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ABSTrACT

In prior national mapping efforts, the country has been divided into 
numerous ecologically similar mapping zones, and individual models have 
been constructed for each zone. Additionally, a hierarchical approach has 
been taken within zones to first mask out areas of nonforest, then target 
models of tree attributes within forested areas only. This results in many 
models nationwide, which reduces the number of training points per model, 
increases the cost of the process, results in numerous seam lines, and 
complicates validation efforts. Consequently, we use response data based 
on photo-interpreted aerial photography and spatially continuous predictor 
data (Landsat imagery, topographic and other ancillary data) in five pilot 
areas across the country to explore the effect of the choice of modeling 
subpopulation on models of tree canopy cover. Using Random Forests as 
our predictive tool, we explore the consequences of modeling pilot areas 
alone, modeling groups of pilot areas, and modeling hierarchically within 
each pilot area. Recommendations are made for appropriate modeling 
subpopulations to be used in a nationwide tree canopy cover map.

InTroDUCTIon

The Multi-Resolution Land Characteristics (MRLC, http://
www.mrlc.gov/) consortium has developed plans for the 
2011 National Land Cover Dataset (NLCD) which will 
include an approximate Anderson Level II classification, 
percent impervious surface, and percent tree canopy cover. 
Because it is central to its business needs, the US Forest 
Service, Forest Inventory and Analysis (FIA) program has 
assumed responsibility for the latter, and will be developing 
this Tree Canopy Cover (TCC) layer. Recently a national 
pilot project was launched to test the use of high resolution 
photography acquired though the National Agriculture 
Imagery Program (NAIP) coupled with extensive ancillary 
data layers through alternative sampling and modeling 
methodologies in support of this commitment. A number of 
studies have resulted from initial pilot analyses answering 
questions about alternative means to observe tree canopy 
cover (Frescino and others 2011), relationship between 
photo-based tree canopy cover and canopy modeled 
from FIA plots (Toney and others 2011), repeatability in 
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photo-interpretation (Jackson and others 2011), efficient 
sampling strategies (Jackson and others 2011), and, in this 
paper, choice of appropriate subpopulations over which to 
construct predictive models. 

Tree canopy cover in the conterminous U.S. is remarkably 
diverse. Previous nationwide mapping efforts, like that 
of the US Forest Biomass map (Blackard and others 
2008) , nationwide forest type and forest type group maps 
(Ruefenacht and others 2008), as well as Landfire (Rollins 
and Frame 2006) have tried to accommodate this diversity 
by using 66 different mapping zones (Homer and Gallant 
2001, Figure 1). In these efforts, mapping zones were 
modeled independently and in some cases forest masks 
were first developed, then models developed solely for 
the areas predicted to be forest. With most FIA mapping 
efforts, the sampling intensity of the training data is fixed 
at the nominal sampling intensity of the base FIA program 
(approximately 1 plot per 6000 ac). Therefore developing 
models for relatively small mapping zones decreases the 
number of training points available. Additionally, when 
small mapping zones are used the number of models 
increases which results in increased cost, seamline issues, 
and complicated validation approaches. Consequently, we 
used photo-interpreted data collected in five pilot areas 
in the conterminous United States to explore the effect of 
modeling over larger, more geographically diverse areas, as 
well as the value of empirically masking non-tree areas prior 
to modeling tree canopy cover.

MeTHoDS

DATA
Photo-interpreted percent tree canopy cover data from 
NAIP imagery was collected in 5 diverse pilot areas in the 
United States, including areas in Oregon, Utah, Kansas, 
Michigan and Georgia. Photo plots were collected on the 
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FIA grid, intensified 4-fold, and each photo plot consisted of 
105 dots distributed in a 90 m square area (Figure 2). Each 
dot was characterized as being a tree or not-a-tree, then 
the proportion of tree dots were summarized for each plot. 
This percent tree cover was used as the response variable 
in models described below. Predictor variables included 
Landsat-5 reflectance bands, 30 m elevation, transformed 
aspect, slope, topographic positional index, land cover from 
the 2001 NLCD, and Bailey’s ecoregions. Because many 
of the predictor variables originated from 30 m products, 
assignment to each 90 m plot was accomplished by taking 
a focal mean over a 3x3 window for continuous variables, 
and focal majority for the categorical variables. In addition, 
the standard deviations for all continuous predictor variables 
within the 3x3 window were included as predictor variables. 
Following findings presented in Tipton and others (2011), a 
subset of the total data available equivalent to the intensity 
of the FIA grid was used for modeling, and an equal size 
independent test set used for testing in these analyses. 

