biased samples for a myriad of reasons, and 
estimators should therefore be evaluated in consideration 
of that possibility. With respect to robustness, note 
that if we were examining only the outcome for one 
or more of these estimators, and did not know the true 
population values (that is, the population line was missing 
from figures 11M and 14M), we would draw the same 
conclusions about the trend in each of the components. 
This consistency suggests that all of these estimators are, 
at least in this regard, robust.

Population 2

For Population 2, a mild nonlinear trend was introduced 
into the components of live growth, entry, and mortality, 
and a stronger nonlinear trend was introduced into the 
harvest component, in order to simulate increasing 
harvesting pressure. The increased harvesting pressure 
throughout the estimation period had subtle effects 
on the other change components. Close examination 
of the results for live growth, entry, and mortality for 
Population 2 should convince the reader that they are 
virtually identical to the corresponding results figures for 

Population 1. Although the increased harvesting pressure 
is seen in the Mean graphs for Population 2, the concave 
curvilinear shape of the population trend once again is the 
biggest factor in the results, and the resulting conclusions 
mimic exactly those reached in the previously discussed 
population graphs.

Population 3
For Population 3, a mild nonlinear trend was introduced 
into the components of live growth, entry, and harvest, 
and a catastrophic high mortality event (of four times the 
mortality rate of Population 1) was introduced for the year 
2004. 

Figures 34M, 34B, and 34E give the empirical mean, bias, 
and mean squared error, respectively, for 1,000 iterations 
of 1,000 samples each from Population 3 under Sampling 
Error Structure 4, for the CDE, the EWD estimator, 
and the MWMOR estimator, by growth component and 
estimation year. The most notable outcome for Population 
3 under all error structures is that all three estimators 
give no indication of the extreme anomaly for mortality 
in 2004, due to the smoothing effects of both the sample 
design and the estimators applied to the outcomes of 
the design. The anomaly in 2004 is spread out over the 
estimates for the surrounding years, so the estimators 
reflect very high empirical bias and empirical mean 
squared error for mortality in 2004 in figures 34B and 
34E, respectively. The sample design itself makes this 
single-year anomaly particularly difficult to evaluate, and 
impossible to definitively separate from a possible spatial 
effect.

Population 4

Population 4 was initially as in Population 1 and then 
postulated climate change effects were simulated 
by increasing mortality and decreasing growth and 
recruitment, with harvest levels remaining the same.

The empirical mean, bias, and mean squared error, 
respectively, for 1,000 iterations of 1,000 samples each 
from Population 4 under Sampling Error Structure 3, 
for the CDE, the EWD estimator, and the MWMOR 
estimator, by growth component and estimation year, are 
given in figures 43M, 43B, and 43E. Although Population 
4 has a greater diversity of conditions than Population 1, 
the differences in estimator performance between figures 
43M, 43B, and 43E, relative to the corresponding graphs 
in figures 11M, 11B, and 11E, appear to correspond 
to those that could be expected under the more severe 
Sampling Error Structure 3.
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Population 3—With Outside Information

Figures 3MM, 3MB, and 3ME give the empirical mean, 
bias, and mean squared error, respectively, for 1,000 
iterations of 1,000 samples each from Population 3 under 
Sampling Error Structures 1 through 4, for the estimators 
incorporating outside information, for the mortality 
component by estimation year. Although it is true that the 
outside information was not perfect, all of the estimators 
incorporating the outside information benefitted in the 
form of improved mortality estimates for the year 2004 
and the surrounding years that used observations spanning 
2004. Figure 3MM shows that under each of the sampling 
error structures each of the estimators exhibits a pattern 
very similar to the mortality trend for the population. 
The patterns differ from the population trend predictably 
by sampling error structure. Figure 3MB shows more 
clearly than figure 3MM that the order of the estimates 
for each year remains constant through the different 
sampling error structures, indicating that sampling error 
structure did not differentially affect the estimators. Some 
interaction between the outside information and sampling 
error structure is indicated by the position of the group of 
estimators for 2004 relative to the groups of estimators 
for the surrounding years. Figure 3ME shows that the 
empirical mean squared error results for the mixed 
estimator models are often, but not always, higher than 
they are for the other models. This effect could be viewed 
as the cost of compatibility.

CONCLUSIONS

I explored some special problems that arise in estimation 
of the components of change when the temporal scale 
of the population estimand of interest is finer than the 
scale of observation under both biased and unbiased 
sampling error structures. In the example simulations, 
the temporal scale of observation was 5 years while 
the temporal dimension of the population of interest 
was 1 year. All of the approaches worked well in the 
temporal mid-range of observations in the presence of 
smooth population trends, under unbiased sampling error 
structures. The smoothing aspect of the sample design 
and the estimators that did not use outside information 
was problematic when the sign of the slope of a trend 
changed. The maximum year and years surrounding 
it were under-predicted, while the minimum year and 
years surrounding it were over-predicted under unbiased 
sampling error. By interjecting a single year anomaly 
into Population 3, I presented an especially difficult 
(but realistic) situation given the sampling frame. The 
results of these more thorough simulations support the 
simulations and conclusions of Roesch (2007a) with 

