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ABSTrACT

We recently developed an assessment protocol that provides information 
on the magnitude, location, frequency and type of error in geospatial 
datasets of continuous variables (Riemann et al. 2010). The protocol 
consists of a suite of assessment metrics which include an examination of 
data distributions and areas estimates, at several scales, examining each 
in the form of maps, graphics, and summary statistics. In this study we 
have applied this protocol to the modeled total and species-level basal 
area/acre datasets recently completed for the eastern coterminous United 
States (Wilson et al. in review). We were interested in the answers to two 
questions: (1) how can assessment results be effectively presented over 
extensive areas, and (2) what is the accuracy of modeled datasets of much 
less common forest characteristics such as the presence of an individual 
species, and what might that tell us about the limitations of the current 
modeled dataset for other less common variables. Results from this study 
will help fine-tune the type of assessments applied and how they are 
presented in the metadata available with all geospatial datasets produced by 
Forest Inventory and Analysis (FIA). 
 
Keywords: Accuracy assessment, uncertainty, geospatial data, continuous 
variables, species distribution

InTroDUCTIon

Modeled geospatial datasets benefit greatly from detailed 
accuracy assessment. Every geospatial dataset is a model 
of real conditions on the ground and thus inevitably 
contains some error. This error can take the form of 
truncated distributions, a loss of local variability, and/or 
an underestimation or overestimation of values that can be 
random (unsystematic error) or represent a bias (systematic 
error) across the entire dataset or in some areas. Similarly, 
the type of error present and its magnitude frequently varies 
with scale, and by the subpopulation being examined. 
Such inaccuracies do not usually render a modeled dataset 
useless, but these errors do affect interpretation and 
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appropriate use of the dataset, and may suggest different 
approaches for iterative improvement of the modeled 
geospatial dataset. In addition, for an assessment to be truly 
effective it must be consistent, to facilitate the comparison 
of results between datasets of the same variable, and timely, 
ideally available as soon as the dataset itself. In a previous 
study we developed a protocol for assessing geospatial 
datasets of continuous variables (Riemann et al. 2010). 
This protocol consists of a suite of assessment metrics that 
together describe the location of errors, the frequency of 
errors, the magnitude of errors, and the type/nature of errors 
(Foody 2002) (Canters 1997), and improves timeliness by 
taking advantage of USFS Forest Inventory and Analysis’ 
(FIA’s) existing extensive plot database as the reference data 
source. 

U.S. Forest Inventory and Analysis (FIA) is in the process 
of developing a broad set of modeled geospatial datasets 
of forest characteristics across the entire United States, and 
needs to provide information on the accuracies of those 
datasets in the accompanying metadata as soon as datasets 
are released. One such set of datasets has been produced 
using an approach developed by Wilson et al. (in review) 
and will soon be available for the coterminous United 
States. 

In this study we applied the existing assessment protocol 
to the eastern half of this extensive modeled geospatial 
dataset, and in particular to datasets of total basal area/acre 
(ba/acre) as well as six individual tree species ba/acre. We 
were interested in: 1) how assessment results could be most 
effectively presented for such extensive areas, and 2) the 
accuracy of individual species datasets given the wide range 
in their frequency of occurrence, in their spatial patterns of 
distribution, and in their level of canopy and/or basal area 
dominance in the stands in which they occur. 
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DeSCrIPTIon oF THe ASSeSSMenT 
ProToCol

The protocol recommends a suite of assessments, including: 
• assessment of data distributions – at several scales
• assessment of overall agreement of area estimates – at 
several scales
• examining differences in local variability
• examining spatial and distribution patterns of local 
differences