MoDel
Classification and regression trees (Breiman and others 
1984) are flexible and robust tools that are well suited to the 
task of modeling the relationship between a response and 
a set of explanatory variables for the purposes of making 
spatial predictions in the form of a map. These are intuitive 
methods, often described in graphical or biological terms. 
Typically shown growing upside down, a classification or 
regression tree begins at its root. An observation passes 
down the tree through a series of splits, or nodes, at which a 
decision is made as to which direction to proceed based on 
values of the explanatory variables. Ultimately, a terminal 
node or leaf is reached and predicted response is given, the 
mean of observations in the node for a continuous response, 
or a vote for a categorical response. (See De’ath and 
Fabricius 2000 for a thorough explanation, and Moisen 
2008 for a simple overview.)

Although classification and regression trees are powerful 
tools by themselves, much work has been done in the 
data mining and machine learning fields to improve the 
predictive ability of these models by combining separate 
tree models into what is often called a committee of experts, 
or ensemble. One such tool, Random Forests (Breiman 
2001) is receiving increasing attention in the ecological 
and remote sensing literature. In this technique, a bootstrap 
sample of the training data is chosen. At the root node, a 
small random sample of explanatory variables is selected 
and the best split made using that limited set of variables. At 
each subsequent node, another small random sample of the 
explanatory variables is chosen, and the best split made. The 
tree continues to be grown in this fashion until it reaches 
the largest possible size, and is left un-pruned. The whole 

process, starting with a new bootstrap sample, is repeated 
500 or more times. The final prediction is a vote (for 
categorical responses) or average (for continuous variables) 
from prediction of all the trees in the collection. All of the 
following analyses were fit using the “randomForest” library 
in R (Liaw and Wiener 2002).

SMAll vS. lArGe MAPPInG zoneS
Using the training data sets described above, eight models 
of tree canopy cover were constructed. The first five 
were individual “pilot area” models for each of Georgia, 
Michigan, Kansas, Utah, and Oregon which only contained 
training data from each of their respective areas. The sixth 
model, called the “East” model used training data from 
GA, MI and KS, while the seventh “West” model used all 
the training data from OR, UT, and KS. The eighth model 
was called a “USA” model and used all the training data in 
all five pilot areas. These eight models were applied to the 
test data sets within each of the pilot area and the resulting 
metrics of the relationship between observed and predicted 
values in these test sets were compared. The metrics 
included: correlation, root mean squared error (RMSE), and 
slope of a regression line. Density plots of observed and 
predicted, which are like a continuous version of histograms 
reflecting the relative number of plots by tree canopy cover 
class, were also compared.

no-Tree MASK
This analysis involves building two models for each pilot 
area. First, a binary response of “trees present” versus “no 
trees present” was modeled as a function of all the predictor 
variables, again using Random Forests. The probability 
of tree presence was predicted over the test data and these 
probabilities were then converted to binary “trees present” 
or “no trees present” using the prevalence of treed land 
in each area as the threshold. (See Freeman and Moisen 
2008a for a discussion of thresholding options). Using these 
predictions over the test data, assessments were made of 
the tree mask using the PresenceAbsence library (Freeman 
and Moisen 2008b) in R. This first tree presence model was 
then applied to the training data so that only those training 
plots predicted to have trees present were included in a 
continuous model of tree canopy cover, the second model. 
To validate the effectiveness of combining the first and 
second models, test data plots predicted to have “no trees 
present” from the first model were simply given a predicted 
tree canopy cover of zero, while test data plots predicted 
to have “trees present” were then assigned tree canopy 
cover predictions from the second model. This, in effect, 
empirically masks out areas thought to have no trees present 
at all. Comparisons of the final predicted versus observed 
tree canopy values in each pilot area (including treed and 
non-treed land) were done using metrics as above.