respect to comparisons between the EWD estimator and 
this application of the Mixed Estimator. The simulations 
also showed the variance/bias trade-off encountered 
when the MWMOR estimator was used in the extremity 
years of observation. Although the MWMOR estimator 
is sometimes biased in the presence of trend in the 
extremity years, the empirical mean-squared error was 
often lower than it was for the other estimators. Of the 
four general approaches for estimating the components 
of forest change from this annually rotating five-panel 
sample design (the Centralized Difference Estimator, 
the Exponentially Weighted Difference estimator, the 
Moving-Window Mean of Ratios estimator, and the 
Mixed Estimator), the first three approaches are very 
compatible with large monitoring efforts that require 
intervention-free results. These three simple approaches 
were shown to be amenable when outside information 
suggests an adaptation to the weighting scheme. The 
fourth approach, the mixed estimator, is also amenable 
to the incorporation of extraneously derived information 
and can easily incorporate complex models. No single 
estimation approach has (or could have) been shown to be 
a panacea, and some notable differences in performance 
were observed at the temporal extremities of observation, 
in the presence of temporal anomalies, and in the presence 
of biased sampling error structures. With respect to trend, 
all of the estimators are robust, but the CDE, the EWD 
estimator, and the MWMOR estimator are somewhat 
nonresponsive to highly variable trends, and all estimators 
are subject to the smoothing effect of the sample design 
considered here. This particular deficiency in the 
design was shown to be readily corrected through the 
incorporation of outside information. 

This study suggests that one should probably not attempt 
to choose a single estimation approach in order to address 
the widest range of estimation objectives. The estimators 
considered here were shown to differ in their respective 
robustness to different, but realistic, underlying error 
structures, aspects of which may not always be known.  
Rather, an investigator would be well served to embrace 
the philosophy behind the Thomas and Roesch (1990) and 
Eastaugh and Hasenauer (2013) articles: when real data 
are involved, there is value in making estimates using as 
many theoretical approaches as possible. When different 
approaches produce similar results, there is strong 
evidence for those results. However, it can be even more 
informative when different (but defensible) approaches 
produce varied results. In that situation, it is incumbent 
upon the analyst to figure out why the varied results have 
occurred. Quite simply, an analyst should look at the 
data from as many angles as she or he has the time and 
energy for, in an attempt to understand fully the natural 
phenomena that are being imperfectly observed. 
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Table 0—Distribution Statistics for Population 0

Year

Component Statistic 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

 Volume

Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0

1st Quartile 4.48 10.78 16.45 21.54 25.98 30.52 33.88 36.37 38.89 40.42 41.86 42.69 44.04

Median 55.26 63.07 69.78 75.28 80.49 83.95 86.51 88.65 90.57 93.02 96.14 99.99 103.70

Mean 81.92 87.45 92.68 97.18 101.35 105.13 108.23 110.63 112.65 114.66 117.31 120.53 124.62

3rd Quartile 125.85 133.47 139.69 145.20 149.49 153.86 157.93 160.80 163.55 166.30 169.10 174.00 180.14

Maximum 583.18 591.50 609.80 625.30 638.04 648.09 655.38 659.95 663.75 664.22 661.10 664.47 789.74

Live growth

Minimum -5.72 -6.80 -42.60 -20.45 -10.48 -13.15 -22.14 -31.07 -23.06 -9.42 -10.28 -6.06 -11.56

1st Quartile 0 0.42 1.08 1.52 1.88 1.84 1.69 1.22 0.48 0 0 0 0

Median 2.86 3.65 4.21 4.54 4.77 4.66 4.28 3.79 3.31 2.76 2.24 1.98 1.83

Mean 6.36 6.70 6.88 6.77 6.54 6.15 5.71 5.30 5.05 4.98 5.02 5.22 5.42

3rd Quartile 8.99 9.34 9.56 9.34 9.10 8.56 8.06 7.72 7.40 7.41 7.53 7.86 8.11

Maximum 69.48 65.71 68.33 64.76 72.13 60.43 53.66 78.84 103.90 127.03 150.16 173.29 196.42

Entry

Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0

1st Quartile 0 0 0 0.09 0.13 0.12 0.09 0.02 0 0 0 0 0

Median 0.19 0.29 0.34 0.38 0.38 0.38 0.33 0.27 0.19 0.13 0.04 0 0

Mean 0.99 0.97 0.89 0.84 0.81 0.75 0.67 0.60 0.57 0.56 0.58 0.61 0.65

3rd Quartile 0.81 0.89 0.93 0.92 0.91 0.87 0.79 0.72 0.67 0.62 0.60 0.61 0.64

Maximum 64.29 66.40 67.40 63.08 70.45 40.92 30.22 11.06 12.71 14.28 15.85 17.42 18.99

Mortality

Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0

1st Quartile 0 0 0 0 0 0 0 0 0 0 0 0 0

Median 0 0 0 0.04 0.10 0.09 0.06 0 0 0 0 0 0

Mean 1.46 1.31 1.17 1.04 0.93 0.84 0.77 0.74 0.74 0.77 0.82 0.87 0.92

3rd Quartile 0.56 0.62 0.70 0.82 0.87 0.83 0.73 0.57 0.44 0.38 0.35 0.30 0.30

Maximum 159.91 122.92 85.92 62.07 55.37 48.66 41.95 35.25 28.54 27.41 30.57 33.40 35.90