First, assessment of data distributions is accomplished 
by comparing the empirical cumulative distribution 
functions (ecdf’s) of the modeled and reference datasets. 
A Kolomogorov-Smirnov (KS) statistic can also be used 
to summarize the largest distance between the two curves 
(Figure 1a). Second, assessment of overall agreement of 
estimates is accomplished by comparing a scatterplot of 
model-derived vs. FIA plot-based estimates against the 
1:1 line (Figure 1b). Metrics can be calculated from this 
scatterplot to quantitatively describe the overall agreement 
(agreement coefficient, AC), systematic agreement (ACsys), 
unsystematic agreement (ACuns), and root mean square 
error (RMSE) (Ji and Gallo 2006). Systematic agreement 
quantifies the difference between the 1:1 line and the 
geometric mean functional relationship (GMFR) regression 
line, which describes the level of bias present. Unsystematic 
agreement quantifies the level of scatter about the GMFR 
regression line, which describes the magnitude of remaining 
random or unexplained error. The GMFR regression line is 
used instead of the linear regression line because GMFR is 
a symmetric regression model that assumes both X and Y 
datasets are subject to error, unlike least squares regression. 
All three agreement coefficient metrics are symmetric and 
standardized, facilitating easy comparison between datasets. 
RMSE values are also symmetric, and are in data units, 
providing a measure of the magnitude of the error in data 
units. As many studies have pointed out, dataset accuracy 
changes with scale (e.g. (Blackard et al. 2008), (Nelson 
et al. 2009)). Thus, these first two assessments should 
be calculated at a range of scales to provide information 
on how dataset accuracy changes with scale. We have 
recommended choosing that scale at which we have 
reasonable confidence in FIA estimates (216,500 ha), plus 
one or two below and above that (Riemann et al. 2010). 

The third assessment examines differences in local 
variability (figure 1c), and the fourth examines the spatial 
and distribution patterns of local differences between the 
modeled and reference datasets, (figures 1d,e). These last 
two assessments can be effective if calculated at a scale at 
which a sufficient number of FIA plots are available to have 
reasonable confidence in the FIA plot-based estimates for 
mean, standard deviation, and a reasonably small confidence 
interval. When working with hexagons as the spatial unit, 

a hexagon 50 kilometers in diameter is 216,500 hectares 
in size and contains an average of 35 FIA plots (forest and 
nonforest) per hexagon. A full description of all metrics can 
be found in Riemann et al. (2010). A complete description 
of the Agreement Coefficient metrics can be found in Ji and 
Gallo (2006).

 The last two assessments calculate and present assessment 
results for local areas (i.e. at a fixed scale defining that local 
area) and can thus be easily expanded to cover large map 
extents without any loss of descriptive power for local areas. 
The first two assessments, however, are initially calculated 
for the dataset as a whole, making them less valuable as 
the extent of the dataset increases. Thus, when working 
with datasets as extensive as the Eastern CONtinental 
United States (ECONUS), calculating these metrics for the 
dataset as a whole is not sufficient. Over such a large area 
both the type and magnitude of errors can and will vary by 
region, and thus the summary metrics should be calculated 
and available by smaller regions as well as the dataset 
as a whole, which requires choosing both the regions of 
assessment and the scale at which it will be assessed.

In this study we calculated assessments using both level 
3 ecoregions and 3.5 million ha hexagons to examine any 
differences resulting from choice of region. We selected the 
78,100 ha scale because of its reasonably high comparative 
accuracies reported in the dataset-wide assessment (Figure 
2)—AC=0.95, ACsys=1.0, ACuns = 0.95. The 78,100 ha scale 
also represents a compromise between having a sufficient 
number of plots within each hexagon (an average of 20) 
so that the FIA estimate is a reasonably robust estimate 
of the mean for the area, and having a sufficient number 
of hexagons within each region so that there are enough 
points from which to calculate reasonably robust assessment 
metrics for each region, whether level 3 ecoregions or 3.5 
million ha hex-regions are used (Figure 3). With respect 
to the choice of region, ecoregions have the advantage of 
including the entire land area, and of dividing the area by 
one characteristic which could contribute to differences in 
accuracy, such as different ecosystem types. However, they 
have the disadvantage of varying widely in area (which 
means one cannot simply use the histogram to display the 
amount of area in each error category), of sometimes being 
very long and narrow and even containing exclusions which 
inevitably translates into a greater number of summary units 
(the 78,100 ha hexagons) that include area from neighboring 
ecoregions. Using a 3.5 million ha hexagon as the region 
of assessment has the advantage of being equal land area 
unless we include the edge hexagons that reach beyond the 
extent of the land area and plot data in the study. They have 
the disadvantage of not being based on any factor suspected 
of affecting accuracy other than geographic location, 
however since there could be many factors, perhaps this is a 
less important criteria. 