Cover Estimation
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reSUlTS AnD DISCUSSIon

SMAll vS. lArGe MAPPInG zoneS
Figure 3 illustrates the effect of increasing mapping unit size 
on map accuracy metrics, including correlation, root RMSE, 
and slope of a line fitted between predicted vs. observed 
values in the independent test set (with intercept term.) 
Interestingly, little difference between accuracy metrics is 
noted between the individual pilot area models, and models 
built for larger areas (East, West and USA models). Note 
that models built for large areas naturally included many 
more training plots. The only exception is in cases where 
model predictions were made over areas whose data were 
not included in that particular model. For example, the West 
model predicted over Michigan, or the East model predicted 
over Utah. In addition, density plots of the true tree canopy 
cover values in each pilot area were plotted along with 
densities obtained by applying the four classes of models 
(pilot, East, West and USA) to that same training data, as 
illustrated in Figure 4. As with the accuracy metrics, there 
was little difference in the densities obtained under the four 
modeling scenarios except in cases where no data from that 
particular pilot area was used in the model.

no-Tree MASK
Figure 5 illustrates the results from the tree presence model 
in UT which were typical of the other pilot areas. The first 
graph (Figure 5a) is a Receiver Operator Curve (ROC Plot) 
indicating a strong model fit and high Area Under the Curve 
(AUC) value of 0.94. Here, sensitivity, or proportion of 
correctly predicted positive observations, reflects a model’s 
ability to detect a presence, given at least one tree actually 
occurs at a location. Specificity, or proportion of correctly 
predicted negative observations, reflects a model’s ability 
to predict an absence where trees do not exist. The second 
graph in this figure (Figure 5b) illustrates how measures of 
map accuracy change with different threshold values. In UT, 
approximately 70 percent of the land area had trees present. 
This graph illustrates how using prevalence as a threshold to 
convert probability predictions in to a presence-absence map 
resulted in maximizing map accuracy. 

Plots exploring the effect of first creating a tree presence 
model prior to modeling tree canopy cover are illustrated in 
Figures 6 and 7. Figure 6 illustrates the effect of using a no-
tree mask on map accuracy metrics, including correlation, 
root RMSE, and slope of a line fitted between predicted vs. 
observed values in the independent test set (with intercept 
term.) Little difference between accuracy metrics is noted 
between the unmasked, and masked approaches. In Figure 
7a, predicted tree canopy cover from a single unmasked 
model is plotted against the tree canopy cover response 
from the photo interpretation illustrating the tendency to 
predict canopy where no trees exist at all (the zero line on 
the x-axis). Next in Figure 7b, predicted tree canopy cover 

from the tree presence model followed by the masked tree 
canopy model is plotted against the tree canopy cover 
response from the photo interpretation illustrating a slight 
reduction in the number observations where canopy was 
predicted over no-tree areas, but also an increase in errors of 
false negative (the zero line on the y-axis). Finally in Figure 
7c, the predicted probability of having trees present from the 
tree presence model is plotted against predicted tree canopy 
cover with no masking, illustrating the strong relationship 
between masked and unmasked scenarios suggesting most 
of the necessary information may be contained in a single 
model. That is, an empirical mask constructed prior to 
modeling tree canopy cover may not be that effective in 
improving the final tree canopy cover map. Also shown in 
7c is the prevalence-based threshold in blue (~70 percent 
of the Utah pilot area is treed) above which plots are 
predicted to have trees. In addition, the pink vertical line 
illustrates a threshold a user might impose by applying a 10 
percent cover threshold to the predicted tree canopy cover. 
Interestingly, these two thresholding criteria applied to two 
different models identify very closely to the same sets of 
plots, again indicating not a lot of additional information is 
gained by hierarchically modeling tree/no-tree followed by 
tree canopy cover in an empirical fashion.