Harvest

Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0

1st Quartile 0 0 0 0 0 0 0 0 0 0 0 0 0

Median 0 0 0 0 0 0 0 0 0 0 0 0 0

Mean 0.36 1.14 2.11 2.41 2.63 2.96 3.21 3.13 2.86 2.13 1.57 0.87 0.33

3rd Quartile 0 0 0 0 0 0 0 0 0 0 0 0 0

Maximum 462.97 469.93 478.33 471.11 474.23 483.09 470.31 573.27 573.37 568.45 574.04 571.40 579.96
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Table 1—Distribution Statistics for Population 1

Year

Component Statistic 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Volume

Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0

1st Quartile 4.68 11.1 16.78 21.82 26.3 30.81 34.43 36.86 39.3 40.89 42.37 43.28 44.62

Median 56.14 64.25 71 76.6 82.02 85.6 88.27 90.41 92.59 95 98.34 102.38 106.3

Mean 83.06 88.69 94.05 98.69 103.0 106.94 110.14 112.71 114.87 117 119.88 123.33 127.69

3rd Quartile 127 134.71 141.72 147.24 152.21 156.87 161.05 164.54 167.4 170.31 173.11 178.22 184.87

Maximum 599.56 602.77 620.56 636.28 650.25 661.39 669.52 674.7 679.09 679.78 676.46 684.32 831.11

Live growth

Minimum -5.66 -6.86 -43.60 -21.13 -10.62 -13.44 -22.80 -32.27 -24.60 -10.21 -10.94 -6.57 -12.45

1st Quartile 0 0.46 1.12 1.58 1.95 1.931 1.78 1.29 0.51 0 0 0 0

Median 2.91 3.72 4.30 4.68 4.96 4.88 4.51 4.02 3.53 2.95 2.408 2.13 1.99

Mean 6.49 6.84 7.06 6.99 6.79 6.44 6.02 5.61 5.37 5.32 5.36 5.56 5.76

3rd Quartile 9.10 9.50 9.80 9.63 9.45 8.95 8.49 8.18 7.89 7.91 8.06 8.42 8.67

Maximum 70.95 67.54 70.22 66.27 74.08 63.73 56.33 83.58 110.91 134.04 157.17 180.30 203.43

Entry

Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0

1st Quartile 0 0 0 0.09 0.13 0.12 0.10 0.02 0 0 0 0 0

Median 0.19 0.29 0.35 0.39 0.40 0.39 0.35 0.28 0.20 0.13 0.043 0 0

Mean 0.99 0.98 0.90 0.86 0.84 0.78 0.71 0.63 0.60 0.60 0.62 0.65 0.69

3rd Quartile 0.82 0.90 0.95 0.95 0.94 0.91 0.84 0.76 0.71 0.67 0.64 0.65 0.68

Maximum 65.92 67.49 69.45 43.39 73.56 33.3 32.30 11.83 13.74 15.31 16.88 18.44 20.01

Mortality

Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0

1st Quartile 0 0 0 0 0 0 0 0 0 0 0 0 0

Median 0 0 0 0.04 0.11 0.10 0.06 0 0 0 0 0 0

Mean 1.48 1.33 1.19 1.07 0.97 0.88 0.82 0.78 0.79 0.82 0.87 0.92 0.97

3rd Quartile 0.56 0.63 0.72 0.84 0.90 0.87 0.77 0.61 0.47 0.40 0.37 0.32 0.31

Maximum 162.27 125.27 88.28 63.89 57.18 50.48 43.77 37.07 30.36 29.23 32.39 34.55 37.63

Harvest

Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0

1st Quartile 0 0 0 0 0 0 0 0 0 0 0 0 0

Median 0 0 0 0 0 0 0 0 0 0 0 0 0

Mean 0.37 1.14 2.132 2.47 2.73 3.14 3.34 3.3 3.06 2.23 1.66 0.93 0.35

3rd Quartile 0 0 0 0 0 0 0 0 0 0 0 0 0

Maximum 461.93 493.15 478.92 486.63 493.17 495.13 497.93 575.7 591.30 590.59 602.60 589.36 628.30
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Table 1—Distribution Statistics for Population 1

Year

Component Statistic 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Volume

Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0

1st Quartile 4.68 11.1 16.78 21.82 26.3 30.81 34.43 36.86 39.3 40.89 42.37 43.28 44.62

Median 56.14 64.25 71 76.6 82.02 85.6 88.27 90.41 92.59 95 98.34 102.38 106.3

Mean 83.06 88.69 94.05 98.69 103.0 106.94 110.14 112.71 114.87 117 119.88 123.33 127.69

3rd Quartile 127 134.71 141.72 147.24 152.21 156.87 161.05 164.54 167.4 170.31 173.11 178.22 184.87

Maximum 599.56 602.77 620.56 636.28 650.25 661.39 669.52 674.7 679.09 679.78 676.46 684.32 831.11