Data Integrity
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DeSCrIPTIon oF THe DATASeTS

In this paper we assess datasets generated for the 
Eastern CONtinental United States (ECONUS) using 
an approach developed by Wilson et al. (in review), 
which is a modification of the gradient nearest neighbor 
technique developed by Ohmann and Gregory (2002). 
The approach uses MODIS (MODerate-resolution 
Imaging Spectroradiometer) composites taken from the 
entire growing season to take advantage of phenological 
differences between species, along with climate and 
topographic variables. The datasets are both modeled and 
output at a resolution of 250m (6.25 ha, 15.44 acre) grid 
cells. The technique uses a weighted nearest-neighbor 
approach, using the 2nd through 7th nearest neighbors, 
moderated by the proportion of forest pixels from the 2001 
National Land Cover Dataset (NLCD2001) within each 
grid cell. All grid cells have modeled estimates regardless 
of the proportion of forestland present within them. The 
approach modeled entire plots, and thus the full suite of 
variables (volume, individual species basal area, stand size 
structure, etc.) are essentially modeled together. The plot 
data used did not record tree data on nonforest plots even 
if trees occurred (Wilson et al. in review). Knowing basic 
details about the method used to produce the geospatial 
dataset being examined provides valuable information 
about model assumptions, data used, known smoothing 
applied, characteristics optimized for, etc., that can help 
interpretation of assessment results and the sources of 
different types of error found.

reSUlTS/DISCUSSIon

ASSeSSMenT oF MoDeleD ToTAl BASAl AreA 
Per ACre DATASeT
Figure 2 presents results from the comparative assessments 
of data distribution and area estimates across four different 
spatial scales. From the information provided by the 
scatterplots and ecdf plots in figure 2, it is apparent that 
the modeled dataset is closely approximating plot-based 
estimates for total basal area by the 78,100 hectare scale 
when the entire dataset is assessed together. Agreement 
coefficient values are greater than 0.90 by that scale, and KS 
distance values are very small from the 78,100 to 3.5 million 
ha scales. 

In the choropleth map of local differences between model- 
and plot-based means at the 216,500 scale (Figure 4), 74 
percent of the hexagon means are within the bounds of the 
90th CI. Differences larger than that appear to be relatively 
scattered across the dataset, although there is more tendency 
for the modeled dataset to overestimate total ba/acre present 
(23 percent of the hexagons) than underestimate (3 percent 
of the hexagons), when compared to the plot-based estimate. 

The modeled dataset tends to overestimate with respect 
to plot-based means in areas with low or no total tree ba/
acre inventoried by the plots, such as the plains areas in the 
western side of the study area or southeastern Michigan. 
This is not surprising, given that basal area is modeled 
for pixels with tree cover, even if those trees do not fall 
within FIA’s definition of ‘forest land.’ In the graph of local 
differences sorted by increasing plot mean (figure 5), there 
does not seem to be much difference in this pattern across 
the range of ba/acre values. 

With respect to local variability (figure 6), the modeled 
dataset appears to retain the general pattern of local 
variability across the study area, but frequently 
underestimates that variability. This difference will reflect 
the difference in sample unit size between the two datasets 
– here between FIA plots measuring the landscape at a 0.06 
ha scale, and the modeled dataset describing the landscape 
at a 6.25 ha scale. However, local variability is considered a 
sufficiently important characteristic of modeled geospatial 
datasets to warrant its assessment as a description of the 
level of local spatial variability present in the modeled 
dataset, with the plot-based results providing an indication 
of the smaller-scale variability likely to be present in the real 
population. 

