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ABSTrACT
A spatially-explicit representation of live tree canopy cover, such as the 
National Land Cover Dataset (NLCD) percent tree canopy cover layer, 
is a valuable tool for many applications, such as defining forest land, 
delineating wildlife habitat, estimating carbon, and modeling fire risk 
and behavior. These layers are generated by predictive models wherein 
their accuracy is dependent on the quality of the data used to train the 
models. This analysis compares several different methods for estimating 
live tree canopy cover, including ocular, image segmentation, and dot 
count assessments from digital aerial photography, as well as field-based 
measurements. 

InTroDUCTIon

Tree canopy cover is defined as the proportion of the ground 
covered by a vertical projection of all the live tree canopies. 
A spatially-explicit representation of live tree canopy cover, 
such as the 2001 National Land Cover Dataset (NLCD) 
percent tree canopy cover layer, is valuable for many 
natural resource applications including: wildlife habitat 
models (Allen 1982; Kroll and Haufler 2006; Zarnetske and 
others 2007; Koy and others 2005), atmospheric carbon 
estimates (Nowak and Crane 2002), and fire applications 
such as FARSITE (Finney 1998). For strategic level forest 
inventories, such as the Forest Inventory and Analysis (FIA) 
program, percent canopy cover is also a very important 
measurement used for defining forest land. 

The NLCD originated in 1992 from the Multi-Resolution 
Land Characteristics (MRLC) consortium. This multi-
agency program was formed specifically to acquire Landsat 
data across the conterminous U.S. and to generate a 30-m 
pixel land cover map. In 2001, a second-generation land 
cover map was produced from more current Landsat 
imagery purchased by the MRLC. In addition, 30-m pixel 
maps of imperviousness and percent tree canopy cover were 
developed. A third generation map of land cover and second 
generation maps of imperviousness and percent tree canopy 
are currently in progress and slated for release in 2011.
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The NLCD 2001 map of tree canopy cover was produced 
by modeling a response of tree canopy cover as a function 
of an extensive database of predictor layers, including 
30-m resolution Landsat satellite imagery, digital elevation 
models, and other ancillary data that were meaningful to 
the model. Here, the tree canopy cover response (training) 
data were acquired using an automated classification of 
1-m digital orthophoto quadrangles (DOQs), along with 
extensive post-processing hand editing. Models were 
developed by mapping zones, dividing the landscape into 
relatively homogenous regions with respect to landform, 
soil, vegetation, spectral reflectance, and characteristics of 
the imagery (Homer and others 2004).

A number of accuracy assessments of the NLCD 2001 
tree canopy layer have been conducted, but their findings 
are inconsistent. For example, Homer and others (2004) 
reported mean absolute error averaging 10.8 percent based 
on cross-validation of per-pixel estimates from three 
different mapping zones. An evaluation of zonal estimates 
from the tree canopy cover layer compared to photo-
interpreted estimates from Google Earth imagery indicated 
an underestimation of tree canopy cover by an average of 
9.7 percent consistently across the conterminous United 
States (Nowak and Greenfield 2010). The Landscape Fire 
and Resource Management Planning Tools (LANDFIRE) 
project found the canopy cover values to be too high for 
use in existing fire models (Scott 2008). Questions of the 
accuracy of the NLCD tree canopy layer have led to a 
reassessment of the model’s response data and potential 
alternative methods for the third generation. As the leading 
agency for national-level tree data, the United States 
Department of Agriculture, Forest Service, Forest Inventory 
and Analysis (FIA) program was identified as a logical 
candidate for leadership in the third generation product.

This paper compares several techniques for measuring 
live tree canopy cover for use as training data in predictive 
mapping efforts, such as the NLCD. Using data collected 
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throughout the state of Nevada, the underlying objectives 
are to: (1) assess variability in ocular estimates of tree 
canopy cover from multiple observers; (2) compare photo-
based methods and field-based methods for measuring 
canopy cover, an extension from Goeking and Liknes’ 2009 
analysis; and (3) compare photo-based measurements from 
1-m resolution NAIP imagery to higher-resolution imagery 
acquired in Nevada.