Live growth

Minimum -5.66 -6.86 -43.60 -21.13 -10.62 -13.44 -22.80 -32.27 -24.60 -10.21 -10.94 -6.57 -12.45

1st Quartile 0 0.46 1.12 1.58 1.95 1.931 1.78 1.29 0.51 0 0 0 0

Median 2.91 3.72 4.30 4.68 4.96 4.88 4.51 4.02 3.53 2.95 2.408 2.13 1.99

Mean 6.49 6.84 7.06 6.99 6.79 6.44 6.02 5.61 5.37 5.32 5.36 5.56 5.76

3rd Quartile 9.10 9.50 9.80 9.63 9.45 8.95 8.49 8.18 7.89 7.91 8.06 8.42 8.67

Maximum 70.95 67.54 70.22 66.27 74.08 63.73 56.33 83.58 110.91 134.04 157.17 180.30 203.43

Entry

Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0

1st Quartile 0 0 0 0.09 0.13 0.12 0.10 0.02 0 0 0 0 0

Median 0.19 0.29 0.35 0.39 0.40 0.39 0.35 0.28 0.20 0.13 0.043 0 0

Mean 0.99 0.98 0.90 0.86 0.84 0.78 0.71 0.63 0.60 0.60 0.62 0.65 0.69

3rd Quartile 0.82 0.90 0.95 0.95 0.94 0.91 0.84 0.76 0.71 0.67 0.64 0.65 0.68

Maximum 65.92 67.49 69.45 43.39 73.56 33.3 32.30 11.83 13.74 15.31 16.88 18.44 20.01

Mortality

Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0

1st Quartile 0 0 0 0 0 0 0 0 0 0 0 0 0

Median 0 0 0 0.04 0.11 0.10 0.06 0 0 0 0 0 0

Mean 1.48 1.33 1.19 1.07 0.97 0.88 0.82 0.78 0.79 0.82 0.87 0.92 0.97

3rd Quartile 0.56 0.63 0.72 0.84 0.90 0.87 0.77 0.61 0.47 0.40 0.37 0.32 0.31

Maximum 162.27 125.27 88.28 63.89 57.18 50.48 43.77 37.07 30.36 29.23 32.39 34.55 37.63

Harvest

Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0

1st Quartile 0 0 0 0 0 0 0 0 0 0 0 0 0

Median 0 0 0 0 0 0 0 0 0 0 0 0 0

Mean 0.37 1.14 2.132 2.47 2.73 3.14 3.34 3.3 3.06 2.23 1.66 0.93 0.35

3rd Quartile 0 0 0 0 0 0 0 0 0 0 0 0 0

Maximum 461.93 493.15 478.92 486.63 493.17 495.13 497.93 575.7 591.30 590.59 602.60 589.36 628.30

Table 2—Distribution Statistics for Population 2

Year

Component Statistic 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Volume

Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0

1st Quartile 4.68 11.13 16.78 21.74 26.16 30.62 34.15 36.32 38.42 39.84 41.33 42.10 43.36

Median 56.13 64.25 71.04 76.52 81.91 85.37 87.90 89.73 91.90 94.25 97.37 101.10 104.79

Mean 83.07 88.72 94.05 98.63 102.91 106.77 109.87 112.23 114.24 116.25 119.01 122.40 126.71

3rd Quartile 126.99 134.77 141.73 147.21 152.17 156.79 160.95 164.30 167.08 169.98 172.70 177.70 184.12

Maximum 595.09 603.74 622.28 638.03 651.04 661.42 668.94 673.73 677.89 678.48 675.11 691.20 828.74

Live growth

Minimum -5.71 -6.83 -43.71 -21.18 -10.77 -13.48 -22.79 -32.38 -24.33 -10.20 -11.00 -6.54 -12.55

1st Quartile 0 0.46 1.12 1.58 1.95 1.93 1.78 1.29 0.50 0 0 0 0

Median 2.91 3.71 4.30 4.68 4.96 4.88 4.51 4.02 3.52 2.95 2.41 2.13 1.99

Mean 6.49 6.84 7.06 6.99 6.79 6.44 6.02 5.61 5.37 5.32 5.36 5.56 5.76

3rd Quartile 9.10 9.49 9.80 9.63 9.45 8.96 8.49 8.18 7.88 7.91 8.06 8.42 8.67

Maximum 71.19 67.80 70.52 67.14 74.87 63.18 56.71 83.66 111.09 134.23 157.36 180.49 203.62

Entry

Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0

1st Quartile 0 0 0 0.09 0.13 0.12 0.10 0.02 0 0 0 0 0

Median 0.19 0.29 0.35 0.39 0.40 0.39 0.35 0.28 0.20 0.13 0.04 0 0

Mean 1.00 0.98 0.90 0.86 0.84 0.78 0.71 0.63 0.60 0.60 0.62 0.65 0.69

3rd Quartile 0.82 0.90 0.95 0.95 0.94 0.91 0.84 0.76 0.71 0.67 0.64 0.65 0.68

Maximum 66.43 67.37 69.43 42.65 73.55 33.63 32.12 11.68 13.49 15.06 16.63 18.20 19.76