The accuracy presented in figure 2 for the entire area is 
relatively high, with agreement values at the 78,100 ha scale 
of 0.95 for AC, 1.0 for ACsys, 0.95 for ACuns, 4.35 (sq. feet 
per acre) for RMSE, and 0.13 for KS. Figure 7 presents 
these four assessment metrics for the same 78,100 ha scale 
by ecoregion and by 3.5 million ha hexagon. It is clear 
from these results that regional agreement metrics vary 
widely. For example, while national AC = 0.95, regional AC 
ranges from less than 0.4 to 1.0. Lowest values predominate 
in the northern plains region where the lowest total ba/
acre is found, however moderately to very low AC values 
are also found in the northeast and east sections as well. 
Systematic agreement metric values (ACsys), indicating 
the level and location of any bias present are much higher 
overall. However ACsys values still range from 0.76 to 1.0 
when calculated by local region, as compared to a national 
ACsys value of 1.0. Ecoregions with high ACuns values are 
those with the highest scatter about the GMFR regression 
line – suggesting those that are currently the most difficult 
to model given the current set of predictor variables used. 
Unsystematic agreement (ACuns) values are more similar in 
range and distribution to AC values, indicating the general 
dominance of unsystematic error in the overall AC values, 
with of course a few exceptions. When examined regionally, 
the magnitude of RMSE values appear to largely track the 
magnitude of total tree ba/acre present in each local region, 
with larger errors in areas with higher total ba/acre values. 
This is entirely understandable given that RMSE values 
are expressed in data units. The maps of KS distances are 
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strongly driven by those areas where the plots measured no 
tree ba/acre and the model estimated some ba/acre greater 
than zero. Given the fact that FIA plots do not record any 
tree ba/acre if the plot is defined as ‘nonforest’ even if trees 
are present, while the data used in the modeling includes 
tree cover on all lands, it is understandable that this may 
occur. Thus, it would be helpful if one could calculate 
the KS distance between the two ecdf’s excluding that 
difference in the y-intercept, because we may be more 
interested in differences between the ecdf’s at other places 
in the plot, rather than the understandable and probably 
often reasonable differences in the y-intercept due to 
modeling ba/acre where the plots did not measure any. With 
the datasets examined here, original data distributions were 
very closely captured by the modeled dataset, so the only 
difference was really in the y-intercept. However this is not 
always the case (see Riemann et al. 2010). 

Some differences in results did occur when a different 
region was used. The most noticeable example was in the 
systematic agreement (ACsys) maps. Here the northwestern 
corner of the study area changes from having moderate to 
relatively high systematic agreement if examined by level 
3 ecoregion, to having much lower systematic agreement 
if examined by 3.5 million ha hexagon. There are several 
ecoregions that appear very different across many of the 
maps, such as those along the New York/Pennsylvania 
border, and a long thin ecoregion down the Appalachian 
mountains in east central U.S. This is likely due to the 
small size or long, thin shape of the ecoregions in question, 
and may be an example of the ecoregions picking up 
specific areas with different characteristics, while the 
hexagon includes enough adjacent area to smooth over 
these differences. Overall, the ecoregion maps indicate that 
users in the northeast corner may want to improve both the 
systematic and unsystematic error in many places, whereas 
the hexagon maps do not draw your attention to that area. 
Given their equal area and shape, the hexagons may provide 
a better idea of the spatial patterning of errors, with the cost 
that errors specifically associated with other region types 
may not appear as clearly. 

ASSeSSMenT For SPeCIeS BASAl AreA Per 
ACre
Forestland occurs on many FIA plots in United States. 
Individual tree species, however, represent variables that 
are much less common. Even sugar maple, a relatively 
common species, occurs only 7.5 percent of FIA plots in the 
ECONUS area. Factors affecting how well an individual 
species is modeled include the number of plots available 
to model with, whether those plots reflect the full range of 
variation present over the study area, how dominant that 
species is where it occurs, and how correlated that species is 
with respect to the predictor variables used. In this situation, 
rare species, those with less specific site characteristics, 

those in the understory (when working with remotely sensed 
predictor variables), and those that occur at low densities 
when they do occur tend to be the most difficult to model 
accurately when they are modeled independently. One of 
the characteristics of the nearest neighbor techniques used 
to generate the modeled datasets being assessed here is that 
each species is not modeled independently, but rather all 
species are modeled concurrently. Thus, a relatively rare 
species which might not have a sufficient number of plots to 
model well on its own, may achieve a higher accuracy due 
to its correlation with other species which are more visible 
or site-specific. 