MeTHoDS

Analyses were conducted throughout the state of Nevada 
using a subset of field-sampled FIA plots from the 2004 and 
2005 inventory years. A total of 150 plots, or approximately 
45 percent, were randomly selected from the population 
of 328 FIA plots collected during these years that sampled 
at least one forested condition. Field sampling determined 
that 128 of the 150 plots had a woodland forest type, 8 plots 
had a timber forest type, and 12 plots were nonstocked (see 
http://socrates.lv-hrc.nevada.edu/fia/ab/issues/pending/
glossary/Glossary_5_30_06.pdf for definitions). Two plots 
were removed from the analysis because of geographical 
inconsistencies. On each of the remaining 148 plots, three 
photo-based methods and two field-based methods were 
applied to construct alternative measures of live percent 
tree canopy cover. This process followed that of Goeking 
and Liknes (2009), where similar methods of remotely 
estimating crown cover were compared to field transect data 
across five states in the interior west: Arizona, Colorado, 
Idaho, Montana, and Utah, in an attempt to expand the 
utility of the pre-field operations for the national FIA 
program. 

The photo-based methods involved interpreting one-
acre circular plots, coinciding with the 148 FIA plot 
locations, using three methods applied to large scale aerial 
photographs: an ocular estimate; a dot count method; and an 
image segmentation method using Feature Analyst software. 
Ocular estimates were collected by three photo interpreters 
for each type of photography. Three interpreters were used 
to examine variability in the subjective measurements 
among interpreters based on findings from Goeking and 
Liknes (2009), where ocular estimates varied widely 
among three photo interpreters. A crown cover callibration 
key was used to assist in determining the crown coverage 
within the acre circle. Although the individual observer 
values were analyzed for variability, the average value of 
the three interpreters was used as the single ocular estimate 
for each plot to compare to other methods. The dot count 
method involved photo-interpreting 50 randomly distributed 
points within the acre circle, with a restriction of having 
a minimum distance of 2 meters between points. Percent 
cover was calculated by counting the number of points that 
fell on live tree crowns and dividing by the total number 

of points. The image segmentation procedure entailed 
digitizing a few live tree crowns, or polygons, within the 
acre circle and using these polygons as training data in the 
Feature Analyst extension to ArcMap. Feature Analyst® is 
an automated feature extraction software that uses inductive 
learning algorithms and techniques to model object 
recognition (Opitz and Blundell 2008). Training information 
is assigned by the user and the software automatically 
generates a model, correlating the known data to target 
objects, and applies the model to the entire area of interest. 

These three photo-based methods were applied to two 
different types of large scale aerial photography to help 
understand the effect of resolution on estimating canopy 
cover. The types of photography included: 1.0-meter 
(39-inch) resolution, National Agriculture Imagery Program 
(NAIP) natural color, orthorectified photography for year 
2006 that is freely available from the USDA Forest Service 
Image Server extension of ArcMap (http://fsweb.rsac.fs.fed.
us/imageserver/image_server_home.html); and 0.15-meter 
(6-inch) resolution, natural color, georeferenced, direct-to-
digital or scanned-digital photography that was acquired by 
contract for a photo-based inventory pilot study throughout 
the state of Nevada in years 2004 and 2005 (NPIP; Frescino 
and others 2009).

The field-based methods included a line-transect method and 
a modeled method based on field measurements obtained 
from FIA’s extensive database of field measurements. 
For the field-transect estimates, live tree crown cover 
was measured using sixteen 25-ft transects, totaling 400 
feet, with intercepts of all live trees 1.0 inch and greater 
recorded at one-foot intervals (O’Brien 1989). These data 
were aggregated to the plot level. For the field-model 
estimates, predictive models of tree canopy cover were 
previously generated from field measurements of tree 
species and diameter using over 12,000 FIA plots across the 
Interior West (Toney and others 2009). These models were 
applied to the plots in this study using the FIA field plot 
measurements as parameters in the models.