Mortality

Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0

1st Quartile 0 0 0 0 0 0 0 0 0 0 0 0 0

Median 0 0 0 0.04 0.11 0.10 0.06 0 0 0 0 0 0

Mean 1.48 1.33 1.19 1.07 0.97 0.87 0.82 0.78 0.79 0.82 0.87 0.92 0.97

3rd Quartile 0.56 0.63 0.72 0.84 0.90 0.87 0.76 0.61 0.47 0.40 0.37 0.32 0.31

Maximum 162.00 125.00 88.01 63.83 57.13 50.42 43.71 37.01 30.30 29.03 32.19 34.57 37.65

Harvest

Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0

1st Quartile 0 0 0 0 0 0 0 0 0 0 0 0 0

Median 0 0 0 0 0 0 0 0 0 0 0 0 0

Mean 0.34 1.17 2.19 2.51 2.81 3.23 3.55 3.45 3.18 2.35 1.72 0.99 0.38

3rd Quartile 0 0 0 0 0 0 0 0 0 0 0 0 0

Maximum 459.38 481.46 485.90 497.54 505.01 504.85 514.68 577.39 586.59 589.27 599.83 594.19 676.00
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Table 3—Distribution Statistics for Population 3

Year

Component Statistic 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Volume

Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0

1st Quartile 4.95 11.35 16.92 21.96 26.34 30.84 33.85 36.19 38.53 39.87 41.12 42.26 43.58

Median 56.68 64.91 71.49 76.92 82.19 85.65 86.53 88.33 90.98 93.18 96.48 100.53 103.69

Mean 84.02 89.49 94.64 99.10 103.25 106.97 108.10 110.65 112.81 114.99 117.83 121.32 125.72

3rd Quartile 127.27 135.26 142.04 147.53 152.35 156.86 157.92 161.43 164.42 167.13 170.33 175.53 181.97

Maximum 667.96 609.09 628.10 644.38 658.01 668.73 667.17 672.10 676.24 676.75 673.31 688.97 822.51

Live growth

Minimum -5.68 -6.76 -43.76 -21.12 -10.72 -13.35 -22.78 -32.17 -24.85 -10.08 -11.08 -6.56 -12.57

1st Quartile 0 0.47 1.12 1.58 1.95 1.93 1.78 1.29 0.50 0 0 0 0

Median 2.93 3.73 4.31 4.68 4.96 4.88 4.51 4.02 3.52 2.95 2.41 2.13 1.99

Mean 6.53 6.85 7.06 6.99 6.79 6.44 6.02 5.61 5.37 5.32 5.36 5.56 5.76

3rd Quartile 9.16 9.51 9.80 9.63 9.45 8.95 8.49 8.18 7.88 7.91 8.06 8.42 8.67

Maximum 71.03 67.42 70.88 66.71 74.77 63.07 56.87 84.05 111.66 134.79 157.92 181.05 204.18

Entry

Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0

1st Quartile 0 0 0 0.09 0.13 0.12 0.10 0.02 0 0 0 0 0

Median 0.19 0.29 0.35 0.39 0.40 0.39 0.35 0.28 0.20 0.13 0.04 0 0

Mean 0.99 0.99 0.91 0.86 0.84 0.78 0.71 0.63 0.60 0.60 0.62 0.65 0.69

3rd Quartile 0.82 0.90 0.95 0.95 0.95 0.91 0.84 0.76 0.71 0.67 0.64 0.65 0.68

Maximum 66.93 67.97 69.15 43.37 72.30 44.83 32.57 11.77 13.61 15.17 16.74 18.31 19.88

Mortality

Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0

1st Quartile 0 0 0 0 0 0 0 0 0 0 0 0 0

Median 0 0 0 0.04 0.11 0.38 0.06 0 0 0 0 0 0

Mean 1.68 1.53 1.39 1.27 1.17 2.96 0.81 0.78 0.78 0.81 0.84 0.89 0.94

3rd Quartile 0.58 0.65 0.75 0.87 0.97 3.13 0.76 0.60 0.46 0.40 0.36 0.32 0.30

Maximum 161.99 132.67 124.81 116.96 109.11 101.25 43.73 37.02 30.31 28.49 31.57 34.65 37.73

Harvest

Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0

1st Quartile 0 0 0 0 0 0 0 0 0 0 0 0 0

Median 0 0 0 0 0 0 0 0 0 0 0 0 0

Mean 0.37 1.16 2.11 2.43 2.74 3.13 3.36 3.31 3.02 2.27 1.65 0.91 0.37

3rd Quartile 0 0 0 0 0 0 0 0 0 0 0 0 0

Maximum 455.44 477.77 483.53 484.98 489.37 501.90 506.03 581.44 578.92 584.22 582.56 601.94 628.32
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Table 4—Distribution Statistics for Population 4

Year

Component Statistic 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Volume

Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0

1st Quartile 7.55 13.69 18.64 21.62 25.20 27.87 30.13 31.57 32.68 33.18 33.70 34.31 35.19

Median 60.42 67.19 72.32 76.17 79.53 80.75 80.88 80.38 80.30 80.88 81.91 83.56 85.78

Mean 86.40 91.11 95.22 98.23 100.65 102.47 103.42 103.70 103.65 103.61 104.24 105.51 107.70