ConClUSIon

Random Forests is a flexible and robust tool for mapping 
tree canopy cover over large geographic areas. Although 
past nationwide mapping efforts have delineated many small 
mapping zones across the country, the analyses conducted 
here suggest that modeling over much larger zones does 
not compromise model fit. This provides an opportunity 
to decrease the cost of the mapping process, reduce the 
numerous seam lines, and simplify validation efforts. 
Still to be investigated, however, is the effect of modeling 
over larger units with decreased sampling intensity. This 
could further reduce sampling costs. In addition, modeling 
hierarchically by creating an empirical tree presence model 
prior to modeling tree canopy cover does not completely 
alleviate the problem of predicting tree canopy cover where 
no trees exist, and does tend to mask treed areas as no-tree 
erroneously. However, this does not diminish the importance 
of applying a variety of regionally-specific masks, such as 
water and impervious surface masks, to the final product.

Naturally, results from these pilot tests as well as those 
described in Tipton and others 2011, and Jackson and others 
2011 need to be confirmed over larger geographic areas. 
The NLCD Tree Canopy Cover project is entering the 
prototype phase. In this prototype, photo interpreted as well 
as ancillary data are being collected in two diverse areas, 
one approximately 49 million acres in size in the Interior 
Western U.S., the other approximately 59 million acres in 
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size in the Southeastern U.S. Prototype tests will be run to 
provide yet stronger basis for production mapping which is 
scheduled to begin in the fall of 2011.
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Figure 1—Mapping/modeling zones (Homer & Gallant, 2001) used in 
previous NLCD mapping efforts.

 

 Figure 2—Five pilot areas including one each in Georgia, Michigan, 
Kansas, Utah, and Oregon. Photo-based sample plots were inter-
preted at 4 times the FIA grid intensity within each plot area. Each 
photo plot consisted of 105 photo points used to estimate percent 
tree canopy cover on the plots. 
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Figure 3—Correlation, RMSE, and slopes obtained in each of the 
five pilot areas when applying five different tree canopy models to 
independent test data. “Pilot” models (blue) included only training 
data from each individual pilot area. The “East” model (pink) 
included data from Georgia, Michigan, and Kansas. The “West” 
model (purple) included data from Oregon, Utah, and Kansas. And 
the “USA” model (red) included data from all the pilot areas. 

 

 

 

 

 

 

 

Figure 4—Density plots of tree canopy cover in independent test sets in three pilot areas, a. Oregon, b. Utah, and c. Georgia. Solid 
black lines reflect the “truth” from photo-interpreted data. Dotted blue lines reflect prediction from the individual pilot area models, 
then dotted pink, purple, and red from East, West, and USA models respectively.



200

Cover Estimation 

 

 

 

 
Figure 5—Results from the tree/not-tree model in UT. Plot a) is a Receiver 
Operator Curve (ROC Plot). Plot b) illustrates how using prevalence (indicated 
by the yellow star) as a threshold to convert probability predictions into a 
presence-absence map resulted in maximizing map accuracy.  

 

 

 

 

 

 

 

Figure 6—Correlation, RMSE, and slopes obtained in each of the 
five pilot areas when applying a tree canopy model without a mask 
(blue) versus a tree canopy model with an empirical mask (green) to 
an independent test set.

 
Figure 7—Scatter plots exploring effect of first creating a tree/no-tree mask prior to modeling tree canopy cover. In 7a, predicted 
tree canopy cover from a single unmasked model is plotted against the tree canopy cover response from the photo interpretation. In 
7b, predicted tree canopy cover from the tree/no-tree model followed by the masked tree canopy model is plotted against the tree 
canopy cover response from the photo interpretation. In 7c, the predicted probability of having trees present from the tree/no-tree 
model is plotted against predicted tree canopy cover with no masking, with the prevalence-based threshold shown horizontally in 
blue and threshold a user might impose by applying a 10 percent cover threshold to the predicted tree canopy cover shown vertically 
in purple. 