The three photo-based methods (ocular (“oc”), dot count 
(“dot”), and Feature Analyst (“fa”)) applied to two scales 
of aerial photography (“NAIP” and “NPIP”) plus the two 
field based methods (field transects (“Field”) and models 
developed by Chris Toney and others 2009 (“CTmodel”)) 
gave a total of 8 different estimates of tree canopy cover 
over the 148 plots, summarized in Table 1. Analyses 
comparing these different estimates included exploratory 
displays of data distributions using boxplots, histograms, 
and scatterplots. Simple linear regression analyses were 
conducted using combinations of the eight canopy estimates 
to describe the relationship between the different methods. 
The regression line slopes that were visually closer to the 
1:1 line indicated the canopy measures were more closely 
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related. The differences in the slope and intercept values 
were examined for understanding potential bias across the 
range of percent canopy values. The Pearson correlation 
coefficient was also shown to measure the association 
between variables.

reSUlTS

vArIABIlITy In oCUlAr eSTIMATeS
Figures 1 and 2 show the results of the ocular estimates 
from each observer using both the NAIP photography and 
the NPIP photography. Similar to findings from Goeking 
and Liknes (2009), the ocular estimates are highly variable 
among interpreters with an overall mean difference of 
22 percent for estimates using NAIP photography and 16 
percent for estimates using NPIP photography (Figure 1). 
Figure 2 illustrates a number of results. First, scatterplots 
and regression lines for each pair of ocular estimates are 
shown in the lower diagonal half of the figure, where the 
method associated with each axis is the label in the diagonal 
box corresponding to the row and column of interest. For 
example, the scatterplot seen in row 4, column 2 of Figure 
2 is a graph of observations obtained from observer #2 
using NAIP photography in the x-axis, versus observer 
#1 using NPIP photography in the y-axis. Similarly, the 
upper diagonal half of the graphic displays the correlations 
between the estimation pair labeled in the diagonal 
box corresponding to the row and column of interest. 
Scatterplots of observers using NAIP photography (seen 
in the (row, column) pairs of (2,1), (3,1), and (3,2)) reveal 
regression slopes are closer to 1 than those from observers 
using NPIP photography ((5,4), (6,4), and (6,5)). In general, 
estimates using the NAIP photography are higher and more 
variable than the estimates using NPIP photography (Figures 
1 and 2) and estimates from observer #2 are higher than 
the other observers using both photography sources. We 
used the mean estimate by plot from the three observers 
for comparison with the other methods for the rest of the 
analyses.
 
eSTIMATIon MeTHoD CoMPArISon
Figures 3 and 4 show results comparing all methods using 
both the NAIP and NPIP photography, including the mean 
estimates from the ocular method. The modeled estimates 
(CTmodel) are highly correlated (0.84) with the field 
transect estimates (Field) but, in general, the modeled 
estimates are slightly lower than the field transect estimates, 
with an overall mean difference of 4 percent (Figure 3). 
These differences are more emphasized in the higher canopy 
ranges (Figure 4). 

All other estimation methods using both NAIP and NPIP 
photography tend to be lower than the field transect method, 
except the dot count method using NPIP, having an overall 

mean difference of 3 percent; and the mean ocular estimates 
using NAIP photography, having an overall mean difference 
of 9 percent. Similar results are seen when comparing 
the modeled versus field estimates (Figures 3 and 4). The 
estimation method most highly correlated to the field 
transect method is the mean ocular estimate using NPIP 
photography followed by the dot count method using NPIP 
photography. Again, similar results are found by comparing 
the modeled and field estimates (Figure 4).

PHoToGrAPHy CoMPArISon
When looking at the differences in estimation methods using 
only NAIP photography, the mean ocular estimates tend to 
be higher overall than all the other methods, with an overall 
mean of 39 percent (Figure 3). Regardless, the regression 
slope is the closest to 1 compared to the other methods when 
related to the field transect method. The Feature Analyst 
estimates are generally higher than the dot count method, 
although the dot count method has no estimates greater 
than 50. The correlation is highest between the mean ocular 
method and the dot count method (Figure 4).

The estimates using NPIP photography show much different 
results than the estimates using NAIP photography. In 
general, the correlations are higher, the regression slopes 
are closer to 1, and the regression intercepts are smaller. 
The highest correlation (0.84) is between the ocular method 
and the dot count method, with the ocular method having 
slightly lower estimates. The correlation is also high 
between the ocular method and the Feature Analyst method 
(0.81) with a regression slope closer to 1.0, followed by the 
dot count and the Feature Analyst method having correlation 
of 0.80, although the Feature Analyst estimates are slightly 
lower overall (Figure 4).