3rd Quartile 130.65 137.25 143.28 146.07 148.62 150.60 151.03 151.21 151.33 151.43 152.03 152.77 155.92

Maximum 608.21 602.18 615.03 625.44 634.34 640.85 645.19 647.47 649.17 648.63 645.73 640.58 674.22

Live growth

Minimum -4.73 -5.33 -32.68 -15.17 -7.41 -9.00 -14.86 -20.59 -15.24 -6.27 -6.59 -3.93 -7.37

1st Quartile 0 0.49 0.92 1.20 1.37 1.33 1.17 0.83 0.31 0 0 0 0

Median 2.47 3.05 3.31 3.43 3.49 3.33 2.97 2.58 2.22 1.83 1.46 1.28 1.15

Mean 5.69 5.83 5.64 5.29 4.89 4.44 3.97 3.61 3.39 3.34 3.40 3.59 3.81

3rd Quartile 7.69 7.87 7.65 7.08 6.71 6.12 5.60 5.25 4.97 4.94 4.99 5.24 5.50

Maximum 67.08 60.22 60.14 52.60 57.23 45.53 37.36 53.90 69.99 93.12 116.25 139.38 162.51

Entry

Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0

1st Quartile 0 0 0 0.08 0.11 0.10 0.08 0.01 0 0 0 0 0

Median 0.19 0.27 0.31 0.33 0.33 0.32 0.28 0.22 0.15 0.10 0.03 0 0

Mean 0.94 0.84 0.80 0.76 0.70 0.61 0.58 0.50 0.47 0.47 0.49 0.52 0.56

3rd Quartile 0.78 0.81 0.84 0.81 0.80 0.74 0.67 0.60 0.56 0.52 0.50 0.51 0.54

Maximum 66.89 62.86 49.51 53.90 24.77 13.09 31.69 9.36 10.71 12.28 13.85 15.41 16.98

Mortality

Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0

1st Quartile 0 0 0 0 0 0 0 0 0 0 0 0 0

Median 0 0 0 0.05 0.12 0.11 0.07 0 0 0 0 0 0

Mean 1.56 1.42 1.28 1.17 1.07 0.99 0.94 0.92 0.93 0.96 1.00 1.03 1.07

3rd Quartile 0.63 0.70 0.78 0.93 1.01 0.99 0.88 0.71 0.55 0.48 0.44 0.38 0.34

Maximum 167.89 130.90 93.90 69.67 62.96 56.25 49.55 42.84 36.13 34.56 37.64 40.72 43.80

Harvest

Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0

1st Quartile 0 0 0 0 0 0 0 0 0 0 0 0 0

Median 0 0 0 0 0 0 0 0 0 0 0 0 0

Mean 0.36 1.15 2.14 2.46 2.71 3.11 3.33 3.24 2.97 2.22 1.62 0.89 0.36

3rd Quartile 0 0 0 0 0 0 0 0 0 0 0 0 0

Maximum 474.55 479.35 482.29 486.63 485.76 501.16 496.55 542.87 559.86 553.63 552.81 554.08 618.84
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Figure 01M—The mean over 1,000 iterations of 1,000 samples each from Population 0 under Sampling Error Structure 1, 
for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and the Moving-
Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 01B—The empirical bias, over 1,000 iterations of 1,000 samples each from Population 0 under Sampling Error 
Structure 1, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and 
the Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 01E—The empirical mean squared error, over 1,000 iterations of 1,000 samples each from Population 0 under 
Sampling Error Structure 1, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) 
estimator, and the Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year.
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Figure 02M—The mean over 1,000 iterations of 1,000 samples each from Population 0 under Sampling Error Structure 2, 
for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and the Moving-
Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 02B—The empirical bias, over 1,000 iterations of 1,000 samples each from Population 0 under Sampling Error 
Structure 2, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and 
the Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 02E—The empirical mean squared error, over 1,000 iterations of 1,000 samples each from Population 0 under 
Sampling Error Structure 2, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) 
estimator, and the Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year.
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Figure 03M—The mean over 1,000 iterations of 1,000 samples each from Population 0 under Sampling Error Structure 3, 
for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and the Moving-
Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 03B—The empirical bias, over 1,000 iterations of 1,000 samples each from Population 0 under Sampling Error 
Structure 3, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and 
the Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 03E—The empirical mean squared error, over 1,000 iterations of 1,000 samples each from Population 0 under Sampling 
Error Structure 3, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and 
the Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year.
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Figure 04M—The mean over 1,000 iterations of 1,000 samples each from Population 0 under Sampling Error Structure 4, 
for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and the Moving-
Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 04B—The empirical bias, over 1,000 iterations of 1,000 samples each from Population 0 under Sampling Error 
Structure 4, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and 
the Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 04E—The empirical mean squared error, over 1,000 iterations of 1,000 samples each from Population 0 under Sampling 
Error Structure 4, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and 
the Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year.
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Figure 11M—The mean over 1,000 iterations of 1,000 samples each from Population 1 under Sampling Error Structure 1, for 
the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and the Moving-Windows 
Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 11B—The empirical bias, over 1,000 iterations of 1,000 samples each from Population 1 under Sampling Error Structure 
1, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and the Moving-
Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 11E—The empirical mean squared error, over 1,000 iterations of 1,000 samples each from Population 1 under 
Sampling Error Structure 1, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) 
estimator, and the Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year.
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Figure 12M—The mean over 1,000 iterations of 1,000 samples each from Population 1 under Sampling Error Structure 2, 
for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and the Moving-
Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 12B—The empirical bias, over 1,000 iterations of 1,000 samples each from Population 1 under Sampling Error 
Structure 2, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and the 
Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 