We assessed the modeled ba/acre datasets for six individual 
tree species, and present four of these species, sugar maple, 
flowering dogwood, eastern red cedar, and river birch, in 
more detail in figures 8-11. Results for selected summary 
metrics for all six species are presented in table 1. 

Sugar maple occurs on 7.5 percent of FIA plots in the 
ECONUS area, has a maximum ba/acre value of 188.7 
square feet per acre, and a mean of 14.4 percent ba/acre 
where it occurs. Figure 8 presents assessment results 
in terms of the scatterplot across four scales, and the 
comparison of modeled means to plot-based confidence 
intervals. The ecdf plot is not shown because it is so 
dominated by the large number of zero areas over this large 
an area that is has little story to tell. Assessment results 
for sugar maple are in general similar to the total ba/acre 
dataset, with AC values greater than .90 by the 216,500 
ha scale, and ACsys values greater than 0.95 by the 8660 
ha scale. The percentage of estimates at the 216,500 ha 
scale falling within, above, and below the 90th plot-based 
confidence interval are also similar to results for the total 
ba/acre dataset, although the spatial distribution of those 
values is of course somewhat different. Modeled estimates 
for sugar maple at this scale are much more likely to 
overestimate plot-based estimates in areas where it occurs at 
lower ba/acre levels, and underestimate plot-based estimates 
in areas where it occurs at higher ba/acre levels. 
 
Flowering dogwood is an intermediate and understory 
species that never reaches a very large size. It occurs on 
only 3.8 percent of ECONUS plots, and of the six species 
examined it has the lowest maximum ba/acre (42.8 sq. feet 
per acre) and mean percent basal area/acre (2.6 percent) 
where it does occur. Yet, despite this, dogwood was 
relatively well modeled (figure 9, table 1), reaching our 
target AC and ACsys values set for this study by the 866,025 
ha and 78,100 ha scales, respectively. Seventy-five percent 
of the modeled dataset is within the 90th CI at the 216,500 
ha scale, and the model more often overestimates dogwood 
in the remaining hexagons with respect to the plot-based 
means. The fact that dogwood does report relatively high 
accuracies despite its rarity may be due to its correlations 

Data Integrity
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with associated species, although we did not investigate this 
specifically in time for this study. 

Eastern red cedar occurs on 3.2 percent of ECONUS plots, 
similar to dogwood, although it has higher ba/acre values 
and represents a larger proportion of the stands where it 
occurs (figure 10, table 1). Results are similar to dogwood, 
with the exception that the model much more frequently 
predicts eastern red cedar in hexagons where the plots 
record none. Given the habit of cedar to occupy old field 
locations that may not yet qualify as forestland and thus not 
be recorded by FIA plots, this may be an example of the 
model picking up more of the species actually present than 
the FIA plots are detecting when they record trees on FIA-
defined “forestland” only. 

River Birch is an example of an extremely rare species, 
occurring on only 0.4 percent of ECONUS plots (figure 11, 
table 1). Because of the large number of hexagons without 
any inventoried or predicted river birch, a high percentage 
of modeled estimates at the 216,500 ha scale still fall within 
the 90th CI. However the scatterplots and agreement metrics 
reveal much higher systematic and random error, reflected 
in the low ACsys and ACuns (and AC) values, respectively. 
River birch is an example of a species that has poor overall 
accuracy in the modeled dataset, probably because of its 
rarity within the study area, and perhaps in combination 
with a wide spatial distribution and/or lack of association 
with other more common species. Regional examination 
of species assessment results would undoubtedly provide 
valuable additional information for users and should be 
added to the standard assessment protocol. 

ConClUSIon

Results indicated important regional differences in 
assessment metrics. For extensive geospatial datasets such 
as these ECONUS datasets, calculating additional agreement 
metrics by region better characterizes geographic differences 
in the magnitude and types of errors present in the modeled 
geospatial dataset. This may be sufficient basic information 
for the metadata, particularly when used in combination 
with dataset-wide scatterplot and ecdf results across several 
different scales. For application in a specific area, a user 
may want to additionally examine the scatterplots and ecdf 
plots at multiple scales for the specific area of interest to 
gain more insight into accuracy at that location as you move 
across spatial scales. 