When comparing the different types of photography 
by estimation method, the mean ocular estimate shows 
the highest correlation of 0.86, followed by the Feature 
Analyst method at 0.72, and the dot count method at 0.68. 
Conversely, the dot count method has the regression slope 
closest to the 1:1 line. For both the ocular method and 
the Feature Analyst method, the NAIP estimates are quite 
a bit higher than the estimates using NPIP photography, 
especially at the higher end, where as the dot count method 
shows the NAIP estimates slightly lower than the NPIP 
estimates (Figure 4). The average overall mean for the NAIP 
estimates is 29 percent compared to the average overall 
mean of the NPIP at 28 percent (Figure 3).

DISCUSSIon

oCUlAr CoMPArISon
The first objective of this paper was to assess consistency 
between photo-interpreters’ estimates of tree canopy cover 
using the ocular method. Ocular estimates, although the 
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fastest of the methods analyzed, may be quite biased and/
or inconsistent depending on the experience level of the 
observers. In this study, the ocular estimates were shown 
to be highly variable between observers, with the estimates 
using NAIP photography almost always higher when 
compared to estimates from NPIP photography, especially 
at higher canopy cover values. Possible reasons for this are 
discussed under the third objective below. The correlations 
were slightly higher and the regression slopes closer to 1.0 
for the NAIP estimates compared to the NPIP estimates, 
suggesting a tighter relationship between NAIP observers, 
but the higher intercepts suggest more bias between these 
same observers (Figure 2). 

Similar results of bias can be seen when comparing the 
mean ocular estimates with estimates from the other 
methods. The ocular estimates using NAIP photography 
tended to be consistently higher than the other methods. 
The NPIP estimates, on the other hand, had lower estimates 
and higher correlations between estimates from the other 
methods, with regression slopes, in general, closer to 1.0 
(Figure 4).

MeTHoD CoMPArISon
The second objective of the paper was to compare photo-
based methods and field-based methods for measuring 
canopy cover. For other comparison studies of canopy cover, 
the field-based method is often used as a control or a source 
of truth (Goeking and Liknes 2009; Paletto and Tosi 2009; 
O’Brien 1989). We found all estimation methods using both 
NAIP and NPIP photography to be lower than the field-
transect method as well as the field-modeled method, except 
the dot count method using NPIP and the ocular method 
using NAIP, which tended to have slightly higher estimates 
(Figure 4). Perhaps this reflects the fact that small trees 
(down to 1.0 inches in diameter) are included in the field-
based methods, but small trees are difficult to detect in the 
photos, especially in NAIP. Alternatively, there is a potential 
bias in the field-based methods. 

For the NAIP estimates, the ocular method tended to be 
higher than the other methods and the dot count estimates 
were on the low side with no estimates greater than 50. The 
NPIP estimates showed higher correlations compared to all 
methods, indicating greater consistency between methods 
(Figure 4). The resolution and quality of the photography 
play a big factor in these results and are discussed in the 
following section.

PHoToGrAPHy CoMPArISon
The third objective of the paper was to compare photo-
based measurements from 1-m resolution NAIP imagery 
to a higher resolution imagery acquired for NPIP. Using 
different resolution photography added interesting value to 
the analysis with the higher resolution photography from 

NPIP representing a potential greater source of truth than 
the lower resolution NAIP photography. Here, we found the 
NAIP to estimate higher cover relative to the estimates from 
the NPIP photography. 

In general, the lower resolution, NAIP photography has 
more shadows, especially when the total canopy cover is 
high or the terrain is steep. It is harder to distinguish tree 
versus shrub lifeform characteristics of a vegetative object, 
as well as to discriminate seedlings and saplings from 
shrub lifeforms. It is also harder to see regeneration of tree 
species in areas supporting larger trees or areas that have 
no recognizable trees present. These characteristics lead to 
overestimations and errors when estimating canopy cover. 