	  TOWARD ROBUST ESTIMATION OF THE COMPONENTS OF FOREST POPULATION CHANGE: SIMULATION RESULTS 	 33

Figure 12E—The empirical mean squared error, over 1,000 iterations of 1,000 samples each from Population 1 under 
Sampling Error Structure 2, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) 
estimator, and the Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year.
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Figure 13M—The mean over 1,000 iterations of 1,000 samples each from Population 1 under Sampling Error Structure 3, for 
the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and the Moving-Windows 
Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 13B—The empirical bias, over 1,000 iterations of 1,000 samples each from Population 1 under Sampling Error 
Structure 3, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and the 
Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 13E—The empirical mean squared error, over 1,000 iterations of 1,000 samples each from Population 1 under Sampling 
Error Structure 3, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and 
the Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year.
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Figure 14M—The mean over 1,000 iterations of 1,000 samples each from Population 1 under Sampling Error Structure 4, for 
the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and the Moving-Windows 
Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 14B—The empirical bias, over 1,000 iterations of 1,000 samples each from Population 1 under Sampling Error 
Structure 4, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and the 
Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 



	  TOWARD ROBUST ESTIMATION OF THE COMPONENTS OF FOREST POPULATION CHANGE: SIMULATION RESULTS 	 39

Figure 14E—The empirical mean squared error, over 1,000 iterations of 1,000 samples each from Population 1 under 
Sampling Error Structure 4, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) 
estimator, and the Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year.
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Figure 21M—The mean over 1,000 iterations of 1,000 samples each from Population 2 under Sampling Error Structure 1, for 
the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and the Moving-Windows 
Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 21B—The empirical bias, over 1,000 iterations of 1,000 samples each from Population 2 under Sampling Error 
Structure 1, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and the 
Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 21E—The empirical mean squared error, over 1,000 iterations of 1,000 samples each from Population 2 under 
Sampling Error Structure 1, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) 
estimator, and the Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year.
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Figure 22M—The mean over 1,000 iterations of 1,000 samples each from Population 2 under Sampling Error Structure 2, for 
the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and the Moving-Windows 
Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 22B—The empirical bias, over 1,000 iterations of 1,000 samples each from Population 2 under Sampling Error 
Structure 2, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and 
the Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 22E—The empirical mean squared error, over 1,000 iterations of 1,000 samples each from Population 2 under 
Sampling Error Structure 2, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) 
estimator, and the Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year.
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Figure 23M—The mean over 1,000 iterations of 1,000 samples each from Population 2 under Sampling Error Structure 3, 
for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and the Moving-
Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 23B—The empirical bias, over 1,000 iterations of 1,000 samples each from Population 2 under Sampling Error 
Structure 3, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and 
the Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 23E—The empirical mean squared error, over 1,000 iterations of 1,000 samples each from Population 2 under 
Sampling Error Structure 3, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) 
estimator, and the Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year.
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Figure 24M—The mean over 1,000 iterations of 1,000 samples each from Population 2 under Sampling Error Structure 4, for 
the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and the Moving-Windows 
Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 24B—The empirical bias, over 1,000 iterations of 1,000 samples each from Population 2 under Sampling Error 
Structure 4, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and the 
Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 24E—The empirical mean squared error, over 1,000 iterations of 1,000 samples each from Population 2 under 
Sampling Error Structure 4, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) 
estimator, and the Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year.
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Figure 31M—The mean over 1,000 iterations of 1,000 samples each from Population 3 under Sampling Error Structure 1, 
for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and the Moving-
Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 31B—The empirical bias, over 1,000 iterations of 1,000 samples each from Population 3 under Sampling Error 
Structure 1, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and the 
Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 31E—The empirical mean squared error, over 1,000 iterations of 1,000 samples each from Population 3 under 
Sampling Error Structure 1, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) 
estimator, and the Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year.
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Figure 32M—The mean over 1,000 iterations of 1,000 samples each from Population 3 under Sampling Error Structure 2, 
for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and the Moving-
Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 32B—The empirical bias, over 1,000 iterations of 1,000 samples each from Population 3 under Sampling Error 
Structure 2, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and 
the Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 32E—The empirical mean squared error, over 1,000 iterations of 1,000 samples each from Population 3 under 
Sampling Error Structure 2, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) 
estimator, and the Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year.
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Figure 33M—The mean over 1,000 iterations of 1,000 samples each from Population 3 under Sampling Error Structure 3, for 
the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and the Moving-Windows 
Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 33B—The empirical bias, over 1,000 iterations of 1,000 samples each from Population 3 under Sampling Error 
Structure 3, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and 
the Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 33E—The empirical mean squared error, over 1,000 iterations of 1,000 samples each from Population 3 under 
Sampling Error Structure 3, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) 
estimator, and the Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year.