There are many factors affecting the accuracy of an 
individual tree species, one of which is its rarity within 
the study area. Application of the protocol to individual 

species from the modeled pGNN dataset indicates a 
general tendency toward decreasing accuracy as a species 
becomes less common, although the threshold seems very 
low. In this ECONUS-wide assessment, modeled species 
datasets appeared to be reasonably accurate even when 
species occurred on only 3-4 percent of the plots, but were 
substantially less accurate when a species occurred on less 
than 1 percent of the plots. From our quick examination 
here of only six species, there did not appear to be a similar 
relationship between level of accuracy and low basal/area 
per acre values or low relative dominance. Results of the 
species assessment provide some indication of the scale(s) 
at which modeled datasets of rarer variables (e.g. river 
birch, occurrence of downed wood, etc.) are most consistent 
with the data from FIA plots. Regional assessment of 
accuracy will be important with individual species datasets, 
as assessment results may vary widely from the national 
values, particularly where a species is locally rare. 

This study further develops the minimum information 
that should be included in the standard metadata available 
with every FIA geospatial dataset. In addition to indicating 
the true accuracy of the dataset with respect to the real 
population on the ground, this assessment protocol provides 
an explicit description of how summaries generated from a 
modeled dataset relate to summaries generated directly from 
the FIA plot data. 
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Table 1—Selected assessment results for six individual species, sorted by decreasing agreement (AC and ACsys)
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Figure 1—Example assessment protocol used: a) assessment of data distributions with KS 
distance metrics, b) assessment of agreement between model- and plot-based means—in this 
example, AC = 0.80, ACsys = 0.84, and ACuns = 0.96, and RMSE = 3.9, c) comparing local 
variability, d) spatial pattern of local differences with respect to plot-based confidence intervals, 
e) pattern of those differences across the range of biomass values. Example is from assessing 
modeled datasets of biomass in Minnesota. 
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Figure 2—Scatterplots and ecdf plots of ECONUS total ba/acre 
across four scales. 
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Figure 3—Number of 78,100 ha hexagons within each scale examined: a) 216,500 ha hexagons, 
where n= 42-45, and b) level 3 ecoregions.

a)

b)
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Figure 4—Chropleth map of differences between mapped estimates and plot-based means and 
confidence intervals for ECONUS at the 216,500 ha scale. 

  

 
Figure 5—Differences between mapped estimates and plot-based means and confidence intervals for 
ECONUS at the 216,500 ha scale, as graphed across the distribution of plot mean values.
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Figure 6—Choropleth map of differences in local spatial variability of ECONUS estimates, as described 
by the standard deviation of modeled (a) or plot-based (b) values at the 216,500 ha scale.
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Figure 7—Maps of agreement metrics for the ECONUS dataset, summarized by 
ecoregion (a-e), and 3.5 million ha hexagon (f-j). 
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Figure 8—Assessment results for the ECONUS sugar maple 
dataset: a) map of modeled distribution, b) comparison of model- to 
plot-based means across four scales, c) magnitude and spatial 
pattern local differences at the 216,500 ha scale, and d) magnitude 
and distribution pattern of local differences across the range of sugar 
maple ba/acre values. 

 

 

 

Figure 9—Assessment results for flowering dogwood: a) map of 
modeled distribution, b) comparison of model- to plot-based means 
across four scales, c) magnitude and spatial pattern local differences 
at the 216,500 ha scale, and d) magnitude and distribution pattern of 
local differences across the range of sugar maple ba/acre values.
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 Figure 10—Assessment results for eastern red cedar: a) map of 
modeled distribution, b) comparison of model- to plot-based means 
across four scales, c) magnitude and spatial pattern local differences 
at the 216,500 ha scale, and d) magnitude and distribution pattern of 
local differences across the range of sugar maple ba/acre values.

 

 

 
 

Figure 11—Assessment results for river birch: a) map of modeled 
distribution, b) comparison of model- to plot-based means across 
four scales, c) magnitude and spatial pattern local differences at the 
216,500 ha scale, and d) magnitude and distribution pattern of local 
differences across the range of sugar maple ba/acre values.
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