Figure 5 shows an example of a plot where the lower 
resolution photography led to a large discrepancy in the 
cover estimate. For this example plot, one interpreter said 
there was zero percent cover using the dot count method and 
three percent cover using the Feature Analyst method, where 
another observer estimated 96 percent using the dot count 
method and 10 percent using the Feature Analyst method. 
The plot consists of dense aspen (Populus tremuloides) 
cover, and this species may be confused with shrubs at 
lower resolutions. In general, the resolution and quality of 
the photo are more influential to the photo interpreter than 
the method itself. Here, the Feature Analyst method lends 
itself better to an automated process that is less subjective 
than the interpreter’s eye. Figure 6 presents another example 
of differences in photo resolution which affect percent 
canopy calls. For this plot, one observer said there was 
0 percent cover using the dot count method and another 
observer said 12 percent for the same plot. The plot has a 
large percentage of dead trees that were not noticeable on 
the lower resolution image.

ConClUSIon

These analyses illustrate that consistent and accurate 
measurement of tree canopy cover is challenging. Photo-
interpreter experience level, method of canopy estimation, 
and scale of photography all play interrelated roles in 
determining the quality and consistency of tree canopy 
estimates over training or sample plots. Certainly, there 
are many advantages to using NAIP photography for a 
national project like the NLCD 2011 tree canopy cover 
map: it is free, it is relatively high resolution, it has 
extensive continuous coverage, it is updated frequently, 
and photo quality continues to improve through time. It is 
especially effective when used through the ArcGIS Image 
Server extension (http://www.esri.com/software/arcgis/
serverimage/index.html), where it is easy to move from plot 
to plot. However, more research is needed to understand 
the limitations in the use of this photography, to develop 
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methods to improve training methods to ensure consistency 
between interpreters, and to explore the potential of 
automated classification algorithms to improve objectivity in 
interpretations. 
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Method Type Short Name Description 

Field IW-FIA field transects Field-based 

CTmodel Toney and others (2009) field-based stem-map models 
   

NAIP-oc Mean ocular estimate using NAIP photography Ocular 

NPIP-oc Mean ocular estimate using NPIP photography 
   

NAIP-dot Dot count estimate using NAIP photography Dot count 

NPIP-dot Dot count estimate using NPIP photography 
   

NAIP-fa Feature Analyst estimate using NAIP photography Feature Analyst 

NPIP-fa Feature Analyst estimate using NPIP photography 

Table 1—variable short names by estimation method type
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Figure 1—Boxplots of ocular estimates of percent live tree canopy 
cover using both NAIP and NPIP photography. The points represent 
the overall mean value. See Table 1 for short name descriptions. 
Numbers in the name correspond to the three different observers.

 

 

 

 

 

 Figure 2—Pairwise comparisons of ocular estimates of percent live tree canopy cover using both NAIP and 
NPIP photography. See Table 1 for short name descriptions. The diagonal boxes display histogram distributions 
of each of the eight estimates. The left side shows scatterplot distributions for pairs of estimates with percent 
canopy cover on each axis. For each scatterplot, the dotted black line represents the 1:1 line and the red line is 
a linear regression line. The right side displays the Pearson correlation coefficient for each pair.
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Figure 3—Boxplots of all estimation methods of percent live tree 
canopy cover using both NAIP and NPIP photography. The points 
represent the overall mean value. See Table 1 for short name 
descriptions.

 

 

 

 
Figure 4—Pairwise comparisons of stimates from all methods including the mean ocular estimates of percent live 
tree canopy cover using both NAIP and NPIP photography. See Table 1 for shortname descriptions. The diagonal 
boxes display histogram distributions of each estimate. The left side shows scatterplot distributions between all of 
the eight estimates with percent canopy cover on each axis. For each scatterplot, the dotted black line represents 
the 1:1 line and the red line is a linear regression line. The right side displays the Pearson correlation coefficient for 
each pair.
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a.  b. 

Figure 5—Plot 07-1352. a. NPIP photography with 1-ac plot boundary overlay. b. NAIP photography with 1-ac plot 
boundary overlay. The plot is covered with aspen (Populus tremuloides) seedlings. 

 

    

 

a.  b. 

Figure 6—Plot 17-153. a. NPIP photography with 1-ac plot boundary overlay. b. NAIP photography with 1-ac plot 
boundary overlay. The plot is covered with dead juniper (Juniperus spp.).