	  TOWARD ROBUST ESTIMATION OF THE COMPONENTS OF FOREST POPULATION CHANGE: SIMULATION RESULTS 	 61

Figure 34M—The mean over 1,000 iterations of 1,000 samples each from Population 3 under Sampling Error Structure 4, 
for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and the Moving-
Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 34B—The empirical bias, over 1,000 iterations of 1,000 samples each from Population 3 under Sampling Error 
Structure 4, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and 
the Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 34E—The empirical mean squared error, over 1,000 iterations of 1,000 samples each from Population 3 under 
Sampling Error Structure 4, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) 
estimator, and the Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year.
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Figure 41M—The mean over 1,000 iterations of 1,000 samples each from Population 4 under Sampling Error Structure 1, 
for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and the Moving-
Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 41B—The empirical bias, over 1,000 iterations of 1,000 samples each from Population 4 under Sampling Error 
Structure 1, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and 
the Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 41E—The empirical mean squared error, over 1,000 iterations of 1,000 samples each from Population 4 under 
Sampling Error Structure 1, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) 
estimator, and the Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year.
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Figure 42M—The mean over 1,000 iterations of 1,000 samples each from Population 4 under Sampling Error Structure 2, for 
the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and the Moving-Windows 
Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 42B—The empirical bias, over 1,000 iterations of 1,000 samples each from Population 4 under Sampling Error 
Structure 2, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and 
the Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 42E—The empirical mean squared error, over 1,000 iterations of 1,000 samples each from Population 4 under 
Sampling Error Structure 2, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) 
estimator, and the Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year.
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Figure 43M—The mean over 1,000 iterations of 1,000 samples each from Population 4 under Sampling Error Structure 3, for 
the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and the Moving-Windows 
Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 43B—The empirical bias, over 1,000 iterations of 1,000 samples each from Population 4 under Sampling Error 
Structure 3, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and the 
Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 43E—The empirical mean squared error, over 1,000 iterations of 1,000 samples each from Population 4 under 
Sampling Error Structure 3, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) 
estimator, and the Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year.
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Figure 44M—The mean over 1,000 iterations of 1,000 samples each from Population 4 under Sampling Error Structure 4, 
for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and the Moving-
Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 44B—The empirical bias, over 1,000 iterations of 1,000 samples each from Population 4 under Sampling Error 
Structure 4, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) estimator, and 
the Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year. 
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Figure 44E—The empirical mean squared error, over 1,000 iterations of 1,000 samples each from Population 4 under 
Sampling Error Structure 4, for the Centralized Difference Estimator (CDE), the Exponentially Weighted Difference (EWD) 
estimator, and the Moving-Windows Mean of Ratios (MWMOR) estimator, by growth component and estimation year.
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Figure 3MM—The mean over 1,000 iterations of 1,000 samples each from Population 3 under Sampling Error Structures 
1 through 4, for the Mortality component by estimation year, for the estimators incorporating outside information (CDE-OI, 
EWD-OI, MWMOR-OI) and the Mixed Estimator (ME) under Models 1 through 3. 
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Figure 3MB—The empirical bias, over 1,000 iterations of 1,000 samples each from Population 3 under Sampling Error 
Structures 1 through 4, for the Mortality component by estimation year, for the estimators incorporating outside information 
(CDE-OI, EWD-OI, MWMOR-OI) and the Mixed Estimator (ME) under Models 1 through 3. 
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Figure 3ME—The empirical mean squared error, over 1,000 iterations of 1,000 samples each from Population 3 under 
Sampling Error Structures 1 through 4, for the Mortality component by estimation year, for the estimators incorporating outside 
information (CDE-OI, EWD-OI, MWMOR-OI) and the Mixed Estimator (ME) under Models 1 through 3.
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Roesch, Francis A. 2014. Toward robust estimation of the components of forest population change: 
simulation results. e-Gen. Tech. Rep. SRS-194. Asheville, NC: U.S. Department of Agriculture Forest 
Service, Southern Research Station. 79 p.

This report presents the full simulation results of the work described in Roesch (2014), in which multiple 
levels of simulation were used to test the robustness of estimators for the components of forest change. 
In that study, a variety of spatial-temporal populations were created based on, but more variable than, an 
actual forest monitoring dataset, and then those populations were sampled under four sets of sampling 
error structure. An estimator modification was shown, to be used when extraneously obtained information 
indicated that a deviation to the assumed population model existed. The extraneous information was also 
incorporated into a mixed estimator. The first three approaches, without the incorporation of extraneous 
information, are compatible with large monitoring efforts that require intervention-free results. The mixed 
estimation approach accounts for model assumptions that sometimes remain latent in other approaches 
and is amenable to the formal incorporation of the extraneously obtained information. All four approaches 
were shown to work well when the sampling error structure was unbiased, while some notable differences 
in performance were observed at the temporal extremities of observation, in the presence of temporal 
anomalies, and in the presence of biased sampling error structures. Only those results necessary to make 
the salient points were presented in Roesch (2014). Full results are presented here both for full disclosure 
and for the reader interested in a more detailed understanding of the effects of realistic sampling errors on 
temporal estimates.

Key Words: Annual inventories, components of change, forest monitoring, sampling error, spatial-temporal 
sample design.
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